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Summary. We describe the steps we followed in obtaining a recent result, according
to which it may not be necessary to make recourse to dark matter in order to
explain the observed velocity dispersion in the Coma cluster. The main idea is
that the missing gravitational action may be due to the external far galaxies. In
particular, we describe how relevant for us was the analogy between the retarded
far fields of electrodynamics and those of gravitation theory, in order to understand
the dominant role of the far galaxies.

1 Introduction

Very recently it occurred to us to write a paper (see [1]) in which it was
pointed out that the existence of a dark matter may not be necessary in order
to explain the phenomenology, at least in the application of the virial theorem
to the Coma cluster, which is the first case where the existence of a dark matter
was conceived (by Zwicky, in the year 1933; see [2]). The point we made is
that one should take into account the gravitational force due to the external
galaxies, which usually are not even mentioned at all. We gave an estimate for
such a force, showing that it seems to be of the right order of magnitude. Three
points play a fundamental role in our argumentation. Two of them (Hubble’s
law and the fractal nature of the Universe) are of a cosmological character.
Preliminarily, there is however a point of a kinematic–dynamic character. This
concerns the role played in the theory of gravitation by the far fields, inasmuch
as they are the ones that give the dominant contribution to the force on a test
particle (especially if Hubble’s law is taken into account). Now, it is true that
the far fields are a standard topic in the theory of gravitation, in connection
with the problem of the gravitational waves. However, the idea that they may
be relevant for the dynamics of the galaxies seems to be new. In the present
paper we describe first how it occurred to us to come to such a conception by
analogy with the case of electrodynamics, and then how we finally came to
our result.



2 Far Fields from electrodynamics to gravitation

The recognition of the relevance of the analogy between far fields in elec-
trodynamics and in gravitation actually had a rather occasional origin. During
a conference in honour of Claude Froeschlé, held in Spoleto at the end of June
2007, one of us had the opportunity to illustrate some recent results concerning
the classical microscopic theory of matter–radiation interaction for a system
of dipoles located at the sites of an infinite lattice [3] [4]. Particular emphasis
was given to two features, namely, the retarded character of the forces and the
global character of the interactions of the infinitely many dipoles composing
the system. Such features had indeed played an essential role in the deduction
of the main result, i.e., a proof of the Wheeler–Feynman identity. It then nat-
urally occurred that, in a meeting mostly devoted to celestial mechanics, the
question would be raised whether such features concerning retardation, the
occurring of far fields and the global character of the interactions may perhaps
play some role also in the theory of gravitation. Many discussions in this con-
nection took place with George Contopoulos and Christos Efthymiopoulos,
and these were particularly stimulating for us.

In the meantime, it had occurred to us to read, in the occasion of the
thesis of a student (see [5]) the papers in which Zwicky was applying the virial
theorem to the Coma cluster, while at the same time we were lecturing on the
classical application of such a theorem to gases by Clausius. The comparison
between the two applications then came up very naturally, with the realization
of the lack of any justification for the neglect of the external forces in the case
of Zwicky. So the circle was closed, and the idea was formed that one should
take into account the gravitational force exerted by the external galaxies. In
particular, one had to understand how it may happen that such a force can
have the character of a pressure, thus playing a role analogous to that of the
walls in the case of gases. Here, it will be described how, step by step, we
came to our final estimate.

2 Far fields in electrodynamics, and the Wheeler
Feynman identity

The recognition of the global role of the far fields in electrodynamics came
about as follows. In the paper [6] it was pointed out that there is a deep in-
consistency in the way Planck was dealing, in his classical papers, with the
dynamical aspects of the black–body problem. Indeed, he was studying the
interaction of a “material resonator” with the electromagnetic field (which
in some approximation could be reduced to just the electric field E). He
had previously understood (possibly being the first one to do so) that the
“self–interaction” of the material resonator with the field should be taken
into account through an effective self–force proportional to the third deriva-
tive of its position. However, for the sake of simplicity Planck introduced the
approximation in which he replaced such a self–force with a damping force
proportional to the velocity. So for the resonator he wrote down an equation
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of the type
m

(
q̈ + ω2

0q + ω2
0τ q̇

)
= E(t)

where q is the position vector of the resonator and E(t) the external elec-
tric field acting on it; moreover, ω0 a characteristic angular frequency of the
resonator, while τ = (2/3)e2/(mc3) is the familiar characteristic time of the
classical electron theory, c being the speed of light and e and m the charge
and the mass of the resonator. An equation of such a type is discussed by
Planck for example in the celebrated paper where his “second theory” was
first advanced. One can check how Planck introduced some generic assump-
tions for the function E(t), without taking into account the fact that such a
field is the one produced by the other resonators composing the considered
system. This should enforce one to deal with a many–body problem, whereas
Planck was explicitly assuming (see the quotation in [6], and [7]) that all the
resonators were acting “independently of one another”.

The mutual retarded interactions among all resonators was taken into
account in the paper [3], where an extremely simple many–body model was
introduced. This is a system of infinitely many dipoles each of which can
oscillate about a site of an infinite regular chain (and along the direction of the
chain), being attracted to its equilibrium position by a linear restoring force.
Moreover, each dipole is subject to a retarded interaction with all the other
ones through an electric force which is a solution of the Maxwell equations
having all the other dipoles as sources. The system is then linearized, inasmuch
as the distance between the dipoles is approximated by the distance between
the corresponding equilibrium points. Moreover, for what concerns the self–
force, no approximation is made, and its standard form, proportional to the
third derivative, is used. If qj denotes the displacement of the j–th dipole
from its equilibrium position, then one has the infinite system of equations
with delay given by

m
(
q̈j + ω2

0qj − τ¨̇qj

)
= 2e2

∑
k 6=j

[ qk(t− rjk/c)
r3
jk

+
1
c

q̇k(t− rjk/c)
r2
jk

]
, (1)

where rjk = a|j − k| is the distance between the equilibrium positions of
dipoles j and k, a being the lattice step.

In the paper [3] the rather astonishing result was proven that there exist
normal–mode solutions of the complete system, namely, solutions of the type
qj(t) = A exp(κaj−ωt) with a suitable dispersion relation ω = ω(κ). Thus, in
such a solution there occurs for each dipole an exact compensation between
the energy it emits and the energy it receives from all the other ones. Such
an exact compensation occurs in virtue of an identity which had already been
conceived by Oseen [8] in the year 1916, and is essentially equivalent to the
more familiar one that was amply discussed by Wheeler and Feynman [9] in
the year 1945. An essential point concerning such an identity is its global
character, inasmuch as it makes reference to the whole system of all dipoles.
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This feature becomes even more evident if one considers the analogous
three–dimensional model (see [4]), because in such a case the main contri-
bution to the force acting on a single dipole is the one coming from the far
ones. This is due to the fact that the four–potential acting on a dipole is the
retarded solution of the wave equation having each of the other dipoles as a
source. Thus, concerning the force “created” by any other dipole, in addition
to the Coulomb term there appear both the “near” term proportional to the
velocity of the source, which decays as 1/r2, and the “far” one proportional
to the acceleration of the source (and normal to its velocity), which decays
as 1/r. The latter term, which is the dominating one, was actually lacking in
the one–dimensional model, due to the accidental fact the dipoles were con-
strained to oscillate along the direction of the chain. So we have described
how we came to understand the role of far fields in electrodynamics.

3 The virial theorem in the theory of gases and in
astrophysics, and the role of the external forces

Let us now come to the problem of gravitation, and start up recalling how
the virial theorem was applied by Zwicky to the Coma cluster, in contrast to
the classical application to gases made by Clausius. One considers a system S
composed of n points. For Clausius S is a gas enclosed in a box, for Zwicky it
is the Coma cluster, whose “points” are galaxies, immersed in the Universe.
One considers Newton’s equations of motion ẍi = Fi/mi ≡ fi, i = 1, . . . , n
(the dot denoting time derivative) where xi is the position vector of the i–th
particle with respect to the center of mass of the system S, while Fi is the force
acting on the i–th particle (of mass mi) and fi = Fi/mi is the corresponding
force per unit mass, i.e., the corresponding acceleration. Then one takes the
dot product with xi, and adds over i. Performing a time average, under the
hypothesis that the system remains confined one immediately obtains

σ2
v = −V /n , (2)

where σ2
v = (1/n)

∑
i v2

i is the variance of the velocity distribution of the
galaxies of the cluster, whereas V =

∑
i fi · xi is called the virial of the forces

(per unit mass), and overline denotes time–average. This is the form of the
theorem suited to the case of gravitation (which involves forces per unit mass),
whereas the analogous theorem for the case of general forces relates twice the
kinetic energy to the virial of the forces.

Notice that one has the decomposition Fi = Fint
i +Fext

i of the force acting
on the i–th particle as the sum of an internal force and an external one (that
exerted by the walls of the box confining the gas in the case of Clausius,
and by the galaxies external to Coma in the case of Zwicky). In the case of
Clausius one has Fint

i = 0 for a perfect gas, and in any case the virial of
the internal forces is considered to be negligible with respect to the external
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one. In turn, the virial of the external forces is related to the pressure, and
so from the virial theorem one obtains the thermodynamic interpretation of
the translational kinetic energy as proportional to temperature. In the case
of Coma, instead, Zwicky doesn’t make any mention of the external forces
at all, and considers only the internal ones, given by Newton’s gravitational
law. He thus finds, analogously to the case of gases, that |Vint| /n is just a
negligible fraction of σ2

v , and so he is led to the conjecture that some non
visible mass exists, whose contribution to the virial may restore the balance
with the observed velocity variance.

Now, why should the external forces be neglected at all? The first idea
underlying our work was that in astrophysics, just as in the case of gases, the
virial of the external forces may actually be what is needed in order to restore
the balance in the virial theorem.

4 Relevance of the far matter if Hubble’s law is taken
into account

So we had the problem of estimating the gravitational field of force due to the
external galaxies. From the point of view of general relativity, in the weak–field
approximation this amounts to writing down the equations for the geodesic
motion when the metric tensor gµν is a solution of the Einstein equation with
the external galaxies as sources. It is well known that, for small velocities of
the test particle, the equation for the geodesic motion is the same as for a
point particle with a Lagrangian

L = gikẋiẋk + c g0kẋk + c2g00 , (3)

where c is the speed of light (the summations over the spatial indices i and
k from 1 to 3 being understood). So at first sight, neglecting the corrections
due to the kinetic energy, the forces per unit mass appear to be the same
as if the test particle were in presence of an electromagnetic field having g00

as scalar potential and g0k as vector potential (although relevant differences
exist between the two cases, as particularly emphasized by Zeldovich and
Novikov [10]). On the other hand, it is very well known that in the weak–field
approximation, writing the metric tensor as a perturbation of the Lorentzian
background ηµν , namely, as gµν = ηµν + hµν , the perturbation hµν turns out
to be a solution of the wave equation, so that its components are the familiar
retarded potentials of electrodynamics. In fact one finds

hµν =
−2G

c4

N∑
j=1

Mj
1
γj

2q̇
(j)
µ q̇

(j)
ν − c2ηµν

|x− q(j)|

∣∣∣∣∣
t=tret

, (4)

where G is the gravitational constant, while Mj , q(j) and γj , j = 1, . . . , N ,
are the mass, the position vector and the Lorentz factor of the j–th source
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galaxy, dealt with as a point particle, and the dot denotes derivative with
respect to proper time along the worldline of the source. The notation q(j) in
place of qj for the position vector of the j–th external galaxy was introduced
just in this formula, in order to avoid confusion with the tensorial indices.

Formula (4) implies first of all that, according to general relativity in the
weak–field approximation, the gravitational field of force presents (in analogy
with electrodynamics) both a “classical” Newtonian near–field term, decaying
as 1/r2, and a far–field one, decaying as 1/r. This in turn implies that the
contribution to the gravitational field of force due to the far matter is in
principle dominant with respect to that due to the near matter. In other terms,
the problem of estimating the external gravitational field of force acting on
a localized system such as the Coma cluster, immediately presents itself as
a problem of a cosmological character, and this compels one to introduce a
cosmological model.

To this end we introduced an oversimplified model. Let us make reference
to a local chart with Lorentzian coordinates, having as origin the center of
mass of the considered localized system (the Coma cluster). As hµν depends
on each source not only through its position qj , but also through its velocity,
the latter has to be assigned in order that the model be defined. In our simple
model, this is obtained by introducing Hubble’s law as a phenomenological
prescription, namely, by requiring that for the external galaxies one has

q̇j = γ−1
j H0qj , j = 1, . . . , N (5)

(the dot denoting now derivative with respect to the background Lorentzian
time). Here, H0 is the Hubble constant which, in our extremely simplified
model, we take fixed to its present value.

Notice that the Hubble assumption (5) has an essential impact on the
size of the gravitational field of force. Indeed, in the field of force one has a
term (decreasing as 1/r2) proportional to the velocity of the source, and a
term (decreasing as 1/r) proportional to the acceleration of the source. Thus,
as Hubble’s law (5), implies that also the acceleration has a contribution
proportional to the distance, it turns out that the term proportional to the
acceleration actually doesn’t depend on distance at all. This is the main reason
why the far matter gives the dominant contribution to the gravitational field
of force.

The force per unit mass at the origin corresponding to such a dominant
term (which we denote by f) turns out to have the form

f =
4GH2

0 M

c2
u (6)

where we have introduced the vector u, depending on the number N of ex-
ternal galaxies, defined by

u(N) =
N∑

j=1

qj

|qj |
. (7)
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Here, the masses of the sources were all put equal to a common value M , and
the Lorentz factors γj were approximated to 1. As will be shown later, this
approximation is justified for the aims of our estimate. Notice the extremely
simple nature of this force per unit mass: apart from a multiplicative factor,
it is just the sum of all the unit vectors pointing to each of the N external
galaxies.

Concerning the main procedure which was followed in obtaining the force
exerted by the external matter, the following comment may be in order. The
idea of taking into account the role of the external matter was discussed by
Einstein, in his Princeton lectures of the year 1921 (see [11]), in connection
with the Mach principle, where he pointed out that the perturbation hµν to
the metric (that he was denoting by γµν) can be obtained “by the method.
familiar in electrodynamics, of retarded potentials“ (see his formula (101)
at page 87). The only difference is that at those times he did non yet had
available Hubble’s law, and on the other hand he had in mind the application
to astronomy. So he wrote (page 88) “The previous developments are valid
however rapidly the masses which generate the field may move relatively to
our chosen system of quasi–Galilean coordinates. But in astronomy we have to
do with masses whose velocities, relatively to the coordinate system employed,
are always small compared to the velocity of light, . . . . We therefore get an
approximation which is sufficient for nearly all practical purposes if in (101)
we replace the retarded potential by the ordinary (non–retarded) potential ...”.
This is the way it happened that only the Newtonian, fast decaying, potential
was considered, and consequently only the near matter, and not the far one,
did play a role in connection with Mach’s principle (see page 100 of ref. [11]).

5 Estimate of the gravitational forces. Role of the
discreteness of the sources, and of the fractal nature of
the Universe

So we had to estimate the gravitational force per unit mass exerted by the
external galaxies, namely essentially the sum (7), and we now briefly describe
the steps we followed. The first result was a negative one: One shows that
the external force exactly vanishes if the external matter is described as a
continuum, with a radially symmetric density.

As a further step, we took into account the fact that the matter actually is
a discrete system of point particles. In order to make an estimate with concrete
sets of positions for the galaxies, we took the probabilistic point of view that
Chandrasekhar and von Neumann (see the review [12]) had taken in order to
estimate the vector sum of the Newtonian forces exerted on a star by the near
ones. Following such authors, we started assuming that the positions qj of
the N galaxies are independent random variables, uniformly distributed with
respect to the Lebesgue measure. Then the sum (7) is found to grow as

√
N ,

just as a consequence of the central limit theorem. Correspondingly, apart
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from a constant factor, the force per unit mass (6) behaves, with increasing
N , as the fraction MN/

√
N , where the total mass MN of the galaxies was

put in evidence in the numerator. One easily checks (see later) that such a
force is completely negligible.

So we modified the previous assumption, and considered the case in which
the distribution of mass is assumed to be fractal [13] (see also [14], [15], [16].
[17]). This means first of all that the positions of the galaxies are no more
independently distributed, and this has the relevant consequence that the
sum (7) is no more constrained to grow as

√
N , and can instead have a faster

growth, as required by the observations. The removal of the assumption of
independence of the positions of the galaxies has however the consequence that
the analytical discussion becomes now much more difficult than in the case of
Chandrasekhar and von Neumann. So we were forced, at least provisionally,
to investigate the problem by numerical methods.

We proceeded as follows. We actually considered the component of the
force f (or of the corresponding vector u) along a given direction. Such a
component of f was simply denoted by f and, analogously, the corresponding
component of u by u. To estimate the sum, the positions of the galaxies
were extracted (with the method described in [13]) in such a way that the
mass distribution has a fractal dimension, precisely the fractal dimension 2.
The quantity u was thus dealt with as a random variable, and its probability
distribution was investigated by considering 10,000 samples, with N ranging
from 1000 to 512, 000, the density being kept constant. This means that the
positions of the N points were taken to lie inside a cutoff sphere whose volume
was made to increase as N . For the values of N investigated, the corresponding
radius turns out to be so small with respect to the present horizon, that the
Lorentz factors γ could altogether be put equal to 1.

The mean of u was found to practically vanish for all N , while its variance
σ2

u was found to grow as N2 (actually, as 0.2 N2), rather than as N , as occurs
in the uniform case (see Fig. (2) of ref [1]). We thus could conclude that the
standard deviation σf of the component of the force per unit mass along a
direction is proportional to N , being given by

σf '
√

0.2
4GH2

0

c2
MN =

√
0.2

4G

R2
0

MN , (8)

where R0 = c/H0 is the present horizon. We then took such a result, which
was obtained for extremely small values of N , and extrapolated it up to the
present horizon R0 = c/H0, i.e., we inserted in formula (8) the actual value
of N , so that the quantity MN could be identified with the total visible mass
of the Universe.

Concerning the total visible mass MN of the Universe, one can write

MN =
4
3
π ρeff R3

0 ,
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with a suitable effective density ρeff . In the paper [1] it was shown that a
natural consistency condition for the model gives

ρeff =
1
4

3H2
0

8πG
' 5ρ0

where ρ0 = Ω0 (3H2
0 )/(8πG), with Ω0 ' 0.05, is the actual density. This gives

σf ' 0.2 cH0. On the other hand, if a random variable f has zero mean and
a finite variance σ2

f , with great probability it will take on values very near to
its standard deviation σf . In such a sense we may say we have found for the
force per unit mass along a direction, exerted by the external galaxies, the
typical value

|f | ' 0.2 cH0 . (9)

6 Application to the virial for a cluster of galaxies

We finally applied such a result to estimating the virial for a cluster of galaxies.
This could be done at a very heuristic level. First of all, one has to assume
that locally, in the region of interest, the field of force has somehow a central
character, because otherwise the cluster itself could not exist at the considered
place. In other words, we are assuming that, for a given realization of the
positions of the external galaxies, on the average (over the positions of the
internal galaxies) locally the field of force is directed towards a center, i.e., is
acting as a pressure. However, apart from such a correlation, the intensity of
the field of force should not be thought of as a smooth function, being for the
rest uncorrelated with respect to the position.

Let us consider a cluster composed of n galaxies. We have to estimate the
time–average of the virial of the forces (per unit mass) due to the N external
galaxies, namely, the quantity

V =
n∑

i=1

fi · xi , (10)

where fi is the force on the i–th internal galaxy due to the external ones. We
can assume all terms of (10) to be equal, and given by fi · xi ' −f |xi| with f
given by (9), while taking |xi| ' L/4, where L is the diameter of the cluster.
So one finds |V| ' nfL/4. Inserting for f the expression (9), one thus obtains
the result that, according to the virial theorem, if the external force due to
the far galaxies is taken into account, the velocity variance of a cluster should
obey the law

σ2
v ' 0.2

cH0L

4
, (11)

where L is the linear dimension of the cluster. In the case of Coma, for the
velocity variance one thus finds a value ' 6 · 105 km2/sec2, which is very near
to the value 5 · 105 km2/sec2 reported by Zwicky.
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Notice the linear dependence on L in formula (11), which seems to be in
agreement with the observations (see [18], Fig. 2, page 539). This property is
also confirmed by a dimensional analysis. Indeed, with the parameters entering
the problem, the square of a velocity can be formed only as c2, or as cH0L or
as (H0L)2. But the first term is by far too large, the last term by far too small,
while the term linear in L is indeed about of the correct order of magnitude.

7 Conclusion

So we have described how, starting from the analogy with electrodynamics,
we were led to conceive that the gravitational action of the far galaxies may
be a substitute for the dark matter, if Hubble’s law is taken into account.
We also emphasized the role that the fractal nature of the Universe has in
allowing for the corresponding force per unit mass to have the right order of
magnitude, namely, about cH0.

This paper is dedicated to the memory of Nikos Voglis
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