Skip to content

Papers

Published Papers

Baù G., Hernando-Ayuso J., Bombardelli C.: “A generalization of the equinoctial orbital elements”, Celestial Mechanics and Dynamical Astronomy (2021), 133(11-12), 50
http://arxiv.org/abs/2105.04424
https://trebuchet.public.springernature.app/get_content/e403f41f-b9f8-47ec-8523-eb4286a38967

Baù G., Roa J.: “Uniform formulation for orbit computation: the intermediate elements”, Celestial Mechanics and Dynamical Astronomy (2020), 132(2), 10
https://arxiv.org/abs/1912.00795
https://link.springer.com/article/10.1007/s10569-020-9952-y

Burgos-Garcia J., Celletti A., Gales C., Gidea M., Lam W.T.: “Hill four-body problem with oblate tertiary: an application to the Sun-Jupiter-Hektor-Skamandrios system”, Journal of Nonlinear Science (2020), 30
https://arxiv.org/abs/1812.10852
https://link.springer.com/article/10.1007/s00332-020-09640-x

Bustamante A.P., Celletti A., Lhotka C.: “Breakdown of rotational tori in 2D and 4D conservative and dissipative standard maps”, Physica D: Nonlinear Phenomena (2023), 453, 133790
https://arxiv.org/abs/2212.13960
https://www.sciencedirect.com/science/article/pii/S0167278923001446

Calleja R., Celletti A., de la Llave R.: “Existence of whiskered KAM tori of conformally symplectic systems”, Nonlinearity (2020), 33, 1
https://arxiv.org/abs/1901.07483
https://iopscience.iop.org/article/10.1088/1361-6544/ab4c80

Calleja R., Celletti A., de la Llave R.: “Whiskered KAM Tori of Conformally Symplectic Systems”, Mathematics Research Reports (2020), 1
https://arxiv.org/abs/1901.06059
http://www.numdam.org/articles/10.5802/mrr.4/

Calleja R., Celletti A., de la Llave R.: “KAM quasi-periodic solutions for the dissipative standard map”, Communications in Nonlinear Science and Numerical Simulation (2022), 106, 106111
https://arxiv.org/abs/2002.10647
https://www.sciencedirect.com/science/article/abs/pii/S1007570421004238

Calleja R., Celletti A., de la Llave R.: “KAM Theory for Some Dissipative Systems”, in “New Frontiers of Celestial Mechanics: Theory and Applications”, Baù G., Di Ruzza S., Paez R.I., Penati T., Sansottera M. eds. (2023), Springer PROMS, vol. 399
https://arxiv.org/abs/2007.08394
https://link.springer.com/chapter/10.1007/978-3-031-13115-8_3

Calleja R., Celletti A., Gimeno J., de la Llave R.: “Efficient and Accurate KAM Tori Construction for the Dissipative Spin-Orbit Problem Using a Map Reduction”, Journal of Nonlinear Science (2022), 32, 4
https://arxiv.org/abs/2106.09175
https://link.springer.com/article/10.1007/s00332-021-09767-5

Calleja R., Celletti A., Gimeno J., de la Llave R.: “KAM quasi-periodic tori for the dissipative spin-orbit problem”, Communications in Nonlinear Science and Numerical Simulation (2022), 106, 106099
https://arxiv.org/abs/2107.02853
https://www.sciencedirect.com/science/article/abs/pii/S1007570421004111

Calleja R., Celletti A., Gimeno J., de la Llave R.: “Accurate Computations up to Breakdown of Quasi-Periodic Attractors in the Dissipative Spin-Orbit Problem”, Journal of Nonlinear Science (2024), 34, 12
https://arxiv.org/abs/2210.05796
https://link.springer.com/article/10.1007/s00332-023-09988-w

Caracciolo C.: “Normal form for lower dimensional elliptic tori in Hamiltonian systems”, Mathematics in Engineering (2022), 4, 6
https://arxiv.org/abs/2110.09824
https://www.aimspress.com/article/doi/10.3934/mine.2022051

Caracciolo C., Locatelli U.: “Elliptic tori in FPU non-linear chains with a small number of nodes”, Communications in Nonlinear Science and Numerical Simulation (2021), 97, 105759
http://www.arxiv.org/abs/2102.05908
https://www.sciencedirect.com/science/article/abs/pii/S1007570421000708

Caracciolo C., Locatelli U., Sansottera M., Volpi M.: “Librational KAM tori in the secular dynamics of the $\upsilon$ Andromedæ planetary system”, Monthly Notices of the Royal Astronomical Society (2022), 510, 2
https://arxiv.org/abs/2108.11834
https://academic.oup.com/mnras/article-abstract/510/2/2147/6449009?redirectedFrom=fulltext

Cardin F., Guzzo M.: “Integrability of close encounters in the spatial restricted three-body problem”, Communications in Contemporary Mathematics (2022), 24, 6, 2150040
https://arxiv.org/pdf/1809.01257.pdf
https://doi.org/10.1142/S0219199721500401

Cavallari I., Grassi C., Gronchi G.F., Baù G., Valsecchi G.B.: “A dynamical definition of the sphere of influence of the Earth”, Communications in Nonlinear Science and Numerical Simulation (2023), 119, 107091
https://arxiv.org/abs/2205.09340
https://www.sciencedirect.com/science/article/abs/pii/S1007570423000096

Cavallari I., Gronchi G.F., Baù G.: “On the Sun-shadow dynamics”, Physica D: Nonlinear Phenomena (2022), 432, 133136
https://arxiv.org/abs/2011.10784
https://www.sciencedirect.com/science/article/pii/S016727892100275X

Cavallari I., Pucacco G.: “Bifurcation of frozen orbits in a gravity field with zonal harmonics”, Celestial Mechanics and Dynamical Astronomy (2022), 134, 49
https://arxiv.org/abs/2210.12182
https://link.springer.com/article/10.1007/s10569-022-10103-6

Celletti C., De Blasi I., Efthymiopoulos C.: “Nekhoroshev estimates for the orbital stability of Earth’s satellites”, Celestial Mechanics and Dynamical Astronomy (2023), 135, 10
https://arxiv.org/abs/2112.06045
https://link.springer.com/article/10.1007/s10569-023-10124-9

Celletti A., Gales C., Lhotka C.: “Resonances in the Earth’s space environment”, Communications in Nonlinear Science and Numerical Simulation (2020), 84, 105185 (2020)
https://arxiv.org/abs/1912.04593
https://www.sciencedirect.com/science/article/abs/pii/S1007570420300204

Celletti A., Gimeno J., Misquero M.: “The Spin-Spin Problem in Celestial Mechanics”, Journal of Nonlinear Science (2022), 32, 88
https://arxiv.org/abs/2110.11152
https://link.springer.com/article/10.1007/s00332-022-09840-7

Celletti A., Karampotsiou E., Lhotka C., Pucacco G., Volpi M.: “Laplace-like resonances with tidal effects”, Astronomy and Astrophysics (2021), 655, A94
https://arxiv.org/abs/2109.02694
https://www.aanda.org/articles/aa/abs/2021/11/aa41311-21/aa41311-21.html

Celletti A., Karampotsiou E., Lhotka C., Pucacco G., Volpi M.: “The Role of Tidal Forces in the Long-Term Evolution of the Galilean system”, Regular and Chaotic Dynamics (2022), 27
https://link.springer.com/article/10.1134/S1560354722040013

Celletti A., Pucacco G., Vartolomei T.: “Reconnecting groups of space debris to their parent body through proper elements“, Nature Scientific Reports (2021), 11, 22676
https://www.nature.com/articles/s41598-021-02010-x

Celletti A., Pucacco G., Vartolomei T.: “Proper elements for space debris”, Celestial Mechanics and Dynamical Astronomy (2022), 134, 11
https://link.springer.com/article/10.1007/s10569-022-10064-w

Dalla Via M., Fassò F., Sansonetto N.: “On the Dynamics of a Heavy Symmetric Ball that Rolls Without Sliding on a Uniformly Rotating Surface of Revolution”, Journal of Nonlinear Science (2022), 32, 84
https://arxiv.org/abs/2109.00236
https://link.springer.com/article/10.1007/s00332-022-09842-5

Danesi V., Locatelli U., Sansottera M.: “Existence proof of librational invariant tori in an averaged model of HD60532 planetary system”, Celestial Mechanics and Dynamical Astronomy (2023), 135(3), 24
https://arxiv.org/abs/2303.06702
https://link.springer.com/article/10.1007/s10569-023-10132-9

Danesi V., Sansottera M., Paleari S., Penati T.: “Continuation of spatially localized periodic solutions in discrete NLS lattices via normal forms”, Communications in Nonlinear Science and Numerical Simulation (2022), 108, 106266
https://arxiv.org/abs/2109.06066
https://doi.org/10.1016/j.cnsns.2022.106266

De Blasi I., Celletti C., Efthymiopoulos C.: “Semi-Analytical Estimates for the Orbital Stability of Earth’s Satellites”, Journal of Nonlinear Science (2021), 31, 93
https://arxiv.org/abs/2101.05340
https://link.springer.com/article/10.1007/s00332-021-09738-w

Efthymiopoulos C., Paez I.R.: “Arnold Diffusion and Nekhoroshev Theory”, in “New Frontiers of Celestial Mechanics: Theory and Applications”, Baù G., Di Ruzza S., Paez R.I., Penati T., Sansottera M. eds. (2023), Springer PROMS, vol. 399
https://arxiv.org/abs/2111.03415
https://link.springer.com/chapter/10.1007/978-3-031-13115-8_5

Facca E., Berti L., Fassò F., Putti M.: “Computing the Cut Locus of a Riemannian Manifold via Optimal Transport”, ESAIM: Mathematical Modelling and Numerical Analysis (2022), 56, 6
https://arxiv.org/abs/2106.07510
https://www.esaim-m2an.org/articles/m2an/abs/2022/06/m2an210108/m2an210108.html

Fassò F., Passarella S., Zoppello M.: “Control of locomotion systems and dynamics in relative periodic orbits”, Journal of Geometric Mechanics (2020), 12, 3
https://hal.archives-ouvertes.fr/hal-02546098
https://www.aimsciences.org/article/doi/10.3934/jgm.2020022

Fenucci M.: “Local minimality properties of circular motions in $1/r^\alpha$ potentials and of the figure-eight solution of the 3-body problem”, Partial Differential Equations and Applications (2022), 3(1), 10
https://arxiv.org/abs/2201.01205
https://link.springer.com/article/10.1007/s42985-022-00148-5

Fenucci M., Gronchi G.F.: “Symmetric Constellations of Satellites Moving Around a Central body of Large Mass”, Journal of Dynamics and Differential Equations (2023), 35(2)
https://arxiv.org/abs/2003.04580
https://link.springer.com/article/10.1007/s10884-021-10083-5

Fenucci M., Gronchi G.F., Novaković B.: “Maps of secular resonances in the NEO region”, Astronomy and Astrophysics (2023), 672, A39
https://arxiv.org/abs/2302.08126
https://www.aanda.org/articles/aa/pdf/2023/04/aa45546-22.pdf

Fenucci M., Gronchi G.F., Saillenfest M.: “Proper elements for resonant planet-crossing asteroids”, Celestial Mechanics and Dynamical Astronomy (2022), 134(3), 23
https://arxiv.org/abs/2201.11392
https://link.springer.com/article/10.1007/s10569-022-10078-4

Fenucci M., Jorba À.: “Braids with the symmetries of Platonic polyhedra in the Coulomb (N+1)-body problem”, Communications in Nonlinear Science and Numerical Simulation (2020), 83, 105105
https://arxiv.org/abs/2009.07901
https://www.sciencedirect.com/science/article/abs/pii/S1007570419304241

García-Azpeitia, García-Naranjo L.C.: “Platonic Solids and Symmetric Solutions of the N-vortex Problem on the Sphere”, Journal of Nonlinear Science (2022), 32, 39
https://arxiv.org/abs/2011.12243
https://doi.org/10.1007/s00332-022-09792-y

Gimeno J., Jorba À., Nicolás B., Olmedo E.: “Numerical Computation of High-Order Expansions of Invariant Manifolds of High-Dimensional Tori”, SIAM Journal on Applied Dynamical Systems (2022), 21, 3
http://www.maia.ub.es/dsg/2021/2106jorba.pdf
https://epubs.siam.org/doi/10.1137/21M1458363

Gimeno J., Lessard J.-P., Mireles James J.D., Yang J.: “Persistence of Periodic Orbits under State-dependent Delayed Perturbations: Computer-assisted Proofs”, SIAM Journal on Applied Dynamical Systems (2023), 22, 3
https://arxiv.org/abs/2111.06391
https://epubs.siam.org/doi/abs/10.1137/22M1499418

Gimeno J., Yang J., de la Llave R.: “Numerical Computation of Periodic Orbits and Isochrons for State-Dependent Delay Perturbation of an ODE in the Plane”, SIAM Journal on Applied Dynamical Systems (2021), 20, 3
https://arxiv.org/abs/2005.06086
https://epubs.siam.org/doi/10.1137/20M1336965

Gronchi G.F.: “Orbit Determination with the Keplerian Integrals”, in “New Frontiers of Celestial Mechanics: Theory and Applications”, Baù G., Di Ruzza S., Paez R.I., Penati T., Sansottera M. eds. (2023), Springer PROMS, vol. 399
https://arxiv.org/abs/2111.02406
https://link.springer.com/chapter/10.1007/978-3-031-13115-8_6

Gronchi G.F., Baù G., Grassi C.: “Revisiting the computation of the critical points of the Keplerian distance”, Celestial Mechanics and Dynamical Astronomy (2023), 135(5), 48
https://arxiv.org/abs/2305.13900
https://link.springer.com/article/10.1007/s10569-023-10161-4

Gronchi G.F., Baù G., Rodríguez Ò., Jedicke R., Moeyens J.: “Generalization of a method by Mossotti for initial orbit determination”, Celestial Mechanics and Dynamical Astronomy (2021), 133(9), 41
https://arxiv.org/abs/2104.00345
https://link.springer.com/article/10.1007/s10569-021-10038-4

Gronchi G.F., Niederman, L.: “On the nodal distance between two Keplerian trajectories with a common focus”, Celestial Mechanics and Dynamical Astronomy (2020), 132(1), 5
http://arxiv.org/abs/1909.03213
https://link.springer.com/article/10.1007/s10569-019-9944-y

Guzzo M., Efthymiopoulos C., Paez R.I.: “Semi-analytic computations of the speed of Arnold diffusion along single resonances in a priori stable Hamiltonian systems”, Journal of Nonlinear Science (2020), 30, 851-9010
https://arxiv.org/abs/1812.05430
https://www.math.unipd.it/~guzzo/Preprints/GEP19-AAM.pdf
https://doi.org/10.1007/s00332-019-09594-9

Guzzo M., Lega E.: “Theory and applications of fast Lyapunov indicators to model problems of celestial mechanics”, Celestial Mechanics and Dynamical Astronomy (2023), 135(4), 37
https://hal.science/hal-03326476/
https://link.springer.com/article/10.1007/s10569-023-10152-5

Lari G., Saillenfest M., Fenucci M.: “Long-term evolution of the Galilean satellites: the capture of Callisto into resonance”, Astronomy and Astrophysics (2020), 639, A40
https://arxiv.org/abs/2001.01106
https://www.aanda.org/articles/aa/full_html/2020/07/aa37445-20/aa37445-20.html

Lari G., Saillenfest M., Grassi C.: “Dynamical history of the Galilean satellites for a fast migration of Callisto”, Monthly Notices of the Royal Astronomical Society (2023), 518(2)
https://arxiv.org/abs/2210.00424
https://academic.oup.com/mnras/article-abstract/518/2/3023/6825511?redirectedFrom=fulltext

Locatelli U., Caracciolo C., Sansottera M., Volpi M.: “A numerical criterion evaluating the robustness of planetary architectures; applications to the $\upsilon$ Andromedæ system”, Proceedings of the International Astronomical Union, Volume 15, Symposium S364, Multi-Scale (Time and Mass) Dynamics of Space Objects, Celletti A., Beaugé C., Gales C., Lemaître A. eds. (2022)
https://arxiv.org/abs/2202.08616
https://www.cambridge.org/core/journals/proceedings-of-the-international-astronomical-union/article/numerical-criterion-evaluating-the-robustness-of-planetary-architectures-applications-to-the-andromedae-system/6598C6FF032282B4C418E29773A2D9E0

Locatelli U., Caracciolo C., Sansottera M., Volpi M.: “Invariant KAM tori: from theory to applications to exoplanetary systems”, in “New Frontiers of Celestial Mechanics: Theory and Applications”, Baù G., Di Ruzza S., Paez R.I., Penati T., Sansottera M. eds. (2023), Springer PROMS, vol. 399
https://arxiv.org/abs/2202.06572
https://link.springer.com/chapter/10.1007/978-3-031-13115-8_1

Mastroianni R., Locatelli U.: “Secular orbital dynamics of the innermost exoplanet of the $\upsilon$-Andromedæ system”, Celestial Mechanics and Dynamical Astronomy (2023), 135(3), 28
https://arxiv.org/abs/2304.09038
https://link.springer.com/article/10.1007/s10569-023-10141-8

Paez R.I., Guzzo M.: “A study of temporary captures and collisions in the Circular Restricted Three-Body Problem with normalizations of the Levi-Civita Hamiltonian”, International Journal of Non-Linear Mechanics (2020), 120, 103417
https://arxiv.org/abs/1904.04146
https://www.sciencedirect.com/science/article/abs/pii/S0020746219307164

Paez R.I., Guzzo M.: “Transits close to the Lagrangian solutions L1, L2 in the Elliptic Restricted Three-body Problem”, Nonlinearity (2021), 34, 6417
https://arxiv.org/abs/2011.14957
https://iopscience.iop.org/article/10.1088/1361-6544/ac13be

Paez R.I., Guzzo M.: “On the semianalytical construction of halo orbits and halo tubes in the elliptic restricted three-body problem”, Physica D: Nonlinear Phenomena (2022), 439, 133402
https://arxiv.org/abs/2203.16315
https://doi.org/10.1016/j.physd.2022.133402

Penati T., Danesi V., Paleari S.: “Low dimensional completely resonant tori in Hamiltonian Lattices and a Theorem of Poincaré”, Mathematics in Engineering (2021), 3, 4
https://www.aimspress.com/article/doi/10.3934/mine.2021029

Pinzari G., Liu X.: “Quantitative KAM Theory, with an Application to the Three-Body Problem”, Journal of Nonlinear Science (2023), 33, 90
https://arxiv.org/abs/2302.00279
https://link.springer.com/article/10.1007/s00332-023-09948-4

Pinzari G., Scoppola B., Troiani A.: “Lonely Planets and Lightweight Asteroids: A Statistical Mechanics Model for the Planetary Problem”, Annales Henri Poincaré (2022), 23(3)
https://link.springer.com/article/10.1007/s00023-021-01099-0

Rodríguez Ó., Gronchi G.F., Baù G., Jedicke R.: “Numerical behaviour of the Keplerian Integrals methods for initial orbit determination”, Icarus (2022), 384, 115080
http://arxiv.org/abs/2401.01210
https://www.sciencedirect.com/science/article/abs/pii/S0019103522001890?via%3Dihub

Sansottera M., Danesi V., Penati T., Paleari S.: “On the continuation of degenerate periodic orbits via normal form: lower dimensional resonant tori”, Communications in Nonlinear Science and Numerical Simulation (2020), 90, 105360
https://arxiv.org/abs/2005.11859
https://doi.org/10.1016/j.cnsns.2020.105360

Scantamburlo E., Guzzo M., : “Short-period effects of the planetary perturbations on the Sun-Earth Lagrangian point L3 – Planetary perturbations of the Sun-Earth L3”, Astronomy and Astrophysics (2020), 368, 137
https://hal.science/hal-02935567
https://www.aanda.org/articles/aa/full_html/2020/06/aa37696-20/aa37696-20.html

Scantamburlo E., Guzzo M., Paez R.I.: “Interplanetary transfers using stable and unstable manifold tubes originating at L1 and L2 in the elliptic restricted three-body problems”, Acta Astronautica (2022), 200
https://hal.science/hal-03436121
https://www.sciencedirect.com/science/article/abs/pii/S0094576522003836

Scoppola B., Troiani A., Veglianti M.: “Tides and dumbbell dynamics”, Regular and Chaotic Dynamics (2022), 27, 3
https://arxiv.org/abs/2101.05637
https://link.springer.com/article/10.1134/S1560354722030078

Valvo L., Locatelli U.: “Hamiltonian control of magnetic field lines: computer assisted results proving the existence of KAM barriers”, Journal of Computational Dynamis (2022), 9, 4
https://arxiv.org/abs/2101.07785
https://www.aimsciences.org/article/doi/10.3934/jcd.2022002

Yang J., Gimeno J., de la Llave R.: “Persistence and Smooth Dependence on 
Parameters of Periodic Orbits in Functional Differential Equations Close to an ODE or an Evolutionary PDE”, Journal of Differential Equations (2022), 338
https://arxiv.org/abs/2103.05203
https://www.sciencedirect.com/science/article/abs/pii/S002203962200451X

Preprints

Constantineau K., García-Azpeitia C., García-Naranjo L.C., Lessard J.P.: “Determination of stable branches of relative equilibria of the N-vortex problem on the sphere” , preprint (2023)
https://arxiv.org/abs/2309.04320v1

García-Naranjo L.C., Marrero J.C., Martín de Diego D., Petit Valdés E.P.: “Almost-Poisson brackets for nonholonomic systems with gyroscopic terms and Hamiltonisation” , preprint (2023)
https://arxiv.org/abs/2309.11597v1

Guzzo M.: “Parametric approximations of fast close encounters of the planar three-body problem as arcs of a focus-focus dynamics” , preprint (2023)
https://arxiv.org/abs/2311.17108

Rossi M., Guzzo M.: “A Hamiltonian revisitation of the Kustaanheimo-Stiefel regularization of the elliptic restricted three-body problem”, preprint (2022)
https://arxiv.org/abs/2206.07022

Scantamburlo E., Gronchi G.F., Baù G.: “Orbit determination from one position vector and a very short arc of optical observations”, preprint (2023)
https://arxiv.org/abs/2312.14764

Rodríguez Ó., Gronchi G.F., Baù G., Jedicke R.: “Sparse multi-apparition linkages in large datasets”, preprint (2023)
http://arxiv.org/abs/2401.01202


Reference Papers

2019

Celletti A., Paita F., Pucacco G.: “The dynamics of Laplace-like resonances”, Chaos 29, 033111 (2019)
https://doi.org/10.1063/1.5087253

Pinzari G.: “A first integral to the partially averaged Newtonian potential of the three-body problem”, Cel. Mech. Dyn. Astr., vol. 131, 22 (2019)
https://arxiv.org/abs/1607.03056
https://doi.org/10.1007/s10569-019-9899-z

Sansottera M., Libert A.-S.: “Resonant Laplace-Lagrange theory for extrasolar systems in mean-motion resonance”, Cel. Mech. Dyn. Astr., vol. 131, 38 (2019)
https://arxiv.org/abs/1909.09462
https://doi.org/10.1007/s10569-019-9913-5

2018

Cardin F., Guzzo M.: “Integrability of the spatial three-body problem near collisions”, Preprint 2018
https://arxiv.org/abs/1809.01257

Celletti A., Gales C.: “Dynamics of resonances and equilibria of Low Earth Objects”, SIAM J. Appl. Dyn. Syst., vol. 17, 203-235 (2018)
https://arxiv.org/abs/1710.02519
https://doi.org/10.1137/17M1118671

Guzzo M., Lega E.: “Geometric chaos indicators and computations of the spherical hypertube manifolds of the spatial circular restricted three-body problem”, in press, Physica D, vol. 373, 38-58 (2018)
https://doi.org/10.1016/j.physd.2018.02.003

Ma H., Baù G., Bracali Cioci D., Gronchi G.F.: “Preliminary orbits with line-of-sight correction for LEO satellites observed with radar”, Cel. Mech. Dyn. Ast., vol. 130, 10, 1-20 (2018)
https://doi.org/10.1007/s10569-018-9867-z

Pinzari G.: “Perihelia Reduction and Global Kolmogorov Tori in the Planetary Problem”, Memoirs of the American Mathematical Society, vol. 255 (2018)
https://arxiv.org/abs/1501.04470
https://doi.org/10.1090/memo/1218

Volpi M., Locatelli U., Sansottera M.: “A reverse KAM method to estimate unknown mutual inclinations in exoplanetary systems”, Cel. Mech. Dyn. Astr., vol. 130, 36 (2018)
https://arxiv.org/abs/1712.07390
https://doi.org/10.1007/s10569-018-9829-5

2017

Calleja R., Celletti A., de la Llave R.: “Domains of analyticity and Lindstedt expansions of KAM tori in some dissipative perturbations of Hamiltonian systems”, Nonlinearity, vol. 30, 3151-3202 (2017)
https://arxiv.org/abs/1506.00057
https://doi.org/10.1088/1361-6544/aa7738

Giorgilli A., Locatelli U., Sansottera M.: “Secular dynamics of a planar model of the Sun-Jupiter-Saturn-Uranus system; effective stability into the light of Kolmogorov and Nekhoroshev theories”, Regul. Chaot. Dyn. vol. 22, 54-77 (2017)
https://arxiv.org/abs/1702.04894
https://doi.org/10.1134/S156035471701004X

Guzzo M., Lega E.: “Scenarios for the dynamics of comet 67P/Churyumov-Gerasimenko over the past 500 kyr”, Mon. Not. Royal Astron. Soc., vol. 469, Suppl_2, 21 (2017)
https://doi.org/10.1093/mnras/stx1669

2016

Fassò F., Fontanari D., Sadovskii D.: “Quantum manifestations of Nekhoroshev stability”, Physics Letters A, Vol. 380, 3167-3172 (2016)
https://doi.org/10.1016/j.physleta.2016.07.047

Gronchi G.F., Baù G., Milani A.: “Keplerian integrals, elimination theory and identification of very short arcs in a large database of optical observations” , Cel. Mech. Dyn. Ast., vol. 127, 2, 211-232 (2016)
https://doi.org/10.1007/s10569-016-9725-9

Guzzo M., Chierchia L., Benettin G.: “The steep Nekhoroshev’s Theorem”, Communications in Mathematical Physics, vol. 342, 2, 569-601 (2016)
https://arxiv.org/abs/1403.6776
https://doi.org/10.1007/s00220-015-2555-x

Lega E., Guzzo M.: “Three-dimensional representations of the tube manifolds of the planar restricted three-body problem”, Physica D, vol. 352, 41-52 (2016)
https://doi.org/10.1016/j.physd.2016.02.012

Paez R.I., Locatelli U., Efthymiopoulos C.: “New Hamiltonian expansions adapted to the Trojan problem”, Cel. Mech. Dyn. Astr., vol. 126, 519-541 (2016)
https://arxiv.org/abs/1606.04741
https://doi.org/10.1007/s10569-016-9710-3

2015

Baù G., Bombardelli C., Peláez J., Lorenzini E.: “Non-singular orbital elements for special perturbations in the two-body problem”, Mon. Not. Royal Astron. Soc., vol. 454, 3, 2890-2908 (2015)
https://doi.org/10.1093/mnras/stv2106

Fassò F., García-Naranjo L. C., Giacobbe A.: “Quasi-periodicity in relative quasi-periodic tori”, Nonlinearity, Vol. 28, 11, 4281 (2015)
https://arxiv.org/abs/1411.7976
https://doi.org/10.1088/0951-7715/28/11/4281

Fassò F., Fontanari D., Sadovskií, D.A.: “An Application of Nekhoroshev Theory to the Study of the Perturbed Hydrogen Atom”, Math. Phys. Anal. Geom. Vol. 18, 30, (2015)
https://doi.org/10.1007/s11040-015-9200-y

Gronchi G.F., Baù G., Marò, S.: “Orbit determination with the two-body integrals. III” , Cel. Mech. Dyn. Ast., vol. 123, 2, 105-122 (2015)
https://doi.org/10.1007/s10569-015-9623-6

Gronchi G.F., Dimare L., Bracali Cioci D., Ma, H.: “On the computation of preliminary orbits for Earth satellites with radar observations”, Mon. Not. Royal Astron. Soc., vol. 451, 2, 1883-1891 (2015)
https://doi.org/10.1093/mnras/stv1010