1. \(X = \{2, 4, 6, 8, 20, 28\} \subseteq \mathbb{N}, \quad R = \{(a, b) \in X^2 \mid a \text{ divide } b\} \)

a) \(R \) è rel. d'ordine poiché l'insieme degli interi positivi di cui \(X \) è sottoinsieme e le estensioni a una sottoinsieme di \(X \) l'ordine di

\[A L T E R N A T I V A: \quad \text{poiché } a \text{ divide } b \quad \text{(PR. RIFLESSIVITÀ)} \]

- se \(a \) divide \(b \), allora \(b = ka \) con \(k \in \mathbb{N} \)

- se \(a \) divide \(b \) e \(b \) divide \(a \), allora \(a = kb = kha \Rightarrow kha = kha \Rightarrow k = 1 \Rightarrow a = b \) (PR. ANTISINTETRICA)

- se \(a \) divide \(b \) e \(b \) divide \(c \), allora \(a = kb \) e \(b = lc \Rightarrow c = kb = lca \) (PR. TRANSITIVITÀ)

b) le coppie in relazione sono:

\[(2,2), (2,4), (2,6), (2,8), (2,20), (2,28); (4,4), (4,8), (4,20), (4,28); (6,6); (8,8); (20,20); (28,28) \]

d) \(\text{inf } (20, 6) = 2 \) poiché 2 divide 20 e 6 e nessun altro divisore di 20 e 6 è più piccolo.

\[\text{sup } (2, 4) = 4 \] poiché 2 divide 4

e) \(\text{min } R = 2 \) poiché 2 divide \(x \) per \(x \in X \)

\[\text{max } R \text{ non esiste poiché} \] \(6 \in X \) e non c'è altro numero che non divide tutti.

\(R \) è il grafiogramma di Reme di \(R \)

f) per avere un reticolo serve che per ogni coppia d'elementi di \(X \) esistano \(\text{inf} \) e \(\text{sup} \). Se l'oggetto di Reme c'è che per l'inf non ci sono problemi: \(\text{inf } (a, b) = 2 \) perché per la coppia \((4,8) \) per la quale \(\text{inf } (4,8) = 4 \).

Per avere il sup per ogni coppia bisogna assegnare a \(X \) il

\[\text{inf } (6, 8, 20, 28) = 2 \quad \text{e} \quad \text{sup } (6, 8, 20, 28) = 840 \quad \text{dunque} \]

\[V = \text{inf } (6, 8, 20, 28) = 2 \quad \text{e} \quad \text{sup } (6, 8, 20, 28) = 840 \quad \text{e l'insieme} \]
Perché la 0 (l'elemento), la 1 (l'elemento 0), una l'elemento
6 ha più di un complemento (cfr. 6+4, 6+8) = 2, 6+4=8, 6+8=14, 6+8=14.
6+4=8, 6+8=14.

2. In \(\mathbb{Z}_7[x] \) dividendo \(f(x) = x^4 + 3x + 2 \) con \(d(x) = x^2 + 1 \)

\[
\begin{array}{c|cc|c}
 & x^4 & + 3x & + 2 \\
\hline
 4x^2 + 1 & 2x^2 & + 3 \\
- x^4 - 5x^2 & - 5x^2 & - 2 \\
\hline
 3x & - 1 \\
\end{array}
\]

\(p(x) = d(x) \cdot (2x^2 + 3) + \frac{3x + 6}{\text{resto}} \)

Per trovare MCD\((p, d)\) uso l'algoritmo euclideo delle
divisori successivi:

\[
\begin{array}{c|c|c}
 & 4x^2 + 1 & 3x + 6 \\
\hline
 3x^2 + 6x & 5.4x + 2 \\
- 6x + 1 & -6x + 2 \\
\hline
 3 \\
\end{array}
\]

\[4x^2 + 1 = \frac{(3x + 6) \cdot (6x + 2) + 3}{\text{distr. quo. resto}}\]

\[3x + 6 = 3(x + 2)\]

Quindi MCD\((p, d) = 3\) o (n.b. che se

moltiplico "c" nel MCD per un ele. \(\mathbb{Z}_7 \) ho anca un MCD). \[\frac{MCD(p, d) = 1}{\text{per la leg. di Bézout}}\]

Quindi è possibile scriver due \(p \), \(p + d \) \((p, d \in \mathbb{Z}_7[x])\)

e aggiungere polinomio \(q \in \mathbb{Z}_7[x] \) come \(p \cdot q + d \cdot q \).

Vediamo il dettaglio dei calci:

\[3 = (4x^2 + 1) - (3x + 6)(6x + 2) = d(x) - (3x + 6)(6x + 2)\]

\[\Rightarrow 3 = d(x) - (6x + 2) \cdot ((x + 5) \cdot (4x^2 + 6x + 2) \cdot d(x)) =
\]

\[= ((x + 5) \cdot (4x^2 + 6x + 2) \cdot d(x))
\]

\[\Rightarrow 1 = \frac{5 \cdot 3}{5x + 4} \cdot (6x + 2) \cdot d(x)
\]

\[\Rightarrow 1 = \frac{(5x + 4) \cdot (x + 5) \cdot (4x^2 + 6x + 2) \cdot d(x)}{d(x)}
\]
3. \(F_k \left(\begin{pmatrix} x \\ y \\ z \end{pmatrix} \right) = \begin{pmatrix} 1 & 0 & 2 \\ 1 & -1 & 0 \\ 1 & -k & 1-k \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} \)

a) L'applicazione lineare \(F_k : \mathbb{R}^3 \rightarrow \mathbb{R}^3 \) è suriettiva se e solo se è iniettiva, poiché \(\dim(\ker F_k) + \dim(\text{Im} F_k) = \dim(\text{domina}) = 3 \) e dire \(F_k \)

suriettiva significa \(\dim(\text{Im} F_k) = 3 \Rightarrow \dim(\ker F_k) = 0 \Rightarrow \ker F_k = \{0\} \).

\(F_k \) è iniettiva \(\iff \) \(\det A_k \neq 0 \):

\[\det A_k = \begin{vmatrix} 1 & 0 & 2 \\ 1 & -2 & 1 \\ 1-k & 1-k & 1 \end{vmatrix} = -2k + 2(1-1+k) = 0 \iff k \neq 1 \]

Quindi \(F_k \) non è MAI iniettiva e quindi non è MAI suriettiva.

b) Chiudendo \(\begin{pmatrix} 1 \\ 3 \end{pmatrix} \) e \(\text{Im} F_k \) equivale a vedere se è risolubile

il sistema lineare

\[
\begin{pmatrix} 1 & 0 & 2 \\ -1 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \\ 3 \end{pmatrix}
\]

cui vado a risolvere col metodo di eliminazione di Gauss:

\[
\begin{pmatrix} 1 & 0 & 2 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & -2 \\ 0 & 1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{pmatrix}
\]

Quindi il sistema è risolubile e le sue soluzioni sono del tipo

\[
\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1-2k \\ 2+2k \\ k \end{pmatrix}, \quad k \in \mathbb{R}
\]

Queste sono tutte (e sole) le possibili soluzioni, ed è di \(\begin{pmatrix} 1 \\ 3 \end{pmatrix} \) rispetto a \(F_k \).

4. Se \(\mathbb{R}_3[x] \) il sottospazio \(U = \langle u_1, u_2, u_3 \rangle \) ha dimensione 3 perché

\(u_1 = x^3 \) e \(u_2 = x^2 + x \) sono indipendenti tra loro ma non uno

nullaflui nell'altro e \(u_3 = x^2 + 1 \) è indipendente dai primi due, poiché \(u_3 = a u_1 + b u_2 \) per alcune \(a, b \in \mathbb{R} \), e quindi \(u_3 \) è una soluzione del sistema

\[
\begin{cases} a = 0 \\ b = 1 \\ c = 0 \end{cases}
\]

Allo stesso modo verifica che \(w_1 = x^2 + 1 \), \(w_2 = x^2 + 1 \), \(w_3 = x + 1 \) sono

indipendenti e generano quindi un sottospazio \(W \) di dim. 3.

Un'alternativa si rinvierebbe ad un altro potere utilizzando l'omomorfismo
di spazi vettoriali \(f: \mathbb{R}^3[x] \rightarrow \mathbb{R}^2 \) definita da \(f(ax^2 + bx + c) = \begin{pmatrix} a \\
 b \\
 c \\
 d \end{pmatrix} \) e operare
il controllo sulle colonne dei coefficienti. Ad es. nel caso di \(W \) si trova di
esaminare \(w_1' = \begin{pmatrix} 1 \\
 0 \\
 1 \\
 1 \end{pmatrix}, \quad w_2' = \begin{pmatrix} 0 \\
 1 \\
 0 \\
 1 \end{pmatrix}, \quad w_3' = \begin{pmatrix} 0 \\
 0 \\
 1 \\
 1 \end{pmatrix} \).

Ci vediamo una base di \(U + W \). Osserviamo che \(w_1 = x^3 + 1 \) è indipendente dei
infatti:

vettori di \(U; y = x^3 + b(x^2 + x) + c(x^2 - 1) \) porta al sistema

\[
\begin{cases}
1 = a \\
0 = b + c \\
0 = b \\
1 = -c
\end{cases}
\]

che è impossibile.

Quindi \(\dim(U + W) \geq 4 \); d'altra parte \(U + W \subseteq \mathbb{R}^3[x] \) e \(\dim \mathbb{R}^3[x] = 4 \) \(\Rightarrow \)
una base di \(U + W \) è \(\{w_1, w_2, w_3, w_4\} \), ma anche \(x^3, x^2, x, 1 \) \(\Rightarrow \)
\(\dim(U + W) = 4 \). Per la formula di Gram-Schmidt

\[
\dim(U + W) = \dim U + \dim W - \dim(U + W) = 3 + 3 - 4 = 2
\]

5. Iniziamo con il determinazione gli autovalori delle matrici numeriche:

\[
|M - \lambda I| = \begin{vmatrix}
1 & 0 & -1 \\
0 & 0 & 1 \\
-1 & 0 & 1
\end{vmatrix} = (\lambda - 1) \begin{vmatrix}
0 & -1 \\
1 & 0
\end{vmatrix} = \lambda (\lambda - 1)(\lambda - 2)
\]

Determiniamo gli autovalori corrispondenti:

\[
\lambda = 0 \quad \Rightarrow \quad \begin{pmatrix} x \\
0 \\
0 \end{pmatrix} = \begin{pmatrix} 1 \\
0 \\
0 \end{pmatrix} k \quad k \in \mathbb{R} \setminus \{0\}
\]

\[
\lambda = 1 \quad \Rightarrow \quad \begin{pmatrix} 0 & -1 \\
0 & 0 \\
-1 & 0 \end{pmatrix} \begin{pmatrix} x \\
0 \\
0 \end{pmatrix} = \begin{pmatrix} 1 \\
0 \\
0 \end{pmatrix} k \quad k \in \mathbb{R} \setminus \{0\}
\]

\[
\lambda = 2 \quad \Rightarrow \quad \begin{pmatrix} 1 & -1 \\
0 & 0 \\
-1 & 0 \end{pmatrix} \begin{pmatrix} x \\
0 \\
0 \end{pmatrix} = \begin{pmatrix} 0 \\
0 \\
0 \end{pmatrix} k \quad k \in \mathbb{R} \setminus \{0\}
\]

Gli autovettori relativi ad autovalori distinti, come a 2 a 2 ortogonali.

Per trovare una base ortonormale, possiamo prendere 4 vettori per ciascun autovalor e normarizzarli. Ad es. dalle base di autovalori \(\left\{ \begin{pmatrix} 1 \\
0 \\
0 \end{pmatrix}, \begin{pmatrix} 0 \\
1 \\
0 \end{pmatrix}, \begin{pmatrix} 0 \\
0 \\
1 \end{pmatrix} \right\} \) si passa alla base ortonormale

\[
\left\{ \begin{pmatrix} \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} \\
0 \end{pmatrix}, \begin{pmatrix} 0 \\
0 \\
1 \end{pmatrix}, \begin{pmatrix} \frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}} \\
0 \end{pmatrix} \right\}.
\]