Meriggiare pallido e assorto
presso un rovente muro d'orto,
ascoltare tra i pruni e gli sterpi
schiocchi di merli, frusci di serpi.

Nelle crepe del suolo o su la veccia
spiar le file di rosse formiche
ch'ora si rompono ed ora s'intrecciano
a sommo di minuscole biche.

Osservare tra i frondi il palpitare
lontano di scaglie di mare
mentre si levano tremuli schicchi
di cicale dai calvi picchi.

E andando nel sole che abbaglia
sentire con triste meraviglia
com'è tutta la vita e il suo travaglio
in questo seguitare una muraglia
che ha in cima cocci aguzzi di bottiglia.

(Eugenio Montale)



  1. A. Giorgilli: Il flebile sussurro del caos nell'armonia dei pianeti, conferenza tenuta al Symposium "Meccanica Teorica e Applicata", Istituto Lombardo Accademia di Scienze e Lettere, Milano (2016).
    Pdf file;  
     
  2. A. Giorgilli: La geometria del caos: catastrofi, biforcazioni, attrattori, Contributo al ciclo di conferenze: La fine del mondo: profezie, superstizioni, teorie scientifiche, Istituto Lombardo Accademia di Scienze e Lettere, Milano (2012).
    Pdf file;  
     
  3. A. Giorgilli: La stabilità del Sistema Solare: tre secoli di matematica , in corso di stampa su Matematica, Cultura e Società, Pisa, Edizioni della Normale.
    PDF file;  
     
  4. A. Giorgilli, U. Locatelli, M. Sansottera: Secular dynamics of a planar model of the Sun--Jupiter--Saturn--Uranus system; effective stability into the light of Kolmogorov and Nekhoroshev theories, Regular and Chaotic Dynamics, 22, 54--77 (2017), DOI 10.1134/S156035471701004X
    Pdf file;  
     
  5. M. Sansottera, A. Giorgilli, T. Carletti: High-order control for symplectic maps, Physica D 316, 1--68 (2016), DOI 10.1016/j.physd.2015.10.012
    Pdf file;  
     
  6. A. Giorgilli, Simone Paleari, Tiziano Penati: An extensive adiabatic invariant for the Klein-Gordon model in the thermodynamic limit, Annales Henri Poincare, 16, 897--959 (2015); DOI 10.1007/s00023-014-0335-3.
    Pdf file;  
     
  7. M. Sansottera, L. Grassi, A. Giorgilli: On the relativistic Lagrange-Laplace secular dynamics for extrasolar systems, Proceedings of the International Astronomical Union 9, 74--77, Cambridge University Press (2014).
    Pdf file;  
     
  8. A. Giorgilli, U. Locatelli, M. Sansottera: Improved convergence estimates for the Schroder-Siegel problem, Annali di Matematica Pura e Applicata 194, 995--1023 (2014), DOI 10.1007/s10231-014-0408-4.
    Pdf file;  
     
  9. A. Giorgilli, U. Locatelli, M. Sansottera: On the convergence of an algorithm constructing the normal form for lower dimensional elliptic tori in planetary systems, Celestial Mechanics and Dynamical Astronomy 111, 337--361 (2014) DOI:10.1007/s10569-014-9562-7.
    Pdf file;  
     
  10. D. Bambusi, A. Giorgilli, S. Paleari, T. Penati: Normal form and energy conservation of high frequency subsystems without nonresonance conditions, Rendiconti dell'Istituto Lombardo Accademia di Scienze e Lettere, Classe di Scienze Matematiche e Naturali, 147, 1--17 (2013).
    PDF file;  
     
  11. A. Giorgilli: Roger Joseph Boscovich between geometry and astronomy, in Ruggiero Boscovich: astronomer, man of science and letters, 300 years after his birth, A. Manara, G. Pareschi, G. Trinchieri eds., Memorie della Società Astronomica Italiana, Supplementi - Vol. 23 (2013).
    PDF file;  
     
  12. A. Giorgilli, G. Molteni: Representation of a 2--power as sum of k 2--powers: a recursive formula, Journal of Number Theory 133, 1251--1261 (2013).
    Pdf file;  
     
  13. M. Sansottera, U. Locatelli and A. Giorgilli: On the stability of the secular evolution of the planar Sun-Jupiter-Saturn-Uranus system, Math. Comput. Simul. 88, 1-14 (2013), doi:10.1016/j.matcom.2010.11.018
    Pdf file;  
     
  14. A. Giorgilli: On the representation of maps by Lie transforms, Rendiconti dell'Istituto Lombardo Accademia di Scienze e Lettere, Classe di Scienze Matematiche e Naturali, 146, 251--277 (2012).
    Pdf file;  
     
  15. A. Giorgilli: On a theorem of Lyapounov, Rendiconti dell'Istituto Lombardo Accademia di Scienze e Lettere, Classe di Scienze Matematiche e Naturali, 146, 133--160 (2012).
    Pdf file;  
     
  16. A. Giorgilli, S. Paleari, T. Penati: Extensive adiabatic invariants for nonlinear chains, Journal of Statistical Physics 148, 1106-1134 (2012). DOI: 10.1007/s10955-012-0568-9
    Pdf file;  
     
  17. A.M. Maiocchi, A. Carati, A. Giorgilli: A series expansion for the time autocorrelation of dynamical variables , Journal of Statistical Physics 148, 1054-1071 (2012). DOI: 10.1007/s10955-012-0575-x
    Pdf file;  
     
  18. A. Giorgilli, M. Sansottera: Methods of algebraic manipulation in perturbation theory , in Chaos, Diffusion and Non-integrability in Hamiltonian Systems - Applications to Astronomy, Proceedings of the 3rd La Plata International School on Astronomy and Geophysics, P.M. Cincotta, C.M. Giordano and C. Efthymiopoulos eds., Universidad Nacional de La Plata and Asociación Argentina de Astronomía Publishers, La Plata, Argentina (2012).
    Pdf file;  
     
  19. T. Genta, A. Giorgilli, S. Paleari, T. Penati: Packets of resonant modes in the Fermi-Pasta-Ulam system, Physics Letters A 376 (2012), pp. 2038-2044, DOI: 10.1016/j.physleta.2012.05.006
    Pdf file;  
     
  20. A. Giorgilli: A Kepler's note on secular inequalities, Rendiconti dell'Istituto Lombardo Accademia di Scienze e Lettere, Classe di Scienze Matematiche e Naturali, 145, 97--119 (2011).
    Pdf file;  
     
  21. M. Sansottera, U. Locatelli and A. Giorgilli: A Semi-Analytic Algorithm for Constructing Lower Dimensional Elliptic Tori in Planetary Systems, Celestial Mechanics and Dynamical Astronomy: 111, 337-361 (2011).
    Pdf file;  
     
  22. A. Giorgilli, U. Locatelli e M. Sansottera: Su un'estensione della teoria di Lagrange per i moti secolari, Rendiconti dell'Istituto Lombardo Accademia di Scienze e Lettere, Classe di Scienze Matematiche e Naturali, 143, 223-239 (2010).
    Pdf file;  
     
  23. A. Giorgilli and S. Marmi: Improved estimates for the convergence radius in the Poincaré--Siegel problem, Discrete and Continuous Dynamical Systems series S 3, 601--621 (2010).
    Pdf file;  
     
  24. A. Giorgilli, U. Locatelli and M. Sansottera: Kolmogorov and Nekhoroshev theory for the problem of three bodies, Cel. Mech and Dyn. Astr., 104 159-175 (2009).
      Pdf file;  
     
  25. G. Benettin, A. Carati, L. Galgani, A. Giorgilli: The Fermi--Pasta--Ulam problem and the metastability perspective , Lect. Notes Phys 728, 151--189 (2008).
     
  26. A. Giorgilli e U. Locatelli: Sulla stabilità del problema planetario dei tre corpi, Rendiconti dell'Istituto Lombardo Accademia di Scienze e Lettere, Classe di Scienze Matematiche e Naturali, 141 71-85 (2007).
    Pdf file;  
     
  27. A. Carati, L. Galgani, A. Giorgilli, S. Paleari: FPU phenomenon for generic initial data, Phys. Rev. E 76 , 022104 (2007).
      Pdf file;  
     
  28. U. Locatelli and A. Giorgilli: Invariant tori in the Sun--Jupiter--Saturn system, DCDS-B 7, 377 - 398 (2007).
      PDF file;  
     
  29. A. Giorgilli: I moti quasi periodici e la stabilità del sistema solare. I: Dagli epicicli al punto omoclino di Poincaré , in Bollettino della Unione Matematica Italiana, A 10, 55--83 (2007).
    PDF file;  
     
  30. A. Giorgilli: I moti quasi periodici e la stabilità del sistema solare. II: Dai tori di Kolmogorov alla stabilità esponenziale , in Bollettino della Unione Matematica Italiana, A 10, 465-495 (2007).
    PDF file;  
     
  31. A. Giorgilli and D. Muraro: Exponentially stable manifolds in the neighbourhood of elliptic equilibria, Boll. Unione Mat. Ital. Sez. B 9, 1--20 , (2006).
    Abstract;   PDF file;  
     
  32. A. Giorgilli and U. Locatelli: Canonical perturbation theory for nearly integrable systems, in: B. A. Steves, A. J. Maciejewski, M. Hendry eds., Chaotic Worlds: From Order to Disorder in Gravitational N-Body Dynamical Systems, Nato Sc. series 227,, Springer (2006).
     
  33. A. Giorgilli, S. Paleari and T. Penati: Local chaotic behaviour in the Fermi-Pasta-Ulam system, DCDS-B 5, 991--1004 (2005).
     
  34. A. Carati, L. Galgani, A. Giorgilli: The Fermi--Pasta--Ulam problem as a challenge for the foundations of physics, Chaos 15 (2005).
    PDF file;  
     
  35. U. Locatelli and A. Giorgilli: Construction of Kolmogorov's normal form for a planetary system , Regular and Chaotic Dynamics 10, 153-171 (2005)
     
  36. G. Contopoulos, C. Efthymiopoulos and A. Giorgilli: Non-convergence of formal integrals of motion II: Improved Estimates for the Optimal Order of Truncation, . Phys. A: Math. Gen. 37, 10831-10858 (2004).
    PDF file;  
     
  37. L. Berchialla, A. Giorgilli and S. Paleari: Exponentially long times to equipartition in the thermodynamic limit, Physics Letters A 321, 147-204 (2004).
    Abstract;   PDF file;  
     
  38. L. Berchialla, L. Galgani and A. Giorgilli: Localization of energy in FPU chains, DCDS-A 11, 855-866 (2004).
    Abstract;   PDF file;  
     
  39. G. Contopoulos, C. Efthymiopoulos and A. Giorgilli: Non-convergence of formal integrals of motion, J. Phys. A: Math. Gen. 36, 8639-8660 (2003).
    PDF file;  
     
  40. L. Galgani and A. Giorgilli: Recent results on the Fermi-Pasta-Ulam problem, in Representation Theory, Dynamical Systems. Special Issue. Part 8, A. M. Vershik and N. V. Svanidze eds., Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 300, 145-154 (2003).
    Abstract;   PDF file;  
     
  41. A. Giorgilli: Notes on exponential stability of Hamiltonian systems, in Dynamical Systems. Part I: Hamiltonian Systems and Celestial Mechanics, Pubblicazioni della Classe di Scienze, Scuola Normale Superiore, Pisa. Centro di Ricerca Matematica "Ennio De Giorgi" (2003)
    Preface;   PDF file;  
     
  42. U. Locatelli and A. Giorgilli: From Kolmogorov's Normalization Algorithm to the Orbits in the Three-Body Planetary Problem, in Celletti, A., Ferraz--Mello, S. e Henrard, J. (eds.): Modern Celestial Mechanics: From Theory to Applications, pp. 411--416 Kluwer Academic Publishers (2002).
     
  43. A. Carati, L. Galgani, A. Ponno and A. Giorgilli: The Fermi-Pasta-Ulam problem, Nuovo Cim. 117B, 1017-1026 (2002).
    PDF file;  
     
  44. A. Giorgilli: Unstable equilibria of Hamiltonian systems, DCDS, 7, 855-871 (2001).
    Abstract;   PDF file;  
     
  45. U. Locatelli and A. Giorgilli: Invariant tori in the secular motions of the three-body planetary systems, Cel. Mech., 78, 47-74 (2000).
    Abstract;   PDF file;  
     
  46. A. Celletti, A. Giorgilli, and U. Locatelli: Improved estimates on the existence of invariant tori for Hamiltonian systems, Nonlinearity 13, 397--412 (2000).
    Abstract;   PDF file;  
     
  47. A. Giorgilli and V.F. Lazutkin: Some remarks on the problem of ergodicity of the Standard Map, Phys. Lett. A 272, 359-367 (2000).
    Abstract;   PDF file;  
     
  48. A. Giorgilli and U. Locatelli: A classical self--contained proof of Kolmogorov's theorem on invariant tori, in Hamiltonian systems with three or more degrees of freedom, Carles Simó ed., pp 72-89, NATO ASI series C, Vol. 533, Kluwer Academic Publishers, Dordrecht--Boston--London (1999).
    Abstract;   PDF file;    
  49. D. Steichen and A. Giorgilli: Long time stability for the main problem of artificial satellites, Cel. Mech. 69, 317--330 (1998).
     
  50. A. Giorgilli: Small denominators and exponential stability: from Poincaré to the present time, Rend. Sem. Mat. Fis. Milano, LXVIII, 19-57 (1998).
    Abstract;   PDF file;  
     
  51. A. Giorgilli: Classical constructive methods in KAM theory, PSS 46, 1441-1451 (1998).
    Abstract;   PDF file;  
     
  52. A. Giorgilli: On the problem of stability for near to integrable Hamiltonian systems, Proceedings of the International Congress of Mathematicians Berlin 1998, Vol. III, Documenta Mathematica, extra volume ICM 1998, 143--152 (1998).
    Abstract;   Long abstract, PDF file;   Paper, PDF file;  
     
  53. A. Giorgilli and Ch. Skokos: On the stability of the Trojan asteroids, Astron. Astroph. 317, 254-261 (1997).
    Abstract;   PDF file;  
     
  54. A. Giorgilli, V. Lazutkin and C. Simó: Visualization of a hyperbolic structure in area preserving maps, Regular and Chaotic dynamics 2, 47--61 (1997).
    Abstract;   PDF file;  
     
  55. A. Giorgilli and U. Locatelli: On classical series expansions for quasi-periodic motions, MPEJ 3 N. 5 (1997).
    Abstract;   PDF file;  
     
  56. A. Giorgilli and U. Locatelli: Kolmogorov theorem and classical perturbation theory, ZAMP 48, 220-261 (1997).
    Abstract;   PDF file;  
     
  57. A. Morbidelli and A. Giorgilli: On the role of high order resonances in normal forms and in separatrix splitting, Physica D 102, 195-207 (1997).
     
  58. A. Giorgilli and A. Morbidelli: Invariant KAM tori and global stability for Hamiltonian systems, ZAMP 48, 102-134 (1997).
    Abstract;   PDF file;  
     
  59. C. Froeschlé, A. Giorgilli, E. Lega and A. Morbidelli: On the measure of the structure around an invariant KAM torus - Analytical and numerical investigation, IAU SYMP (172) 293-298 (1996).
     
  60. C. Skokos, G. Contopoulos, A. Giorgilli: Study of the Effective Stability of the Restricted Three Body Problem, Proc. 2nd Hellenic Astronomical Conference, 526--531 (1996).
     
  61. A. Morbidelli and A. Giorgilli: On a connection between KAM and Nekhoroshev's theorem, Physica D 86, 514-516 (1995).
    Abstract;   PDF file;  
     
  62. A. Morbidelli and A. Giorgilli: Superexponential stability of KAM tori, J. Stat. Phys. 78, 1607-1617 (1995).
    Abstract;   PDF file;  
     
  63. M. Andreolli, D. Bambusi and A. Giorgilli: On a weakened form of the averaging principle in multifrequency systems, Nonlinearity, 8, 283-293 (1995).
     
  64. A. Giorgilli: Methods of complex analysis in classical perturbation theory, in Chaos and diffusion in Hamiltonian systems, D. Benest and C. Froeschlé eds., Editions Frontières (1995).
    Abstract;   PDF file;  
     
  65. A. Giorgilli: Quantitative methods in classical perturbation theory, in From Newton to chaos: modern techniques for understanding and coping with chaos in N--body dynamical system, A.E. Roy e B.D. Steves eds., pp 21-38 Plenum Press, New York (1995).
    Abstract;   PDF file;  
     
  66. A. Giorgilli: Energy equipartition and Nekhoroshev type estimates for large systems, in Hamiltonian dynamical systems: history, theory and applications, H.S. Dumas, K.R. Meyer and D.S. Schmidt (eds.), IMA volumes in Mathematics and its applications, Vol. 63, Springer-Verlag, New York (1995).
     
  67. G. Benettin e A. Giorgilli: On the Hamiltonian Interpolation of Near to the Identity Symplectic Mappings with Application to Symplectic Integration Algorithms, J. Stat. Phys. 74, 1117-1144 (1994).
      Pdf image in a tar, g-zip compressed archive;  
     
  68. L. Galgani and A. Giorgilli: On a notion of weak stability and its relevance for celestial mechanics and molecular dynamics, in V. G. Gurzadyan and D. Pfenniger eds.: Ergodic concepts in stellar dynamics, 56-63, Springer Verlag, Berlin Heidelberg (1994).
     
  69. G. Benettin, L. Galgani e A. Giorgilli: The dynamical foundations of Classical Statistical Mechanics, in Progress in Nonlinear Differential Equations and their Applications, Basel (1994).
    Abstract;   PDF file;  
     
  70. A. Giorgilli: Fractal dimensions and exponentially large time scales in conservative dynamical systems, in Fractals in nature and in mathematics, L. Accardi ed., pp 85-98, Istituto della Enciclopedia Italiana fondata da Giovanni Treccani (1993).
     
  71. S. Abbate, D. Ghisletti, A. Giorgilli, L. Lespade and G. Longhi: Characterization of vibrational transition modes by use of normal forms, Theor. Chim. Acta 87, 215-232 (1993).
     
  72. D. Bambusi e A. Giorgilli: Exponential stability of states close to resonance in infinite dimensional Hamiltonian Systems, J. Stat. Phys, 71, 569 (1993).
    PDF file;  
     
  73. A. Morbidelli and A. Giorgilli: Quantitative perturbation theory by successive eliminations of harmonics, Cel. Mech. 55, 131-159 (1993).
    Abstract;   PDF file;  
     
  74. L. Galgani, A. Giorgilli, A. Martinoli e S. Vanzini: On the problem of energy equipartition for large systems of the Fermi-Pasta-Ulam type: analytical and numerical estimates, Phys. D 59, 334-348 (1992).
    PDF file;  
     
  75. A. Giorgilli e E. Zehnder: Exponential stability for time dependent potentials, ZAMP 43 (1992).
    Abstract;   PDF file;  
     
  76. A. Celletti e A. Giorgilli: On the stability of the Lagrangian points in the spatial restricted problem of three bodies, Cel. Mech., 50, 31-58 (1991).
    PDF file;  
     
  77. A. Morbidelli e A. Giorgilli: On the dynamics in the asteroids' belt. Part II: detailed study of the main resonances, Cel. Mech. 47, 173-204 (1990).
    PDF file;  
     
  78. A. Morbidelli e A. Giorgilli: On the dynamics in the asteroids' belt. Part I: general theory, Cel. Mech. 47, 145-172 (1990).
    PDF file;  
     
  79. D. Bambusi, A. Carati, L. Galgani, A. Giorgilli, D. Noja and J. Sassarini: On the relevance of classical electrodynamics for the foundations of physics, in Transport, chaos and plasma physics, S. Benkadda, F. Doveil and Y. Elskens eds., pp. 73-85, World Scientific, Singapore (1990).
     
  80. A. Giorgilli: Effective stability for realistic physical systems, in Nonlinear problems in future particle accelerators, W. Scandale and G. Turchetti eds., pp 53-66, World Scientific, Singapore (1990).
    Abstract;   PDF file;  
     
  81. A. Giorgilli: New insights on the stability problem from recent results in classical perturbation theory, in Les méthodes modernes de la mécanique céleste, D. Benest, C. Froeschlé eds., Ed. Frontières (1990).
    Abstract;   PDF file;  
     
  82. L. Galgani e A. Giorgilli: Classical electrodynamics of point particles and nonlinear dynamical systems, in Nonlinear Phenomena in Vlasov plasmas, F. Doveil ed., Editions de Physique, Orsay, (1989).
     
  83. A. Giorgilli: Recent developments in perturbation theory of classical Hamiltonian systems, in Nonlinear dynamics, G. Turchetti ed., pp 30-43, World Scientific (1989).
    Abstract;   PDF file;  
     
  84. L. Galgani, C. Angaroni, L. Forti, A. Giorgilli e F. Guerra: Classical electrodynamics as a nonlinear dynamical system, Phys. Lett. A, 139, 221-230 (1989).
     
  85. G. Benettin, L. Galgani e A. Giorgilli: Realization of holonomic constraints and freezing of high frequency degrees of freedom in the light of classical perturbation theory, part II, Comm. Math. Phys, 121, 557-601 (1989).
    Abstract;   PDF file;  
     
  86. A. Giorgilli, A. Delshams, E. Fontich, L. Galgani e C. Simó: Effective stability for a Hamiltonian system near an elliptic equilibrium point, with an application to the restricted three body problem, J. Diff. Eq., 77, 167-198 (1989).
     
  87. G. Benettin, J. Fröhlich e A. Giorgilli: A Nekhoroshev-type theorem for Hamiltonian systems with infinitely many degrees of freedom, Comm. Math. Phys, 119, 95-108 (1988).
     
  88. A. Giorgilli: Relevance of exponentially large time scales in practical applications: effective fractal dimensions in conservative dynamical systems, in Nonlinear evolution and chaotic phenomena, G. Gallavotti and P. Zweifel eds., Nato ASI series B 176, 161-170, Plenum P.C. (1988).
     
  89. A. Giorgilli: Effective stability in Hamiltonian systems in the light of Nekhoroshev's theorem, in Integrable systems and applications, M. Balabane, P. Lochak and C. Sulem eds., Lect. Notes in Phys. 342, pp 142-153, Springer-Verlag (1988).
    Abstract;   PDF file;  
     
  90. A. Giorgilli: Rigorous results on the power expansions for the integrals of a Hamiltonian system near an elliptic equilibrium point, Ann. Ist. H. Poincaré, 48, n. 4, 423-439 (1988).
    Abstract;   PDF file;  
     
  91. A. Celletti e A. Giorgilli: On the numerical optimization of KAM estimates by classical perturbation theory, ZAMP, 39, 743-747 (1988).
     
  92. A. Giorgilli e A. Posilicano: Estimates for normal forms of differential equations near an equilibrium point, ZAMP, 39, 713-732 (1988).
     
  93. G. Contopoulos e A. Giorgilli: Bifurcations and complex instability in a 4-dimensional symplectic mapping, Meccanica, 23, 19-28 (1988).
     
  94. G.Benettin, L. Galgani and A. Giorgilli: Realization of holonomic constraints and freezing of high frequency degrees of freedom in the light of classical perturbation theory, part I, Comm. Math. Phys., 113, 87-103, (1987).
     
  95. G. Benettin, L. Galgani e A. Giorgilli: Exponential law for the equipartition times among translational and vibrational degrees of freedom, Phys. Lett. A 120, 23-27 (1987).
     
  96. G. Benettin, D. Casati, L. Galgani, A. Giorgilli e L. Sironi: Apparent fractal dimensions in conservative dynamical systems, Phys. Lett. A 118, 325-330 (1986).
     
  97. A.Giorgilli, D. Casati, L.Sironi e L. Galgani: An efficient procedure to compute fractal dimensions by box counting, Phys. Lett. A 115, 202-206 (1986).
     
  98. G. Benettin, L. Galgani e A. Giorgilli: On the persistence of ordered motions in Hamiltonian systems and the problem of energy partition, in Dynamical systems, a renewal of mechanism, S. Diner, D. Fargue and G. Lochak eds., World scientific, (1986).
     
  99. G. Benettin, L. Galgani and A. Giorgilli: Poincaré's nonexistence theorem and classical perturbation theory for nearly integrable Hamiltonian systems, in Advances in nonlinear dynamics and stochastic processes, R. Livi and A. Politi eds., 1-22, World scientific (1985).
     
  100. A. Giorgilli e L. Galgani: Rigorous estimates for the series expansions of Hamiltonian perturbation theory, Cel. Mech. 37, 95-112 (1985).
    PDF file;  
     
  101. G. Benettin, L. Galgani e A. Giorgilli: A proof of Nekhoroshev's theorem for the stability times in nearly integrable Hamiltonian systems, Cel. Mech. 37, 1-25 (1985).
    PDF file;  
     
  102. G. Benettin, L. Galgani e A. Giorgilli: Numerical investigations on a chain of weakly coupled rotators in the light of classical perturbation theory, N. Cim. 89 B, 103-119 (1985).
     
  103. G. Benettin, L. Galgani e A. Giorgilli: Classical Perturbation Theory for systems of weakly coupled rotators, N. Cim. 89 B, 89-102 (1985).
     
  104. G. Benettin, L. Galgani e A. Giorgilli: Boltzmann's ultraviolet cutoff and Nekhoroshev's theorem on Arnold diffusion, Nature 311, No. 5985, 444-445 (1984).
     
  105. G. Benettin, L. Galgani, A. Giorgilli and J.M. Strelcyn: A proof of Kolmogorov's theorem on invariant tori using canonical transformations defined by the Lie method, N. Cim. 79 B, 201-223 (1984).
    PDF file;  
     
  106. G. Caravati, A. Giorgilli, L. Galgani: Numerical computations of Liapunov exponents for a discretized one-dimensional nonlinear Klein-Gordon equation, Lett. Nuovo Cim. 38, 385389 (1983).
     
  107. G. Servizi, G. Turchetti, G. Benettin and A. Giorgilli: Resonances and asymptotic behaviour of Birkhoff series, Phys. Lett. A 95, 11-14 (1983).
     
  108. G. Benettin, G. Ferrari, L. Galgani and A. Giorgilli: An extension of the Poincaré-Fermi theorem on the nonexistence of invariant manifolds in nearly integrable Hamiltonian systems, N. Cim. B 72, 137-148 (1982).
    PDF file;  
     
  109. L. Galgani, A. Giorgilli and J.M. Strelcyn: Chaotic motions and transition to stochasticity in the classical problem of the heavy rigid body with a fixed point, N. Cim. 61 B, 1-20 (1981).
     
  110. G. Benettin, L. Galgani and A. Giorgilli: Further results on universal properties in conservative dynamical systems, Lett. N. Cim. 29, 163-166 (1980).
    PDF file;  
     
  111. G. Benettin, C. Cercignani, L. Galgani and A. Giorgilli: Universal properties in conservative dynamical systems, Lett. N. Cim. 28, 1-4 (1980).
    PDF file;  
     
  112. P. Butera, L. Galgani, A. Giorgilli, A. Tagliani and H. Sabata: Stochasticity thresholds in a lattice field theory, N. Cim. 59 B, 81-86 (1980).
     
  113. G. Benettin, L. Galgani, A. Giorgilli and J. M. Strelcyn: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. Part 1: Theory, Meccanica 15, 9-20 (1980)
    PDF file;  
     
  114. G. Benettin, L. Galgani, A. Giorgilli and J. M. Strelcyn: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. Part 2: Numerical application, Meccanica 15, 21-30 (1980)
    PDF file;  
     
  115. G. Benettin, M. Casartelli, L. Galgani, A. Giorgilli and J.M. Strelcyn: On the reliability of numerical studies of stochasticity; II: identification of time averages, N. Cim. 50 B, 211-232 (1979).
     
  116. A. Giorgilli: A computer program for integrals of motion, Comp. Phys. Comm. 16, 331-343 (1979).
    PDF file;  
     
  117. G. Benettin, M. Casartelli, L. Galgani, A. Giorgilli and J.M. Strelcyn: On the reliability of numerical studies of stochasticity; I: existence of time averages, N. Cim. 44 B,183-195 (1978).
     
  118. G. Contopoulos, L. Galgani and A. Giorgilli: On the number of isolating integrals in Hamiltonian systems, Phys. Rev. A 18, 1183-1189 (1978).
    PDF file;  
     
  119. A. Giorgilli and L. Galgani: Formal integrals for an autonomous Hamiltonian system near an equilibrium point, Cel. Mech. 17, 267-280 (1978).
    PDF file;  
     
  120. G. Benettin, L. Galgani, A. Giorgilli and J. M. Strelcyn: Tous les nombres characteristiques de Ljapunov sont effectivement calculables, C. R. Acad. Sc. Paris 268 A, 431-433 (1978).
     
  121. M. Casartelli, G. Casati, E. Diana, L. Galgani, A. Giorgilli and A. Scotti: Numerical computations on the constants of motion of a Hamiltonian system, Lett. N. Cim. 13, 522-524 (1975).
     
  122. E. Diana, L. Galgani, A. Giorgilli and A. Scotti: On the direct construction of integrals of a Hamiltonian system near an equilibrium point, Boll. Unione Mat. It. 11, 84-89 (1975).
    PDF file;  
     




Omnia tempus habent,
et suis spatiis transeunt universa sub caelo.
Tempus nascendi et tempus moriendi.
Tempus plantandi et tempus evellendi quod plantatum est.
Tempus occidendi et tempus sanandi.
Tempus destruendi et tempus aedificandi.
Tempus flendi et tempus ridendi.
Tempus plangendi et tempus saltandi.
Tempus spargendi lapides et tempus colligendi.
Tempus amplexandi et tempus longe fieri ab amplexibus.
Tempus adquirendi et tempus perdendi.
Tempus custodiendi et tempus abiciendi.
Tempus scindendi et tempus consuendi.
Tempus tacendi et tempus loquendi.
Tempus dilectionis et tempus odii.
Tempus belli et tempus pacis.
Quid habet amplius homo de labore suo?
Vidi adflictionem quam dedit Deus filiis hominum
ut distendantur in ea.
Cuncta fecit bona in tempore suo,
et mundum tradidit disputationi eorum:
ut non inveniat homo opus quod operatus est Deus
ab initio usque ad finem.
Et cognovi quod non esset melius
nisi laetari et facere bene in vita sua.
Omnis enim homo qui comedit et bibit,
et videt bonum de labore suo:
hoc donum Dei est.
Didici quod omnia opera quae fecit Deus
perseverent in perpetuum.
Non possumus eis quicquam addere nec auferre
quae fecit Deus ut timeatur.
Quod factum est ipsum permanet.
Et quae futura sunt iam fuerunt,
et Deus instaurat quod abiit.

(Ecclesiastes 3,1-15)



Torna a: / Back to:


Università
di Milano

Antonio
Giorgilli
Home-page