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PROGRAM SUMMARY

.Title of program: COSTANTI DEL MOTO

- 'Catalogue number: ACYO

I Program obtainable from: CPC Program Library, Queen’s

University of Belfast N. Ireland (see application form in this
issue)

Corhz;uter: UNIVAC 1106; Installation: Centro di Calcolo
dell’ Universita, Milano, Italy

Operating system: 'UNIVAC 1106 EXEC 8
Ifrogram language: FORTRAN
" High speed stbrage required: 42v000 words
- No. of bits in a-word: 36
OverIa_y structure: r;one
Nq. of magnetic tapes required: none
Other peripherals used: Card reader, line printer, card punch

No. of cards ih combined program and test deck: 800
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Card punching code: IBM 026

Keywords: astrophysics, celestial mechanics, classical
mechanics, stellar systems, integrals of motion

Nature of physical problem i
The classical problem of constructing formal integrals fora

Hamiltonian of harmonic oscillators coupled by polynomml :
interactions is considered. o

Method of solution L
An algorithm recently proposed [1] is apphed which allows g 8
very fast computation-of the integrals. s

Restrictions on the complextty of the problem
The restrictions, imposed by array dimensions, are descnbed" it
in detail in the long write up, section 3.6. o

Typical running time

The computation of one integral up to order 8 for a model
with 2 degrees of freedom required an execution time of
about 25 s on the UNIVAC 1106.

Reference
[1] A. Giorgilli and L. Galgam, Cel. Mech. 17 (1978), 267
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LONG WRITE-UP
" 1. Introduction

Consider a Hamiltonian system with n degrees of
freedom and Hamiltonian

H(x,y)=H®(x,y) + HO(x, ) + ..., (1)

where H®)(x, »),s = 2, 3, ..., is a homogeneous poly-
nomial of degree s in the canonical variablesx, y € R",
. and let in particular

HO =2 do G +3h) e

where wy, ..., w, € Rare not all vanishing.

It is well known that if one considers the unper-
turbed system with H = H® (ie., the one obtained
by neglecting terms of order greater than 2 in eq. (1)),
then the system is integrable, being in fact a system
of uncoupled harmonic oscillators with frequencies
Wy, -y Wp. On the other hand, it is also well known
that the whole system (1) is generally nonintegrable,
and formal solutions by means of formal series expan-
sions are in general divergent [1].

On the other hand, despite this fact, a considerable
number of numerical experiments performed on
Hamiltonian systems of the type (1), as well as on dif-
ferent dynamical systems (billiards, particular map-
pings and so on) produced evidence that weakly per-
turbed integrable systems exhibit a nearly integrable
behaviour. In particular, much work has been devoted
to investigate whether formal series solutions can
describe this nearly integrable behaviour [2—4]. The
answer to this question appears to be in many cases
positive, in spite of the divergence of the formal
expansions, and it has even been conjectured that
these series are, in fact, asymptotic series [3].

Computer programs have been developed in order
to perform the computation of the coefficients in
formal expansions, an horrendous task to be per-
formed by hand. They use essentially two methods.
The first was proposed by Whittaker [S] and Cherry
[6], and improved by Contopoulos [2] who applied
it to the computer. It consists in constructing integrals
of motion for the Hamiltonian (1) by solving the equa-
tion

{H, ®}=0 ~ G

where { -, -} denotes the Poisson bracket and ,
P=0@+d@+ _isa power series. Equating terms

- of the same order in eq. (3) and introducing the linear

operator D by D= {H(z), -}, one obtains
D®@ = 0,

-2
DO = _ g HCD, 061y ®

and the system of equations can be solved in an itera-
tive way. The main difficulty of this method is that
its consistency is not evident a priori. Indeed the solu-
tion of eq. (4) exists only if the r.h.s. belongs to R,
the range of the operator D. The consistency can be
established only by observing that at any order s the
solution is determined only up to an arbitrary term
3@ with D®® = 0, and that this term can be deter-
mined in such a way that the condition above for the
existence of the solution is satisfied at successive
orders. This implies a complicated backwards and for-
wards procedure in order to perform the explicit com-
putation.

This difficulty is overcome by the second method,
proposed by Birkhoff [7] and applied to the com-
puter by Gustavson [4]. It consists in performing a

‘canonical transformation

ow ow . '
x ‘§+ay oo MEY &)
where £, n are the new variables, and W(, y) = W +
W® + ... is the generating function. The problem
consists in determining the generating function W in
such a way that the new Hamiltonian I'(¢, ) =
H((,n),y(,n)) takes a simple form, the so called
normal form. The integrals of motion can then be
immediately found in the form

®(t,m) = 121 wl;

where ay, ..., @, € R are suitably chosen, and

IL= 5(5,2 + n,z), and they can be expressed as power
series in the old variables x, y via the canonical trans-
formation (5). The disadvantage of this method con--
sists in the fact that it requires an inversion of a

series in order to put the canonical transformation (5)
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in an explicit form, a cumbersome and time-consum-
ing procedure.

The aim of the present paper is to apply in a com:
puter program a method of construction of formal
integrals which avoids any inversion and, at the same
time, does not require the complicated procedure of
the Contopoulos approach. This last method was pro-
posed by Giorgilli and Galgani [8], and will be
described in the following section. A similar approach
was also proposed by Hori [9] and Deprit [10].

2. Description of the method

The purpose of this section is to give a short
account of the method applied in the program. To
this end, only those features of the method will be
illustrated here, which are essential to the understand-
ing of the program. For more details and proofs, the
reader is referred to ref. [8].

2.1. The basic algorithm

Let II be the space of all polynomials in the 2n
canonical variablesx 1, ...,X,,,¥1, ..., Y, and assume
that one has assigned a formal power series x = x® +
x(4) + ... €I, where, as in the introduction, x(s)
denotes a homogeneous polynomial of order s. Define
then the operator T, : [T - II via the recursive for-
mula

If=fo+fi+.., (6)
where f€ I and

~ k
fo=f, = L X0, £y )

here subscripts are used because f, and thus also f;,
fa, -.., have in general no definite order. It can be
proven that T, is linear, and preserves products and
Poisson brackets, i.e. Ty (f * &) = T\ f * T\ g, Ty {f, g} =
{T\f, Tyg} for f, g € I1. The latter property implies
that x is the generating function of a canonical trans-
formation. In addition, T is invertible so that, given
HE T as in egs. (1) and (2), there exists a unique

Z € 11 satisfying the equation

TZ=H - ®)

Let now & be an integral of motion for the Hamil- ;
tonian Z, i.e. {Z, @} 0; then one has also {#, T, P} =
0,so that & =T, ® is an integral of motion for the ,
Hamiltonian H. The problem is thus reduced to deter-
mining a suitable power series x in such a way that Z
has a simple form, for example Birkhoff’s normal
form, for which integrals of motion are easily found.

2.2. The equation for the normal form and the gener-
ating function

Put now ineq. (8): Z=Z® +Z® + .. . Then,
making use of the definition and of the properties of
T,,, by straightforward manipulations one obtains the
equations

ZO =g, ©)
ZO Dy =HO +00 =34, ., (10)
where D » = {H®) | -} as defined in section 1, and
(0, =3
Q(S) = 3

RSP, AV

s=4,5,.. (11)
ASN k=0;5=2,3,..
Z(S)= k
¥ I @) 79
2 (XD, 20,3, k=1,2,.. |
i=1 §=2,3,.. 12

thus for a fixed order s > 3 the r.h.s. of eq. (10),
involving terms of Z and x only up to order s — 1, is
known. Eq. (10) is our main equation, which allows
the generating function x and the normal form Z to

be determined. Indeed, consider first the equation for
the third order

Z® _ Dy® = g3, (10a)
Performing the canonical transformation to complex
variables g, p defined by

1
x;=—= (@ +ipy) . '

‘/2 (i=1,..n) (13)
\/2 @ —ipp)
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one obtains that H®, defined by eq. (2), takes the
form

n
H® =i 27 wiqp) ’ (14)
=1
so that one has
n
e
D=i - 15
? (Pz o, qi o, (15)

On the other hand, a homoger.eous polynomial of
degree s in x, y is transformed by eq. (13) in a homo-
geneous polynomial of the sare degree in g, p, so that

HO= O
i,k

RL
jl+1kl=3

ara'p", ' (16)

(here the multi-index notation has been used, i.e.

I=Un- ,]n) jl=1j1+ .t I]nl and analogously
for k; q¢'p* —q“ .. q’" prr. .- pkn) with
known coefficients oz, k- Put now

z®=2; Bixa'p*
ik

x® —27 xa' D" (17
ik

with unknown coefficients jx , vjx, aﬁd observe that
Dg'p* = —iw+ (G- k)P, (18)
where

n
w:* (f*k)=l§)l wi Gy = k1),

so that eq. (10a) reads

,,Z:/Bfkq"p" +i Z}? w * (j — knjra’p*
N I

= 21 aq'p* (19)
i,k
and it is to be solved for B;x and ;. This can be done
in the following way:
Rule A: if w+ (]—k) =0 put 6]k = Qg Tik TV
if we (j—k)#0 put B =0,

Yik = —iog/w * (j - k) .

This simple rule works obviously also for any order
s, and can be stated, more formally, in the following
way. First one remarks that, via the canonical transfor-
mation (13), the operator D takes a diagonal form,
and its domain II splits into its range R = {q'p*:
w* (j—k)# 0} and null space N = {¢’p*: w* (j-k)=
0} ; then one solves eq. (10) with the supplementary
condition that Z be in normal form, i.e., by definition,
Z € N. This condition immediately implies that

ZO = HO + 0Oy,
DX = (H®) + 9, (20

where the subscripts N and R denote the null space
part and the range part respectively; finally the solu-
tion for x is made unique by requiring furthermore
that x(’) € R. This is indeed the classical solution of
Birkhoff and Gustavson.

Let me now recall what a resonance relation is. One
says that among the frequencies w there exists a reso-

nance relation if there exist n integers my, ..., m,, not
all vanishing, such that
n
W= Z; myw; = (21)

Let me illustrate it with two typical examples with
n=2.1f wl =+/2, w, = 1, then eq. (21) holds only
with m, =m, =0, i.e. the frequencies are nonresonant.
If instead wl =2, w, =1, then w; — 2w, =0 holds.
Now, the null space N depends critically on the exis-
tence of resonance relations. Thus in the first case a
term ¢’p* belongs to NV if and only if j = k, so that for
example no term of odd order belongs to N; in the
second case instead one has that bothj = (1, 0),
k=(0,2)andj=(0,2),k=(1,0)give w* j—k)=0,
so that both g,p3 and g,p?, of odd order, belong to
N. The normal form then differs in the two cases,
because by the first equation (20) one has Z® =0in
the first case and Z®) # 0 in general in the second
case. _ :

Let me now remark that other solutions are possi-
ble which bring Z into a simple form. Indeed observe
that, in rule A, only the first part is necessarily
required by eq. (10) (otherwise one would have a
null denominator in v;x), while the second is arbitrary.
In order to exploit this arbitrariness, while keeping the
first part, let me introduce an n-tuple of real numbers
W=y, .., by) which I call “pseudo-frequencies”,
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with the condition that they satisfy all the resonance
relations satisfied by w, i.e. that m + w = 0 implies
m + u= 0. Thus for any such a u one obtains a solu-
tion to eq. (10) if one simply changes rule A in the
following:
Rule B: ifu-(j—k)=0putfj = %> Yk =0
if o (7 —K)#0 put e =0,
Vik = —ieggfw (- k) .

Obviously, one must be sure that the denominator in
7jx is never zero, but this is exactly the condition
above that m + w =0 impliesm + u = 0.

This rule can be enunciated in a more formal way
by introducing the null space N, = {q’p u(j—-k)=

0} and the range R, = {q"p*: u+ (j — k) # 0} corre-
sponding to the operator

n
D, =i IZI (o1 3/3p; — a1 3/34y),

(so that NV, R and D above should be denoted by N,,,
R, and D, for notational coherence) and by observ-
ing that if the relation m + w =0 implies m + =0
then one has N C NV,,. Thus the new rule consists in
solving eq. (10) with the condition ZEN,, x ER,,
i.e. by simply replacing in eq. (20) N by N, and R by
R,.

"In order to illustrate the usefulness of this new
solution, consider again n =2, w; =2, w, =+/1.001,
so that the frequencies are nonresonant, but close to
the resonance w; — 2w, = 0. If rule A is used, then in
the expression for x small denominators of the form
w; — 2w4 will appear. If however two numbers
(pseudo-frequencies) u; = 2, uy = 1 are introduced
and rule B is applied, then those small denominators
will not appear, and Z will contain the same terms
which would be generated if w; and w, were exactly
resonant. In other words, the construction will be
reminiscent of the quasi resonance, because it will be
performed as if the system were resonant.

2.3. Construction of the integrals

Once the generating function x and the normal
form Z have been constructed, it is an easy matter to
find integrals of motion, recalling that, if ® is an inte-
gral for Z, i.e. one has (®,2) = 0, then &= T, disan

integral for the Hamllt( nian H= T, Z. Indeed, let

w € R” be fixed (in par‘icular one can take u = w,
corresponding to rule A); then, as already observed,
the condition Z € N, a:nounts to say that Z contains
only terms ¢/p* for wh‘ch i+ (j—k)=0. Consider
now an expression of the form

n
=i 121 q1P

witha € R",

and observe that
(& ¢p*} =i+ G- ¢'p". 22)
Then & is an integral of motion for Z if the expression
(22) vanishes for all g/t * € N,,i.e. for all possible
terms of Z. This is poss.ble if m « a = 0 for all m for
whichm « u=0.

Thus the following r2sult is obtained: if u is non-
resonant, there exist n independent integrals ® for Z,
namely the n quantities

D=1 +y?), 1=1,.,m; (23)

if u is resonant, and there exist r independent integer

" vectors m # 0 for whict. m + u =0, then one has

n — r independent integrals ® for Z of the form

n

P = I_EI‘%a,(")(x,z +y;) i=1,..,n-r, (24)

where o) = (a(') , i) € R" are n— r independent
vectors such that m + oz 0 for all m for which

m -+ u= 0. Integrals of motion for H are finally ob-
tained by computing

o=T,5=0@+d®+ (25)

where ® is an integral for Z, and, according to the ,
definition of T, given in eqgs. (6), (7), one has

¢(2)=$,
§—2 k

9 =D, — (x@*0 ¢-0y  s>2. (26)
k=18 —

For example, consider again the case n = 2 with
w; =2, w, =+/1.001. If the “nonresonant™ construc- .
tion (rule A) has been performed for Z and ¥, then
one can build two integrals startmg from CI)(Z)
1} +y3) and 0P = 1(x} +y3) respectlvely
Instead, if the “resonant” construction has been per-



336 . A. Giorgilli /| Computer program for integrals of motion

formed with u; =2, u, = 1, then only the integral
can be built which starts from @ = 1y, (x% +y}) +
s (3 +53).

The three integrals so built are not independent,
as will be explained in the following section. However,
as explained above, the small denominators w; —2w,
which appear in the generating function x in the non-
resonant construction are absent in the resonant one,
so that the latter integral also will be free from small
denominators of the said type. The loss of an integral
is the price paid for eliminating them.

2.4. A note on the number of independent integrals

For what concerns the nonresonant case, i.e. the
case where the frequencies w are nonresonant and
rule A has been adopted, the procedure described in
the preceding sections solves completely the problem
of finding integrals for the Hamiltonian (1), because
n independent formal integrals have been found which
are in involution, i.e. with {®;, ®;} =0,(, k=1, ...,
n), so that the system is formally integrable [11].
Obviously, other different integrals can be found,
which however are not independent of ®, ..., ®,.
This is easily seen if one observes that the transforma-
tion T, defined in eqs. (6), (7) generates an integral
if it is apphed to any @ such that {®, Z} = 0. But the
latter condition implies exactly that & is a formal
series in the n quantities &, ..., ) above. Con-
versely, if ® is an integral of motion for H, i.e. one
has {®, H} =0, then, by the properties of the opera-
tor Ty, there exists a & such that & = T, ®, and
@, Z} 0,i.e. d is a formal series in d)jzz) ., @,
For example, H itself is an integral of motlon forH
generated by & = Z, as stated by eq. (8). This can be
sufficient to justify the usefulness of the choice made
above that the integrals built be a perturbation of
second order terms. Moreover, an additional argument
of interest for this particular choice is that the integrals
thus built are just the action integrals of the system, as
could be easily shown.

The discussion is not so simple in the resonant case.
Indeed, choose a particular 4 with r independent reso-
nance relations. Then only n — r integrals in involution
can be built by the method described above. However,
the energy integral can be added, since it is indepen-
dent of the n — r integrals above. This can be established
by recalling the characterization given for N, in com-

plex variables, from which it follows that Z contains
terms g/p* such that u « (j — k) = 0 withj # k, and so
it cannot be expressed as a power series in the &{2)’s
given by eq. (24). For what concerns the existence of
other integrals, one can observe that the <I>(2)’s have
been so constructed that <I>(2) f} =0for any fEN.,
This is obviously too strong a condition, which ensures
the existence of n — r independent integrals for a gen-
eral Z, but does not ensure the nonexistence of other
integrals independent of those above for a particular -
Z. But this is, to my knowledge, an open problem.

3. Computer code
3.1. Representation of polynomials

A machine representation of polynomials in several
variables is obviously an essential device in performing
the computations above. This is obtained in the follow-
ing way: the coefficient o, .. ;. (%,,....;i,, ER,

J1, - Jm non-negative mtegers) of the term x/t « ...+
x ) im in a polynomial in the m variablesx, ..., X, is
stored in a one-dimensional array at the relative
address i(jy, ..., jm) given by the formula

-
1-1+E
,]m) E ]m ,

iy, . , @7
I

where

k 0 k<l

()-1° e

1 “—l!(k—l)!’ k=1

is the binomial coefficient; this establishes a one-to-

one correspondence between non-negative integers

and m-tuples of exponents in a polynomial.
In the program this representatlon is afforded by
three subprograms:

i. subroutine BINOM, which is called only once at
the beginning of the program; it computes the
table of the binomial coefficients and stores them
in a common block. Its calling sequence is

CALL BINOM(NLIB,NORD)

where NLIB is the number of variables in the poly-
nomials, and NORD the maximum order of the
polynomials.
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ii. function INDICE, which computes i(jy, ..., jm) as
given by eq. (27). Its FORTRAN reference is

i = INDICE(J NLIB)

where J is the integer array of the exponents

J15 «--sJm and NLIB the number of variables.
iii. subroutine ESPON, which performs the inverse

mapping of eq. (27), i.e., given i, computes

J1s > Jm - Its calling sequence is

CALL ESPON(I,J NLIB)

where [, integer, is the relative address in the one-

dimensional representation of the polynomial,

NLIB is the number of independent variables and

J is the integer array of the NLIB exponents which

correspond to the index I, and are computed in

the subroutine.

Since in the Hamiltonian case the variables x, y are
canonically conjugate, they are ordered asx, ..., X,
Y1, s Vn, 80 that one works with polynomials in 2n
variables, where n is the number of degrees of free-
dom.

3.2. Normal form and generating function

The procedure described in section 2.2 for com-
puting the normal form and the generating function
is performed by subroutine NORGEN. Input to this
subroutine are essentially: .

i. the coefficients of the Hamiltonian, stored in the
real array H;

ii. the harmonic frequencies w, stored in the real
‘array OMEGA;

iii. the vector u which determines the subspace N, to
which the normal form must belong, stored in the
integer array MU.

Output from this subroutine are:

i. the normal form Z, whose coefficients are stored
in the real array GAMMA;

ii. the generating function x, whose coefficients are
stored in the real array CHI.

This subprogram computes the r.h.s. of eq. (10) as

given by egs. (11) and (12). Then eq. (10) is solved

by subroutine DMEN1 in two steps. First the canon-
ical transformation (13) is performed which diagonal-

_ izes the operator D; then the terms of N, and R, are

separated, and the quantities Z and x computed by "

performing the inverse transformation of eq. (13).

The way in which the terms of N, and R, are
separated requires some additional explanation.
Indeed, two problems are involved, namely:

i. the possibility of choosing between rule A or B of
section 2.2 in performing the construction;

ii. the fact that the concepts of exact resonance and
nonresonance are meaningless for the computer;
this is in fact the problem of deciding, with the
floating arithmetics of the computer, if an expres-
sion of the form m * u vanishes or not.

The first problem has a trivial solution. It is suffi-
cient to introduce, in addition to the set of frequen-
cies w which depend on the Hamiltonian, also the set
of pseudo-frequencies u which can be freely chosen
by the programmer. The only important thing is to
have in mind that the choice of u is subject to the
restriction that it must satisfy all the resonance rela-
tions satisfied by w (see section 2.2). Thus, one can
use rule A by choesing u proportional to w (or having
exactly the same resonances); if however u is chosen
to be more resonant than w, then rule B is used.

The second problem can be solved simply by- using
integer arithmetic instead of floating arithmetic, i.e.
by defining u as an integer vector. This technical trick
obviously works in the completely resonant case (i.e.
n — 1 resonance relations for n degrees of freedom),
because then there exists an n-tuple of integers pro-
portional to w. For what concerns the non-completely
resonant case (in particular the non-resonant one),
observe that, as previously noted, the resonant terms,
i.e. the terms which belong to N, because of the reso-
nance, are the terms ¢/p¥, in complex variables diago-
nalizing D, for which p « (j — k) = 0 with j # k. Define
now, for a resonant u, the order of resonance r as
being r = inf":?eo:OImI,with m€E€Z", where |m| =
[mq|+ |my| + ...+ |my|. Then it is evident that a reso-
nant term cannot appear in a series expansion at an .
order lower than r. This means that, if the series are
considered up to an order s, a resonance of order r >§
is equivalent to a nonresonance. So, for example, if
n=3,s = 8 and the w’s are nonresonant, choosing
My =1, up = 10, u3 = 100 ensures that the system will
be treated as if it were nonresonant. In an analogous
way one proceeds in a case of partial resonance. For
example,ifn=3,5=8,w; =2, w; =1, w3 =+1.001,
one can choose ;= 2, i, = 1, u3 = 20, using thus
rule A; if one wants instead to use rule B one can take .

By =2,up=1,u3=1.
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3.3. Integrals of motion

Finally, the procedure described in section 2.3 is
applied to generate the integrals of motion, by using
the (already determined) generating function x. This
is performed by the subprogram SERIE. Input to this
subprogram are the coefficients of the generating
function and of the lowest order terms of the integral.
Output are the coefficients of the expansion of the
integral. The only nontrivial thing in this connection
is the way in which the lowest order terms & of the
integral must be chosen. According to the explana-
tion in section 2.3, this depends on the choice made
for u. If a “nonresonant™ u (in the sense explained
above) was chosen, then the lowest order term of the
integral can be ®@ =1(x2+y2),(I=1,..,n)and n
independent integrals can be found. If however ap
was chosen which satisfies 7 independent resonance
relations, then n — r independent integrals can be built
which start from

n

<I>,(2)=E a2 +y?),
1=1

where the o) are n — r linearly independent vectors
of R” such that m * u = 0 implies m * & = 0 for any
mezZ’.

3.4. Program input

Input to the program is on cards. They must be

submitted in the following order:

Card 1: format (2I5)
NPART = number of the degrees of freedom;
NORD = maximum order in the series.

Card 2: format (10I8)
MU = integer array u of the resonance relatlons
which determines the subspace V,, to which the
normal form must belong. Only the first NPART
elements of MU are utilized in computation. The
rules to fix these numbers are specified in section
3.2,

Group of cards 3: format (2012, E25.10)
This is not a single card, but a group of several
cards which contain the non-vanishing coefficients
of the Hamiltonian, one coefficient per card. Note
that the second order term of H must be as in for-
mula (2). Any card must contain: J = integer array
with dimension 20 of the exponentsjy, ..., j»,

k1, ..., kp of the term x4t + ... - x’"y"l e ykn

in the polynomial. The program reads 20 integers,

but utilizes only the first 2XNPART of them. X =

the real coefficient correspondmg to the expo-

nents J.

No restriction is imposed on the number of coeffi-

cients that can be read.

Card 4: a blank card
The program knows that there are no more coeffi-
cients for H when all the exponents read are zero.
So this card stops the loop which reads the coeffi-
cients and allows execution to continue.

Card S: format (2I5)

Print/punch flags for the generating function CHI.

JST=1or0.If JST = 1, then the coefficients of

CHI are printed; if JST = 0 they are not printed.

JSC=10r0.If JSC = 1, then the nonvanishing

coefficients of CHI are punched on cards; if

JSC = 0 they are not punched.

Card 6: format (2I5)

Print/punch flags for the normal form GAMMA.

See card 5.

Card 7: format (215)

Print/punch flags for an integral. See card 5.
Group of cards 8: format (2012, E25.10)

Coefficients of the lowest order term of an integral,

all of the same order (see section 3.3). The format

is the same as for the Hamiltonian, cards 3.

Card 9: a blank card
See card 4.

The set of cards 7, 8, 9 must be repeated for any
integral one wants to compute. There is no restriction
on the number of integrals one can compute. The pro-
gram stops when an attempt is made to read a non-
existing card 7. To this end, a facility of FORTRAN "
IV and V,i.e. transfer of control in a READ state-
ment, is used.

All cards are read in the main program, apart from
the set 2, 3, 4 which are read in subroutine HAMILT.
The purpose of this subroutine is simply to define:

i. the real array of the harmonic frequencies OMEGA
and the integer array of the resonance relations MU,
stored in the common block/FREQ/;

ii. the coefficients of the Hamiltonian, stored in the
array H.

Thus, if for example one has an analytical Hamil-
tonian not already expanded in power series as in egs.
(1), (2), one can replace this subroutine with a suitable
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one which performs the expansion, and defines the
arrays OMEGA, MU and H.

3.5. Pfogram output .

Output from the program is, optionally, on paper
and/or cards, according to the flags specified in cards
5,6,7.

The coefficients of the various functions are
printed by subroutine STAMPA in the same order as
they are requested, in groups of at most 4 functions
at a time. On every line the relative address in the
array (i.e. the index i given by (27)), the exponents of
X 1,0y Xn, V1, > Yn and the corresponding coeffi-
cient(s) are printed. Lines of vanishing coefficients are
omitted.

If an array is requested to be punched, then the
subroutine SCHEDE is called which punches the rela-
tive address I and the corresponding coefficient F(I)
in groups of 4 per card, with format (4(I5, E15.8)); -
only nonvanishing coefficients are punched. The cards
containing the coefficients are preceded by a set of
three blank cards, a card with asterisks and two blank
cards, so that sets of coefficients corresponding to dif-
ferent arrays can be easily separated. Note that the
exponents are not punched. So, in order to utilize
these cards, it is necessary to use the routines BINOM
and ESPON described in section 3.1.

Table 1
Values of N(», k) for some current values of # and k¥
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3.6. Limitations of the program

The main limitation is imposed on the program by .
the amount of core required in order to store the poly-
nomials. They are all stored in a unique array called F
whose dimension is fixed in the main program. The
dimension required for F depends on NPART and
NORD according to the formula

o arof2 ) (2

where 7 stands for NPART, k for NORD and /. is the .
dimension of F. A table of the values of N(n, k) for
some current values of 7 and k is given in table 1. The
dimension 30 000 given for F in the present program
is sufficient for many interesting cases. If one changes
the dimension of F, it is necessary to change also the
DATA statement which initializes F with zeros. No
other changes are required.
Other limitations imposed in the program are the
following:
i) NPART cannot exceed 10;
ii) NORD cannot exceed 15;
iii) the quantity NORD + 2XNPART cannot exceed
25.
Changing these limits would require changing corre-
spondingly various formats, dimensions and other
features scattered through the program.

)+2n;3, (28)

k n 1 2 3 4 N 6 7 8 9 10

3 49 190 471 940 1645 2634 3955 5656 7785 10390
4 84 435 1353 3250 6650 12189 20615 32788 49680 72375
5 132 883 3369 9586 22666 47133 89159

6 195 1639 7527 25030 67711

7 275 2839 15447 59350

8 374 4654 29604

9 494 7294 53628

10 637 11012 92667

11 805 16108

12 1000 22933

13 1224 31893

14 1479 43453

15 1767 58141
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If the condition i) or iii) is violated the diagnostic
“ERRORE SUB BINOM?” is.printed and the program
stops. This is because the dimensions allowed for the
table of the binomial coefficients would be exceeded.
Another program stop could possibly occur with the
diagnostic “ERRORE SUB ESPON”. This means that
an attempt has been made to find the exponents cor-
responding to an index i which exceeds the maximum
one, implicitly fixed by NPART and NORD. This
- should not occur in the program, but can occur if
improper use of this subroutine is made in other pro-
grams (for example programs utilizing the coeffi-
cients of the integrals).

3.7. Running time
The running time depends on various parameters

(the degree NORD, the number of degrees of free-
dom, the number of nonvanishing coefficients gener-

ated, ...), and no typical running time can be indicated.

However, for example, the computation of one inte-
gral up to order 8 for a model with 2 degrees of free-
dom required an execution time of about 25 s on the
UNIVAC 1106 and 0.3 s on the CDC CY76; for 3
degrees of freedom and 3 integrals up to order 11 the
time was about 70 s on the CDC CY76.

3.8 Test run

The test run computes one integral up to order six
for the Hamiltonian

Hx, y)=

with two degrees of freedom, and prints the coeffi-
cients of the generating function, the normal form and
the integral whose lowest order term is

@ =163 +yH+ix3+y}).

This is the only integral that can be constructed,
according to what was said in section 2.3. The first
column of coefficients corresponds to the generating

3ot D) + 503 + D) +xlxs — 43

function, the second to the normal form and the third
to the integral. ‘

Coming now to a short discussion of the results
one sees that, among the coefficients of the mtegral
the normal form and the generating function, one
finds four coefficients of the order 1078 or 10~°
(three at order 3 and one at order 5). These are due
to numerical errors. Indeed, in the same computation
performed in double precision, only these four terms
did ﬁ};ange, and they became of the order 10718 or
1077,
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TEST RUN OUTPUT

NUMBER OF DEGREES OF FREEDOM 2
THE SERIES ARE TRUNCATED AT ORDER 6

HARMORIC FREQUENCIES RESONANCE RELATIONS

041667-01

1. 1.000000+00 1
2. 1.000000+00 , 1
COEFFICIENTS OF ORBDER 2
5 2 0 0 0  ©0.000000 5.000000-01  5.000000-01
9 0 2 9 0  0.000000 5.000000-01  5.000000-01
12 0 0 2 0  0.000000 5.000000-01  5.000000-01
14 0 0 0D 2  0.000000 5.000000-01  5.000000-01
COEFFICIENTS OF ORDER 3
16 2 t 0 0  ©0.000000 0.000000 1.000000+00
18 2 0 0 i -3.333333-01  0.000000 0.000000
20 1 1t i 0 -6.666667-01  0.000000 0.000000
23 1 0 i 1  0.000000 0.000000 1.490116-08
25 0 3 0 0  0.000000 0.000000 -3.333333-01
27 0 2 0 1 3.333333-01  0.000000 0.000000
28 0 1 2 0  0.000000 0.000000 7.450581-09
3 0 1 9 2  0.000000 0.000000 -1.490116-08
32 0 0 2 1 -6.666667-01  0.000000 0.000000
3¢ 0 0 90 3 2.222222-01  0.000000 0.000000
COEFFICIENTS OF ORDER 4
35 4 0 0 0 0.000000 -1.041667-01  1.041667-01
37 3 0 10  4.250000-02  0.000000 0.000000
39 2 2 0 0 0.000000 -2.083333-01  2.083333-01
4 2 1 0 1  6.250000-02  0.000000 0.000000
42 2 0 2 0  0.000000 -2.083333-01  2.083333-01
4 2 0 D 2  0.000000 3.750000-01 -3.750000-01
46 L 2 1L 0 6.250000-02  0.000000 0.000000
49 1 1 i 1  D.00000D -1.166667+00  1.166667+00
51 1 0 2 0  1.04i667-01  0.000000 0.000000
52 t 0 1 2  1.041667-01  0.000000 0.000000
55 0 4 0 0  0.000000 -1.041667-01  1.041667-01
s7 0 3 © 1  6.250000-02  0.000000 0.000000
58 0 2 2 0  0.000000 3.750000-01 -3.750000-01
60 0 2 0 2 - 0.000000 -2.083333-01  2.083333-01
62 0 1 2 1  i.041667-01  0.000000 0.000000
64 0 t 0 3 1.041667-D1  0.000000 0.000000
65 0 0D 4 0  0.000000 -1.041667-01  1.041667-01
67 0 0 2 2  0.000000 -2.083333-01  2.083333-01
62 0 0 0 4  D.00000D -1, 1.041667-01
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126
128
130
132
133
135
137
140
142
144
146
148
149
151
153
153
156
158
160
162
165
167
169
172
174
176
178
180
182
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ERTS

.000000
503086-01
.530864-01
.000000
.000000
.753704+00
.000000
.000000
.574075-02
.743827-01
.485185+00
.000000
.537037-01
.537037-01
.000000
.000000
.000000
.342593-01
.000000
.000000
.694444-01
. 793210-01
.000000
.000000
.000000
.351852-01
.234568-01
.117284-01

ENTS

.000000
.302083-01
.000000
.239583-01
. 000000
.000000
.247917+00
.000000
.495370-01
.133333+00
.000000
.932639+00
. 000000
.000000
.736111-01
.8e1111-01
.000000
. 000000
.000000
.663194-01
.000000
.133333+00
.615277+00
.000000
.000000
.371528-01
.086806+00
.908565-01
.000000

0F

OO0000O0O0DO00OO000000O00O0O0O0000000

ORDER

.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
-000000

ORDER

.922454-02
-000000
.873264-01
.000000
.767362-02
.282986-01
.000000
-118055+00
-000000
.000000
.710069-01
. 000000
.015625+00
.343749-01
.000000
.000000
76736202
.015625+00
.336803-02
.000000
.215278+00
.000000
.000000
.118055+00
.215278+00
000000
.000000
.000000
.799768-02

[
COONNNOO - OMNNOO=OOORENON=OO M

~ OO0 AOO= O ANOOWOUOoOOUIOSTUNIO O r-

S

.166666-01
-000000
.000000
-166667+00
.777777-01
- 000000
.499999-01
-916667+00
-000000
-000000
-000000
.166667+00
-000000
.000000
.777778-01
-333333+00
.388889-01
-000000
.027778+00
.388889-01
.000000
-000000
.777778-01
-333333+00
.450581-09
-000000
-000000
-000000

6

.417824-02
.000000
.334201+00
.000000
.407986-01
.623263-01
.000000
.493055+00
.000000
.000000
.185763-01
.000000
.421875+00
.828124+00
.000000
.000000
.352430-01
.921875+00
.379340+00
.000000
.506944+00
.000000
.000000
.861099-02
.506944+00
.000000
.000000
.000000
.576967-01
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-1.215278-02

OO0 OOUIOCOOWAEAOO

. 000000
.000000
.861111-01
.9353703-02
. 000000
.000000
.000000
.434028-01
.181713+00
.969907-02
.000000
.000000
.000000
.000000

0
6
2
0
0
-2.
7
2
0
0
0
2

-7.
6.
-6.

.000000
.336803-02
.039930-01
.000000
.000000

282986-01

.343749-01
.039930-01
.000000
.000000
.000000
.922454-02

873264-01
710069-01
799768-02

0.
-1.
3.
0.
0.
2.
-1.
3.
0.
0.
0.
-2.
2.
=2.
1.

000000
337326+00
342013-01
000000
000000
448785+00
494792+00
342014-01
000000
000000
000000
450810-01
473090+00
874132+00
114005-01

343



