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We report on some analytical and numerical results on the exchanges of energy in systems of the Fermi-Pasta—Ulam
type, in the light of Nekhoroshev’s theorem, with particular attention to the dependence of the estimates on the number
of degrees of freedom. For the ordinary FPU problem we look for a control of the single normal mode energies, and we
find both the analytical and numerical estimates to agree in predicting that the energy exchanges of the single modes
cannot be controlled in the thermodynamic limit. We consider then a modified FPU model, with alternating light and
heavy particles, which appears as composed of two subsystems, of low (acoustic) frequency and of high (optical) frequency
respectively. We try to control the exchange of the total energy of the high frequency modes up to times increasing
exponentially with the frequency. In this case the numerical estimates are stronger than the available analytical ones, and
give indications for nonequipartition with constants essentially independent of the number » of degrees of freedom.

1. Introduction

Since the time of Fermi, Pasta and Ulam, one
is confronted with the problem of knowing
whether equipartition of energy for chains of
nonlinearly coupled oscillators holds in the
thermodynamic limit (number of degrees of free-
dom tending to infinity, with finite specific ener-
gy). After the original FPU results [1] and the
classical work of Izrailev and Chirikov [2], the
thesis that equipartition may fail in the thermo-
dynamic limit was first proposed by Bocchieri et
al. [3]. A numerical support to such a thesis then
came from various works (see for example refs,
[4,5,7,8]) although the situation seems not to be
completely settled; see the works [9] and [10].

For a clearer understanding of the problem,

and in order to make the question more precise,
it is essential to have a sound theoretical frame-
work. We consider here the point of view of
perturbation theory, where one tries to control
the variation with time of some relevant quan-
tities, in the sense for example that the modulus
of the variation should be less than a constant;
quantities which have controlled variations will
be said to be frozen. The first possible frame-
work is that of the celebrated KAM theorem,
where one tries to have a control (or freezing)
for all times, by looking for invariant surfaces
(tori), although not for all initial data. Now, the
common belief is that it should not be possible to
extend such a theorem to the thermodynamic
Limit for systems of the FPU type, at least for a
relevant set of initial data; see however [11]
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and [12] for other kinds of systems. Another
framework, which goes back to Boltzmann [13],
Jeans [14] and Littlewood [15], is that of
Nekhoroshev’s theorem [16]. Here one looks for
a freezing only over a finite but large time inter-
val, which typically increases exponentially with
the inverse of a “small parameter” g; in such a
case one can find results holding for open sets of
initial data, Here too the common opinion was
against the possibility of having freezing in the
thermodynamic limit, due to the dependence of
the estimates on the number n of degrees of
freedom. Indeed the estimated stability time for
generic nearly integrable Hamiltonian systems
has the typical form

=T, exp(s*/g)d > Y]

where T, €, and d are parameters depending
on n; and if one uses naively the estimates that
can be found in the original formulation of
Nekhoroshev one gets d =1/n°, so that the ex-
ponential dependence would disappear in the
thermodynamic limit.

In the present paper we give some new results
on the exchanges of energy in systems of the
FPU type, in the light of the Nekhoroshev
theorem, looking in particular at a strict control
of the dependence of the estimates on the num-
ber n of degrees of freedom. Such a study is
suggested by the following remarks.

(i) Remaining in the ordinary approach, where
one tries to control separately all the actions of
the system, one might hope to have an improve-
ment in the results by working out the estimates
for a specific system, and not just using the
estimates for a generic one. In particular, in the
special case of a system in the neighbourhood of
an equilibrium point, like the FPU problem,
some improvements might be expected because
the so called “geometric part” of Nekhoroshev’s
theorem is not needed.

(ii) Instead of trying to control separately the
variation of the energies of all modes, as is done

in the standard approach of item (i), one can
look for a freezing of the total energy of a
subsystem constituted by a group of modes. In-
deed, such a weaker requirement, applied to a
system of identical diatomic molecules, was
shown both numerically [18] and analytically [19]
to lead to estimates of Nekhoroshev type, but
with the quite relevant improvement that one
gets d =1. This was obtained by exploiting the
fact that in that case all frequencies of the con-
sidered group of modes were equal, i.e., one had
exact resonance.

In section 2 we study the classical FPU model
from the point of view of item (i), which is the
classical one of perturbation theory. We report
the analytical estimates for the parameters 7',
g, and d, which follow from some recent analyti-
cal work [20], where the theory is adapted to
systems around an elliptic equilibrium; this leads
in particular to d =1/n. Moreover, we show by
numerical computations, for systems with » rang-
ing from 4 to 120, that such analytical estimates
are essentially optimal. The conclusion is then
that there should be no hope to get positive
results for the freezing of the separate energies
of all the normal modes, by naively extending
classical perturbation theory to the thermody-
namic limit for the FPU system.

In section 3 we obtain the main positive result
of the present paper, by approaching the prob-
lem from the viewpoint of item (ii), i.e., by
looking for a freezing of the total energy of a
subsystem constituted by a suitable group of
modes. In fact, here we are confronted with the
quite delicate problem that we are unable up to
now to find a natural separation of the FPU
system in suitable subsystems to which a
Nekhoroshev-like result in the form of ref. [19]
can be applied; this difficulty was also remarked
in some numerical computations by Kantz [9].
However, it is well known in solid state physics
that there exists a very simple variant of the FPU
model in which one has a clear cut separation in
two subsystems; this is the model with alternat-
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ing heavy and light particles, where the fre-
quency spectrum separates out into an “acousti-
cal branch”, with low frequencies, and an “optic-
al branch”, with high frequencies. In such a
model one can then try to control the energy
exchanges between the corresponding two sub-
systems along the lines of refs. [19] and [18], and
indeed we find analytical estimates of
Nekhoroshev’s type, with exactly d =1. For the
remaining parameters we are only able to get
analytically 7, =1/n° and &, = 1/n®; however,
by numerical computations with » ranging from 4
to 200 we find indications that &, might be
independent of n, while T, should decrease less
than 1/In n. If this is true, then even for macro-
scopic systems with n = 10* one would have no
equipartition between the two subsystems for
significantly large times.

2. Freezing of the harmonic actions in the FPU
model

2.1. Results from classical perturbation theory

In the present section, we consider the well
known FPU &« model, namely a chain of n+2
equal particles on a straight line with nearest
neighbours coupling, due to equal springs having
a harmonic part and a cubic perturbation; as in
the original work of Fermi, Pasta and Ulam, the
ends of the chain are fixed. The Hamiltonian of
the model is

1 n
) ; Yj + (xj+1 - xj)z]

+§§um—nf, @)

where x; is the displacement of the jth particle
from its equilibrium position, and y; the corre-
sponding conjugate momentum. The mass of the
particles and the elastic constants of the springs
have been set equal to 1. Analogously, the con-
stant « too will be set equal to 1; in fact, this

simply corresponds to a suitable choice of the
units of mass, length and time.

The characteristic frequencies of the linearized
system are

w,=2sin 3k, 1=l=n, (3)
where

Iw
ko= ky(n) = =

are the wave numbers. The canonical trans-
formation to the normal modes g, of the linear
part and to the corresponding conjugate momen-
ta p, is

_ 2 X in( jlm )
% w,(n+1) jzles n+1/’

pi=y g sin( 7). (4)

n+1

This brings the Hamiltonian into the form

H=Hy(p, q)+ aH(q), (5)
with

1 n
Hy=5 2 w(pi+dp), (6)

which corresponds to a system of harmonic oscil-
lators (normal modes), with a coupling due to a
suitable perturbation H;, the explicit expression
of which is however not relevant here.

The classical perturbative approach consists in
trying to build up a set of n independent first
integrals ®(g, p) which are perturbations of
the harmonic actions

I, = %(Plz + QIZ)
of the system, namely

D=1+ P+ dP 4, I=1,...,n.
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where @ is a homogeneous polynomial of de-
gree 5. The formal equation for each first integral
is {H,+ H,, ®"}, where {-,-} is the Poisson
bracket. This leads to a formal expression for
each first integral, which is determined by recur-
sively solving the equations

{H,, @21)} =—{H,, q;gl_)l (8)
(here @0 =1).

The formal consistency of the construction
can be proven at all orders if the harmonic
frequencies are nonresonant, i.e. if one has
ko #0 for k€ Z"/{0}; for the proof see refs.
[21] and [20], which refer to the common case, as
is ours, of a Hamiltonian even in the momenta.
We are well aware of the problem that for
certain values of n one actually has resonance in
the present model; however we found that this is
essentially irrelevant for our purposes.

Now, the power expansions (7) of the first
integrals are known to be generally not con-
vergent. On the other hand, in a suitable domain
one can build up a set of n quasi integrals of
motion (adiabatic invariants), which are func-
tions @ of the form (7), where however the
sum is extended up to a suitable optimal order
Fope> for the time derivative of such quasi inte-
grals one finds an exponential estimate. More
precisely, let us consider domains of the form

2,={(p, ) ER™: |p|=p,lq|l=p, 1=l=n},
%)

namely polydisks of radius p centered at the
origin. Then there exists p, such that, given p in
the interval

0<p<p,, (10)

for any (p, q)€ 9, one can choose r,, as a

function of p, and one gets the bound

opt

|&] =max |©| < b(p)=aexp(~u/p®), (1)

with suitable constants a4, u and c¢. This is

nothing but the exponential estimate (1) of the
stability time, with corresponding constants T,
e, and d.

Notice that, in the spirit of perturbation
theory, p, is to be considered as the analogue of
a stochasticity threshold. Indeed, for p > p, al-
ready the first order approximation of the
adiabatic invariant turns out to be worse than the
harmonic action itself, in the sense that no
bound on the variation of the actions can be
given. In this sense, this is the lower estimate of
a stochasticity threshold, which is afforded by
perturbation theory.

As to the dependence of the constants on the
number n of degrees of freedom, in which we are
particularly interested, by a simple application of
the formalae given in ref, [20] one gets, for large
n, :

1
c~—,

~ ~n 12
L m~n, Ina~n, (12)

and p,~ p, /3" with a suitable p, which, in the
FPU « model, behaves as n~>'?; thus one has

po (3" (13)

In order to have informations on the thermo-
dynamic limit n— o at fixed specific energy E/
n = const., it is essential to estimate how the
parameter p controlling the domain depends on
the energy E. To this end, recall that p is defined
as the radius of a polydisk in R* where the orbit
is required to be confined for all times for which
the estimates should be valid; on the other hand
p?/2 is the maximum value of the action that can
be reached by a single oscillator. So, the most
natural choice is

p=V2E/w, . (14)

Thus, the condition p < p, required to apply the
perturbation theory implies 0 < E < E,, where,
due to (13) and to w, ~1/n (see (3)), one has

E,~(9'n®)". (15)
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In conclusion, we have the result that the
exponential stability time is guaranteed analyti-
cally within a domain of energy which is esti-
mated to shrink to zero in the thermodynamic
limit.

The problem is now to understand whether the
analytical estimates are optimal. This is a hard
mathematical problem, to which apparently
there is no answer at the moment. Thus we come
to a numerical investigation, with the aim of
getting rough indications, which should just be
considered as possible suggestions for future
mathematical work.

So, we try to estimate numerically the quantity
b(p) which bounds |®| from above. Here, one
has to tackle the severe problem that the explicit
expansion of the adiabatic invariants @Y is actu-
ally impractical for large n, so that in practice
one can handle only the harmonic actions I,
which are just the first order approximations to
them.

So the problem is to introduce suitable quan-
tities, defined in terms of the harmonic actions 1,
through which one can test the analytical esti-
mates. By the way, from a point of view of
principle one could also reverse the situation,
because one might maintain that the quantities
of physical relevance should just be the harmonic
actions (or the corresponding harmonic energies)
themselves, and so it would be sound to find
analytical bounds for the variations of the har-
monic actions. In any case, the relation between
the bound on the harmonic actions [, and the
bound on the adiabatic invariants @) comes
about from the relation

|I1(t) - II(O)I
=|1,(t) - 2V + [2V(t) — 2(0)]
+[@9(0) — 1,0)] . (16)

This naturally leads to consider two separate
contributions to the time variation of the har-
monic actions, namely:

(i) the deformation |I, — @], which is due to

the fact that the harmonic actions are just an
approximation of the adiabatic invariants @;
such a contribution would occur even if the
power expansion for the first integrals were con-
vergent,

(ii) the noise (or diffusion) | @ (1) — @V (0)],
which is due to the fact that the time derivative
& is not zero, just because @ is a truncated
and not a true integral.

So one has to take into account both contribu-
tions. An analytic estimate for the deformation
can be found in ref. [20]: precisely, at any point
of the domain &, defined above one can prove

max 11, - 2V1<8(p)=6,p", (17)

with a suitable constant §,. The estimate for the
noise is instead given by (11) and (12).

In the next section we will introduce two
quantities 5( p) and b(p), which are defined in
terms of just the harmonic actions, and that we
consider somchow as the analogues of the quan-
tities 6(p) and b(p).

2.2. Numerical results

We integrated numerically the equations of
motion with the number n of particles ranging
from 4 to 120, for ¢ up to 2"°T,, where

T,=2mlw, (18)

is the period of the slowest mode (which, by the
way, depends on n); in particular, we looked at
the instantaneous values of the harmonic actions
I(t), I=1,...,n. As in the papers [3-5], we
used the standard central point method (namely
the simplest symplectic integrator available: see
also [6]), working on a VAX computer; usually,
the computations were in single precision, and
the total energy was conserved within 3%; some
runs were also performed with double precision
and smaller integration steps in order to check
the results, and we found no significant differ-
ences.
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The main goal of our investigation was to
check whether or not the qualitative behaviour
(especially the dependence on n) of the analytic
estimates recalled above for the variation of the
actions were, in some sense, optimal. In particu-
lar, we had to distinguish between the contribu-
tion due to deformation and the one due to
noise. Now, in the limit of small energies, ob-
serving that p” is essentially the maximal possible
value of each harmonic action of the system,
from the formulae (16), (11) and (12) one clear-
ly sees that, for short times, the effect of the
deformation should be prevailing with respect to
that of noise. Indeed, the effect of noise is
exponentially small with 1/p; moreover, the de-
formation manifests itself in a few harmonic
periods, since it essentially corresponds to a
motion on a deformed torus. By the way, this is
one of the main reasons which makes it difficult
to reveal the noise itself, if one is able to mea-
sure just the harmonic actions.

The effect of the deformation is well exhibited
in the classical figures of Fermi, Pasta and Ulam,;
see fig. 1, where the time evolution of some of
the harmonic energies o, for n =6 are re-
ported: the essentially periodic oscillations, with
period 27/ w,, are clearly due to the fact that the
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Fig. 1. Time evolution of the harmonic energies of the first
four modes in a chain of 6 particles. Initial data: total energy
E,=0.06, with just the lowest frequency mode excited; time
unit: the period of the fastest oscillator. The figure exhibits
the effect of the deformation, which causes the quasiperiodic
behaviour of the harmonic energies.

orbit is very close to a deformed torus, which in
turn is close to a torus of the unperturbed system
with Hamiltonian H,(p, ¢q).

The long time effect due to noise, which
superimposes itself to the rapid deformation, is
well illustrated in fig. 2, which gives the maxi-
mum and the minimum of the harmonic action I,
vs. time; the data are n = 6 and initial equiparti-
tion of energy among the modes, with specific
energy 107 (top) and 10> (bottom). This figure
confirms very well that one has two distinct
phenomena occurring at two well separate time
scales. The problem is now to find a suitable
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Fig. 2. Maximum and minimum value of the harmonic action
1, of the fourth mode vs. time. The figure shows that there
are two separate phenomena occurring on different time
scales: the deformation causes the quite fast spreading of the
curves; the noise causes the slow change of the values over a
large time scale. Initial data: equipartition of energy, with
specific energy 107> (top) and 107* (bottom).
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method to exhibit the presence of such two time
scales in a more quantitative way.

Let us now come to the details, by first work-
ing at a fixed n. The analytic estimates we are
checking are the ones given by (17) and (11),
which bound the maximum of the deformation
|I,— @] and the maximum of the diffusion
speed |®"| as functions of p. So we have to
explain how we numerically estimate the quan-
tities 8 = 8(p) and b = b(p), which bound the
deformation and the diffusion speed, by making
use of just the harmonic actions; we assume the
relation between p and the total energy E given
by (14).

Let us consider the numerical estimate of
8(p). We notice that, as shown by formula (16),
if the adiabatic invariant were exactly constant,
then |I(¢) — I(0)| would be bounded by twice the
deformation. So, due to the fact that the
adiabatic invariant is in fact practically constant
for short times, we can guess that a good esti-
mate for the deformation is just one half the
maximal fluctuation of the harmonic action up to
not too long times; such a guess is supported by
fig. 2, which clearly shows that the main effect of
the deformation manifests itself in quite short
times. So, we evaluate the deformation in the
following way. Consider the two straight lines
fitting the maximal and the minimal values of
I,(¢) for not too short times, and get their inter-
sections with the ordinate axis; then we intro-
duce the quantity 5(p), defined as the maximum
over [ of half the distance between such intersec-
tions, and consider this as a bona fide quantity
that should numerically estimate 8(p). The fit-
ting was actually performed after discarding the
values [,(¢) for <100 T, with T, as in (18), as
is suggested by fig. 2.

Let us finally come to the numerical estimate
for the quantity b(p), which measures the noise.
By the same reasons as above, in virtue of
relation (16), the quantity b(p) might be esti-
mated numerically by the absolute value of the
slope of the straight lines just described. How-
ever, such an estimate turns out to be too rough,

because one should be able to wash out the
contributions to such lines due to the low-
frequency components of the deformation. After
some trials, we found that a good bona fide
estimate b for b is given by the quantity

~ L(t+ Ar) — I(f)

b —mlaxsgp A’

for a suitable choice of Ar. We checked that the
results do not significantly change for At ranging
from 10 T, to 50 T,.

The method just described to estimate b by b
might be justified by a clever understanding of
the origin of the distinction between deformation
and noise in perturbation theory. To this end,
one should recall that in the Nekhoroshev-like
theory one exploits the asymptotic character of
the series expansions of the first integrals, which
behave practically as convergent series for low
orders; in fact, the adiabatic invariants are just
those series truncated at a suitable order, where
they “start to diverge”. If the adiabatic in-
variants were exactly constant, then the har-
monic actions I,(¢) would be quasi periodic func-
tions of time with frequencies k - w, where |k| =
|k + -+ +]k,]| is less than the truncation order.
This is actually the deformation. Notice that the
amplitudes of such quasi periodic components
decrease rapidly with |k|, due to the practically
convergent character of the series at low orders.
This is no more true for the components with
large values of |k|, which cannot be controlled by
perturbative methods, and are in fact collected in
the noise. Thus, one can try to wash out the
deformation by averaging I,(f) over a suitable
period Af, which should be a not too large
multiple of 7. This is clearly the basis of our
method.

Let us now come to the numerical results. In
fig. 3 we report the computed values of 8, for p
in the range 107> to 1 and for n = 6, in Log—Log
scale (here, Log denotes decimal logarithm).
The data are well fitted by a straight line with
slope ~2.7, which is quite well in agreement with
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Fig. 3. Numerical estimate of the deformation g(p) vs. p.
The data are in good agreement with the theoretically expec-
ted behaviour, given by (17). Initial data: n=6, with
equipartition of energy among all modes. The value of p is
related to the total energy by (14)..

the estimated value of 3. The data for the func-
tion 5( p), are reported in fig. 4, with p in the
same range as above, and still » = 6. In order to
exhibit in a figure the exponential dependence
on 1/p, we first estimate from the numerical
data, by best fit with the formula (11), the values
of the constants a, u and ¢, and then report in
fig. 5 a plot of Log a — Log l;(p) vs. p in Log—
Log scale. As one sees, the points are well
aligned along a straight line, in agreement with
the theoretical expectation.

We come now to a discussion of the depen-

: T T T T :

E oo %’ 3
0.006 i
. t 7

£ ¥ ]

- + ]

F + ]
0.004 L
F + 3

F + 1

n + ]
0.002F ]
E + 3

0 :_ + _:

. + + + + + Loge 3

C 1 1 1. 'y 1 e 1 -

-3 -2 -1 0

Fig. 4. Numerical estimate of the effect of the noise, to be
compared with the theoretical estimate (11). Initial data as in
fig. 3.
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Fig. 5. Same as fig. 4, in logarithmic scale, in order to bring
into evidence the exponential behaviour, according to the
theoretical estimate (11). Initial data as in fig. 3.

dence of the values of the constants a, u and ¢
on the number of dégrees of freedom n. We
refer to figs. 6, 7, and 8, where loga, u and ¢
respectively are plotted vs. n, for n in the range 4
to 120. One sees that, at least for n larger than
40, the data seem to be reasonably consistent
with the theoretical estimates given by (12).
Thus, our computations show that the analytic
estimates for the freezing of the separate ener-
gies of all oscillators, given by perturbation
theory, are close to being optimal as the depen-
dence of a, 4 and ¢ on the number n of degrees
of freedom. In particular, this might be consid-
ered to support also the theoretical estimate (15)
for the energy threshold below which perturba-
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Fig. 6. Numerical estimate of the quantity a in (11) vs. n, to
be compared with the theoretical estimate (12). The theoreti-
cal estimate seems to be confirmed for large n.
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Fig. 7. Numerical estimate of the quantity & in (11) vs. n, to
be compared with the theoretical estimate (12). The theoreti-
cal estimate seems to be confirmed for large n.
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Fig. 8. Numerical estimate of the quantity ¢ in (11) vs. 1, to
be compared with the theoretical estimate (12). Although the
expected behaviour ¢~1/n cannot be considered as fully
confirmed, it seems nevertheless reasonable to conclude that
¢ decreases to zero with increasing n.

tion theory can be applied; this means that one
should have freezing of all the harmonic actions
only in an energy interval which shrinks to zero
in the thermodynamic limit.

In this sense one might say that the numerical
computations discussed above appear to lend
support to the thesis that, even if one takes the
point of view of Nekhoroshev instead of KAM,
there is no freezing of the separate harmonic
energies of the harmonic oscillators in the
thermodynamic limit n— . However, there re-
mains the possibility of a freezing of the total
energy of suitable packets (or groups) of oscil-
lators, as we are going to discuss in section 3.

3. Freezing of the subsystem of high frequency
modes in the modified FPU model

3.1. Description of the model

We consider here the modified FPU B-model
which, for an even number n of particles, is
described by the Hamiltonian

1 n y2~
H=z (—’ + (%4 —x].)2>

250 \m;
B n
+7 2 g x) (19)
j=0

with m; =1 for j odd and m; = m <1 for j even;
we still consider fixed ends. With respect to the
Hamiltonian considered in section 2, the inter-
action potential is now a quartic one (we actually
worked with 8 =1). This is however irrelevant,
and the major difference consists instead in the
choice of the alternating masses, because this is
very well known to lead to a frequency spectrum
with disjoint branches, that are usually called the
acoustic one and the optical one. Indeed, the
characteristic frequencies of the linearized sys-
tem are well known to be given by

Wl 1+mi\/1+m2+2m0082k,
[ s
m

1=<I=n/2, (20)

where

I
ki = (n+1)
still are the wave numbers. In fig. 9 we plot the
dispersion law w vs. k for different values of the
“small mass” m, namely m =1, 0.7, 0.3 and 0.1.
For m =1 one has the standard dispersion rela-
tion of the FPU model, while for m <1 one has
two different branches: for 0 <k <m/4 one has
the so called acoustic branch which is only slight-
ly modified with respect to the standard one,
while for w/4<k<mw/2 one has the optical
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Fig. 9. Dispersion law w vs. k for the modified FPU model,
for different values of the mass parameter. The figure clearly
exhibits the separation of the acoustic and the optical
branches.

branch, which separates out from the standard
one, lying above it. Notice that, with decreasing
m, the gap between the two branches increases,
and moreover the optical branch becomes flatter
and flatter; in other words one obtains two well
separate subsystems of harmonic oscillators, the
optical subsystem being constituted of oscillators
of essentially the same frequency. Precisely, de-
fining the gap Aw as the difference between the
minimal optical frequency and the maximal
acoustic frequency, oné gets

Aw=\/§<\/g—1>;

analogously, for the width 8w of the optical
branch, defined in the obvious way as the differ-
ence between the maximal and the minimal op-
tical frequencies, one gets

b0 =2 (VITm-1),
and so

8w~\/% form<1.

To determine the canonical transformation to
the normal modes, we order the frequencies as

(07,...,0,,®;,...,w,), where the + and —
refer to the choice of the sign in (20); then we
introduce the coordinates g, and the conjugate
momenta p, of the normal modes via the canoni-
cal transformation

x=Rg, y=(R")'p, (21)

where R is the matrix with elements

. 2
R,= 2 - |cos k|
T Vn+1 V2 - me;]
sin(j - k,)

(1 + m® +2m cos 2k)"'*”’

and the upper index T denotes transposition.

3.2, Analytic results from perturbation theory

In the spirit of the works [18] and [19], instead
of trying to control separately the energy of each
oscillator, we try to control the energy exchange
between the subsystem of the acoustic modes
and the subsystem of the optical modes; actually,
one can work out analytically such a program by
slightly modifying the two subsystems, as will
now be explained. Indeed, in the analytical
paper quoted above one considered an Hamilto-
nian of the form

H=h,(m, €)+hk(p,x)+f(p,x,m &), (22)

where h (w7, ¢) is the Hamiltonian of a certain
number of harmonic oscillators, all of the same
frequency w, A(p,x) is the Hamiltonian of
another arbitrary system, while f(p, x, 7, £) is a
coupling term, which is required however to be
small with £; one is interested in the exchange of
energy between k,, and h for large w. In our case
h,, should correspond to the 'system of oscillators
of the optical branch and /4 to the system of
oscillators of the acoustic branch, so that the
variables 7, £ and p, x describe the oscillators of
the optical and of the acoustic branches respec-
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tively. This, however, is insufficient because on
the one hand the optical frequencies are not all
equal, and on the other hand the quartic part of
the Hamiltonian turns out not to vanish with £,
So, in order to conform to the above splitting,
we further decompose the harmonic energy of
the optical branch into a system of harmonic
oscillators of the same frequency w (equal to an
average of the frequencies of the optical branch),
which is identified with %, and into a corre-
sponding remainder, which is included in the
coupling f. Moreover, the part of the quartic
term which is independent of the variables £ is
also included in 4. Thus, we decompose our
original Hamiltonian H as in (22), with

nl2

1
h,(m, &)= 5 1:21 (7] + 0’€]),

nl/2

- 1
h(p, =3 2 (p] +0jx]) + Hi(x),

ni2

o, €)= 5 2 (6 + 2008 + Hir, )3 (23)

here we have introduced the quantities

2 2
0" = 3[(0 ma)” + (@)’

812(1)1—(0’

r.and @) are the maximal and the
minimal optical frequencies respectively; more-
over Hj is the part of the quartic term in the
Hamiltonian which does not depend on &, while
H | is the remaining part of it.

For an Hamiltonian of the form (22), the
analytic results concerning the exchange of ener-
gy between ki, and /4 are obtained by still con-
structing a quasi integral of motion (or adiabatic
invariant) @, which is a perturbation of 4,; a
convenient dimensionless parameter characteriz-

ing the optical branch is

where o

A= ———— N (24)

where w, . is the maximal acoustic frequency.

X

Using the results of ref. [19], one finds that one
can apply perturbation theory (i.e. one has freez-
ing) for A in the interval

A>CE, (295)

where C is a constant depending on »n, and E is
the total energy; with this condition, the time
derivative of @ is bounded by

€

: ~BA _ &
Ad|<Ae ™™, B—CE

(26)
with a suitable constant A depending on ». In
particular, notice that the analogue of the con-
stant ¢ that appeared in section 2, and that would
appear here as an exponent to A in the exponen-
tial, has now become exactly equal to 1. The
quantities A and C depend on the perturbation f
and on the domain in which the system is consid-
ered. Simple considerations based on ref. [19]
lead to the analytical estimates

So, for a definite model, in which A has a fixed
value, one deduces that the stability estimate of
exponential type would hold in an interval of
specific energy which is estimated to shrink to
zero in the thermodynamic limit. In this sense
one could say that the theoretical estimates do
not ensure freezing in the thermodynamic limit
in the Nekhoroshev sense, even by considering
exchanges of energy between suitable groups of
modes. Conversely, if one fixes the specific ener-
gy and considers as variable A, one has that the
analytical estimates ensure an exponential bound
of the type (26) only on an interval [A,, +),
with A, going to infinity with n.

However, at variance with the previous case in
which one was looking for the separate freezing
of all modes, it turns out that the numerical
computations now suggest that the theoretical
estimates should be far from optimal, and one
might also have freezing in the thermodynamic
limit, as we now show.
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3.3. Numerical results

We start by illustrating the fact that the acous-
tic and the optical modes form two subsystems
which in general tend to separate equilibria. This
is shown in fig. 10, where the time average
energies of the single modes are reported versus
time; initial data were: total energy on the lowest
frequency mode, and n=28. Let us recall that,
for a system of harmonic oscillators of the same
frequency (or in exact resonance), one knows
that there is a significant exchange of energy
among the single oscillators in a time of the
order £, if ¢ is the small parameter characteriz-
ing the perturbation. For a beautiful illustration
in the case of two dimensional FPU-like prob-
lem, see ref. [17]. Now, the oscillators of the
optical branch are almost completely resonant,
so that they very rapidly go to equipartition; the
time needed is instead quite longer for the oscil-
lators of the acoustic branch, because they have
a quite wide frequency spectrum. So, it is clear
that it would not be convenient to look for the
separate conservation of the energy of each nor-
mal mode, while the interesting quantity is the
energy exchange between the two subsystems.
Thus, we should estimate the time derivative of
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Fig. 10. Time averages of the harmonic energies of the single
modes. The figure clearly exhibits the splitting of the system
into the separated subsystems of the acoustic and the optical
modes, Initial data: n =8, with the total energy initially on
the lowest frequency mode.

the adiabatic invariant @, which is a perturbation
of h,.

Due to the fact that we can actually measure,
by numerical simulation, the fluctuations of just
the harmonic part 7, of @, and not of the
adiabatic invariant @ itself, here too we should
have to isolate the separate contributions of
deformation and noise; in this connection one
might repeat here considerations analogous to
those of part A. In fact, we proceeded in a
slightly different way, aiming at checking directly
the estimate (26) of |®|. So we computed the
quantity E* defined by

E" =sup(|h,(O)]) ;

here the average (--:) is taken over several
orbits corresponding to different random initial
data at the same total energy, while the sup is
taken over the time for which the orbits were
computed. In our case the number of different
orbits was 64, and each orbit was integrated for a
time equal to i the time of the previous case
discussed in section 2. The reason why E*
should be a good estimate for the maximum of
|®| is simply that we need to wash out, as in the
previous case, the quasiperiodic contribution due
to the deformation. Here, we simply replace a
time average with an average over different or-
bits, which turns out to be an even more con-
venient numerical procedure.

In order to estimate the constants A and B
entering the exponential bound (26), we perform
a series of numerical computations for different
values of A by fixing the specific energy E/
n =10° with n ranging from 6 to 200. In fig. 11
we report, in semilogarithmic scale, AE™ vs. A;
the initial data were n =10 (and so total energy
E =10"), zero energy on the optical modes and
equipartition of energy among the acoustic
modes. As one sees, for A>70 the numerical
results are quite well fitted by a straight line; this
is in good agreement with the theoretical esti-
mate c¢=1, recalled above. The slope of the
straight line and its intercept at the origin clearly
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Fig. 11. Numerical estimate of AE™ vs. A, to be compared
with the theoretical estimate (26). The data are in good
agreement with the purely exponential estimate. Initial data:
n =8, and total energy E =107, with zero energy on the
optical modes and the equipartition of energy among the
acoustic modes.

provide estimates for the parameters B and A,
which could depend on n. Such a dependence on
n is illustrated in fig. 12, where the same quantity
E* as a function of A is reported for six different
values of n, ranging from 6 to 200. Clearly, the
slope is essentially the same for all cases, which
suggests that B might be independent of n. In-
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Fig. 12. Same as fig. 11, for different values of n, to be
compared with the theoretical estimate (26). The data corre-
sponding to different values of n are quite well aligned on
straight lines, in agreement with the purely exponential
estimate. The slope of the straight lines appears to be
independent of »n, which suggests B = 1; the intercepts of the
straight lines at the origin exhibit instead a small dependence
on n, which suggests a small dependence of A on n.
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Fig. 13. Same as fig. 12, with AE replaced by AE/In#, in
order to check the ansatz A ~In n. The figure shows that the
increase of A with # should be less that In n.

stead, the intercept increases with », although
not so fast as in the analytical estimate. In order
to have a rough estimate of the dependence of A
on n, we try the ansatz A ~Log n; so, in fig. 13,
we redraw the previous data by plotting AE™]
Log n vs. A. One clearly sees that there is now a
change, because the intercept decreases with n.
This indicates that A should in fact increase with
n less than a logarithm, If this were the case,
then even with a macroscopic number such as
n =10* one would have a substantial freezing of
the energy of the subsystem of the optical
modes, up to macroscopic times.

4. Conclusions

In conclusion, we believe we have given strong
evidence in favour of the thesis that, for macro-
scopic systems, nonequipartition of energy might
hold for the modified Fermi—Pasta—Ulam model,
characterized by alternating heavy and light par-
ticles, with the corresponding subdivision of the
frequency spectrum into an acoustical branch
and an optical branch. More precisely, for what
concerns the exponential bound (26) on the ex-
change of energy between the two corresponding
subsystems of virtual harmonic oscillators, the
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situation is the following one. First of all, the
exponent to which the frequency is raised turns
out both analytically and numerically to be ex-
actly equal to one (confirming a similar previous
result [18] on a model for diatomic molecules).
Then, the problem is the dependence of the two
other parameters, which we have called A and
B, on the number n of degrees of freedom. For
them, the numerical computations seem to indi-
cate bounds stronger than the available analyti-
cal ones, inasmuch as B might be independent of
n while A should increase less than Log n.

If this were true, one might conclude that
nonequipartition of energy in the above sense
(namely for finite long times, in the Nekhoroshev
like way, and for the energy of subsystems rather
than separately for the energy of each oscillator,
as first stressed in refs. [18] and [19]) should hold
also for some macroscopic systems of physical
interest, such as the modified Fermi-Pasta—
Ulam model. So, there remains the problem to
study whether it is possible to optimize the
analytical estimates; this is a hard open problem.

Regarding instead the ordinary FPU problem,
we have shown that the numerical estimates
support the analytical prediction that the sepa-
rate freezing of the harmonic energies of the
oscillators cannot be extended to the thermo-
dynamic limit. However, this clearly does not
necessarily imply equipartition, because one
could have freezing for suitable packets of modes
with different characteristic frequencies; up to
now, we were unable to find a natural decompo-
sition into suitable subsystems. This is indeed
also the problem raised in [9], which is still open.

Another comment is in order. Since the works
of Izrailev and Chirikov and of Ford on the one
hand, and the works of the Italian group on the
other hand, one was confronted with two differ-
ent theses, namely that one should have or have
not equipartition in the thermodynamic limit for
dynamical models of interest for statistical mech-
anics, Now it seems to be clear that the answer
strongly depends on which particular question
one asks: whether one looks for freezing in

KAM sense (for all times) or in Nekhoroshev
sense (for long, somehow qualitatively long,
times); whether one looks for the separate freez-
ing of all actions or for the freezing of the energy
of some subsystems. In consideration of this, it is
possible that theses that appeared to be mutually
exclusive twenty years ago might now appear to
be compatible.

If this is the case, then one obviously remains
with the problem of deciding which is the correct
question to be posed from the physical view-
point. The present authors, along the lines of the
works [22] and [23], clearly share the viewpoint
of Boltzmann and Jeans (see [13] and [14]),
according to which the freezing for qualitatively
long times and for relevant subsystems should be
of physical interest. But this point too should be
further discussed.

We consider the present preliminary results
only as indicative, and hope that in the future it
will be possible to provide strict analytical esti-
mates proving (or disproving) rigorously our
thesis. In fact, the comparison made in section 2
between analytical and numerical estimates for
the freezing of the separate energies of all oscil-
lators, where a good agreement was obtained,
shows that accurate analytical estimates in per-
turbation theory can be essentially optimal, so
that the present (not too large) discrepancy of
section 3 between analytical and numerical esti-
mates might possibly be eliminated. As is well
known to people working in quantitative pertur-
bation theory, in the work of obtaining explicit
estimates one has to deal, within a rather well
understood general framework, with several
technically delicate points where different
nonequivalent choices can be made, leading to
different quantitative results; for example, the
space where the problem is imbedded, and the
choice of suitable norms. This is a hard mathe-
matical work to be done in the future. In the
present paper we just are content with having
indicated that suitable quantities are good candi-
dates for adiabatic invariants in the thermo-
dynamic limit.
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