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Introduction

Scope of the work:

• Accurate numerical solutions

• Short computational times

}
→ cornerstones for marketable DOT devices
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DOT employs near-infrared (NIR, 600− 900 nm) light to illuminate the
biological tissue in vivo.

DOT Inverse problem: Infer the optical parameter (biomarkers of pathogenic
processes) “inverting” a mathematical model for light propagation in tissue based
on experimental measurements of the light fluence.
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→ cornerstones for marketable DOT devices

DOT employs near-infrared (NIR, 600− 900 nm) light to illuminate the
biological tissue in vivo.

DOT Inverse problem: Infer the optical parameter (biomarkers of pathogenic
processes) “inverting” a mathematical model for light propagation in tissue based
on experimental measurements of the light fluence.

Non-invasive
Non-ionizing radiation
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Optical Properties of Biological Tissue

The propagation of light through biological tissues is affected by absorption and
scattering characterized by the absorption coefficient (µa [cm−1]) and the
scattering coefficient (µs [cm−1]), respectively.
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Optical Properties of Biological Tissue

The propagation of light through biological tissues is affected by absorption and
scattering characterized by the absorption coefficient (µa [cm−1]) and the
scattering coefficient (µs [cm−1]), respectively.

In the NIR spectral window the scattering effect can be 100x larger than
absorption. Due to the strong scattering light photons travel in tortuous paths.
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Methodology

We address the application of DOT to female breast screening to detect possible
cancerous lesions.
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Methodology

We address the application of DOT to female breast screening to detect possible
cancerous lesions.

Geometry and source-detector arrangement
Female breast supported on a solid plate.
ΓD : tissue-plate interface → light sources,
ΓR : tissue-air interface → detectors.

2D 3D
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Methodology
We address the application of DOT to female breast screening to detect possible
cancerous lesions.

Light source
LED modeled as Dirac delta source terms S(x) = δ(x − xs), xs source
position.
Data
For each source, light fluence U at the detectors.
Optical parameter to infer
Absorption coefficient µa(x) = µa,0 + δµa (x) (constant scattering coefficient).
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Model for light propagation in tissue

Radiative transport equation (RTE) for the light radianceww� if µs � µa
P1 approximation + stationary case

Diffusion Equation (DE)

−D4U(x) + µa(x)U(x) = S(x)

where U(x) is the photon fluence rate, D is the diffusion coefficient.
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Model for light propagation in tissue

Radiative transport equation (RTE) for the light radianceww� if µs � µa
P1 approximation + stationary case

Diffusion Equation (DE)

−D4U(x) + µa(x)U(x) = S(x)

where U(x) is the photon fluence rate, D is the diffusion coefficient.

Boundary Conditions for the fluence rate

ΓD tissue-plate interface totally opaque plate U = 0 Dirichlet BC
ΓR tissue-air interface Fresnel reflection ∂U

∂n̂ + 1
2AD U = 0 Robin BC
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Rytov Approximation

Rytov approximation: U(x) = eψ(x) where ψ(x) =
N∑

i=0
ψi (x).
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Rytov Approximation

Rytov approximation: U(x) = eψ(x) where ψ(x) =
N∑

i=0
ψi (x).

From the DE, under the 1st order Rytov approximation,
defining the Modified Helmholtz operator L = 4− µa,0

D ⇒

Problem for U0 = eψ0 background fluence
LU0(x) = − 1

D δ(x − xs) x ∈ Ω
U0(x) = 0 x ∈ ΓD
∂U0
∂n̂ (x) + 1

2AD U0(x) = 0 x ∈ ΓR

Problem for U0ψ1, ψ1(x) = log U(x)
U0(x) logarithmic amplitude fluctuation

of the light fluence
L (U0ψ1) (x) = U0(x) δµa (x)

D x ∈ Ω
(U0ψ1) (x) = 0 x ∈ ΓD
∂(U0ψ1)
∂n̂ (x) + 1

2AD (U0ψ1) (x) = 0 x ∈ ΓR
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Green’s Function method


LG(x , x ′) = δ(x − x ′) x ∈ Ω
G(x , x ′) = 0 x ∈ ΓD

}
→ Green Dipole (GD)

∂G
∂n̂ (x , x ′) + 1

2AD G(x , x ′) = 0 x ∈ ΓR −→ Numerical approach
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Green’s Function method


LG(x , x ′) = δ(x − x ′) x ∈ Ω
G(x , x ′) = 0 x ∈ ΓD

}
→ Green Dipole (GD)

∂G
∂n̂ (x , x ′) + 1

2AD G(x , x ′) = 0 x ∈ ΓR −→ Numerical approach

Problem for U0ψ1 ⇒

Linearized problem:
Fredholm integral equation of the first kind for δµa

(U0ψ1)(x) =
∫

Ω
G(x , x ′)δµa (x ′)

D U0(x ′)dx ′
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Discrete Inverse Problem 1/2

Starting from the Fredholm integral equation of the first kind

(1.) evaluation at the detector positions, x = xd,ν for ν = 1, . . . ,NDet for each
source position xs,l for l = 1, . . . ,NSrc ,

(2.) domain discretization through a voxel-based mesh
composed of Nv elements of centroids {xj}Nv

j=1 and
volumes {∆Vj}Nv

j=1,

(3.) midpoint quadrature rule to discretize the integral,

(4.) use of the dataset of measurements:
Um(xdν , xsl ) and Um

0 (xdν , xsl ) for l = 1, . . . ,NSrc and ν = 1, . . . ,NDet .
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Discrete Inverse Problem 2/2

From steps (1.)− (4.)

Jδµa ≈ y where J is called sensitivity matrix

Discrete Inverse Problem
δLS
µa

= arg min
x
F(x), where F(x) = ||Jx − y ||22
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Method of Fundamental Solutions

Goal: Find a numerical method to enforce the Robin BC that preserves high speed

Method of fundamental solutions (MFS) vs Boundary element method (BEM)

→ MFS is faster and provides more accurate results
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Method of Fundamental Solutions
Goal: Find a numerical method to enforce the Robin BC that preserves high speed

Method of fundamental solutions (MFS) vs Boundary element method (BEM)

→ MFS is faster and provides more accurate results

Single-layer potential representation on an auxiliary boundary Ωa s.t. Ω ⊂ Ωa

u(x) =
∫
∂Ωa

σ(ξ)G(x , ξ)dSξ

Discretization ⇒ uMFS(x) =
N∑

j=1
ajG(x , ξj)

. Singularities: {ξj}N
j=1 ∈ ∂Ωa

. Collocation nodes: {xi}M
i=1 ∈ ∂Ω

. Unknowns: {aj}N
j=1, determined imposing the BCs at the collocation nodes

M ≥ N ⇒ M × N linear system for the unknowns aj .
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MFS convergence

‖u − uMFS‖L2(Ω) = O
((

r
r2

)M
)

M = #collocation nodes
N = #singularities
Test case in two-dimensions

[
4− k2] u(x) = 0 with k =

√
2.

Exact solution: u(x) = ex1+x2
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MFS convergence

‖u − uMFS‖L2(Ω) = O
((

r
r2

)M
)

M = #collocation nodes
N = #singularities

Test case in three-dimensions
[
4− k2] u(x) = 0 with k =

√
3.

Exact solution: u(x) = ex1+x2+x3
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MFS for DOT
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Necessity of Regularization
δLS
µa

= arg min
x∈RNv

F(x), where F(x) = ‖Jx − y‖2
2

Exact

LS
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Necessity of Regularization

δLS
µa

= arg min
x∈RNv

F(x), where F(x) = ‖Jx − y‖2
2

Singular values of the sensitivity matrix
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Necessity of Regularization

δLS
µa

= arg min
x∈RNv

F(x), where F(x) = ‖Jx − y‖2
2

Regularization

min
x
F(x) s.t. ||x ||pp ≤ δ ⇔ min

x
Fλ,p(x), where Fλ,p(x) = F(x) + λ||x ||pp
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Necessity of Regularization

δLS
µa

= arg min
x∈RNv

F(x), where F(x) = ‖Jx − y‖2
2

Regularization

min
x
F(x) s.t. ||x ||pp ≤ δ ⇔ min

x
Fλ,p(x), where Fλ,p(x) = F(x) + λ||x ||pp

Tikhonov: p = 2

LASSO: p = 1
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Regularization for DOT

Tikhonov

LASSO

DOFS ||δµa ||∞
Exact 32 0.01

Tikhonov Nv = 3822 8 · 10−4

LASSO 4 0.15
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Regularization for DOT

Elastic net: min
x
Fλ,α(x), where Fλ,α(x) = F(x) + λ{α‖x‖1 + (1− α)‖x‖2

2},
α ∈ [0, 1]

α DOFS ||δµa ||∞
Exact 32 0.01

0 Nv 8 · 10−4

0.1 178 5 · 10−3

0.2 119 8 · 10−3

0.3 93 0.01
0.4 74 0.013
0.5 63 0.016
0.6 51 0.02
0.7 37 0.025
0.8 24 0.03
0.9 17 0.06
1 4 0.15
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Numerical Results

Dipole Approximation

Robin BC (MFS)
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Numerical Results

Dipole Approximation
Robin BC (MFS)
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Numerical Results

Robin BC (MFS) 3D
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Computational Time

Computational Time in 3D

Nv = 72407 Dipole Approximation 113 s
Robin BC 160 s
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Computational Time
Computational Time in 3D

Nv = 72407 Dipole Approximation 113 s
Robin BC 160 s

2D 3D

3D Nv Computational Time
h = 0.1 cm (whole domain) 72407 160 s
h = 0.25 cm (whole domain) 14876 30 s

}
< 1minh = 0.1 cm (cube of size 2 cm) 8000 17 s
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Conclusions

The approach proposed accurately detects the inclusion/inclusions
Size and intensity → elastic net
Location → enforcement of the Robin BC.

The times of execution are short thanks to
the choice of the framework: linearization under Rytov approximation
adopting the DE as model equation
the fast numerical method MFS
a general optimization, in terms of computational costs, of the code.
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