Algant exercises for the lecture "Complex manifolds" (3FCU)

December 26, 2019

Exercise 1 (Quotients). Let X be a complex manifold and let G be a group of (holomorphic) automorphisms of X. Assume that the action of G on X is

- (i) free, i.e. if g(x) = x for some $g \in G$ and $x \in X$ then g is the identity, and
- (ii) properly discontinuous, i.e. for any compact subset $K \subset X$ the set $\{g \in G : g(K) \cap K \neq \emptyset\}$ is finite.

Show that the quotient X/G has a natural structure of complex manifold such that the quotient map $\pi: X \to X/G$ is holomorphic and locally a biholomorphism.

Exercise 2 (Hopf manifolds). Let $0 < \lambda < 1$ be a real number and consider the action of \mathbb{Z} on $\mathbb{C}^n \setminus \{0\}$ given by

$$m \cdot (z_1, \ldots, m_n) = (\lambda^m z_1, \ldots, \lambda^m z_n).$$

- (a) Show that the quotient is diffeomorphic to $S^{2n-1} \times S^1$, so it's compact (Hint: note that $\mathbb{C}^n \setminus \{0\}$ is diffeomorphic to $S^{2n-1} \times \mathbb{R}$).
- (b) Show that the quotient X admit a complex structure (you can use Exercise 1).
- (c) Show that for $n \ge 2$, X does not admit any Kähler metric. What happens for n = 1?

Exercise 3 (Projective bundles). Let E be a holomorphic vector bundle of rank r + 1 over a complex manifold X. The projectivisation $\mathbb{P}(E)$ of E is defined as the quotient of E minus the zero section by the natural action of \mathbb{C}^* . Let $\pi : \mathbb{P}(E) \to X$ the induced map.

- (a) Show that $\mathbb{P}(E)$ admits a natural complex structure and π is a holomorphic map. Each fibre of π is isomorphic to \mathbb{P}^r .
- (b) Define the taoutological bundle on $\mathbb{P}(E)$ as

$$\mathcal{O}_{\mathbb{P}(E)}(-1) := \{ (x, y) \in \mathbb{P}(E) \times \pi^* E : y \in \mathbb{C}x \}.$$

Show that $\mathcal{O}_{\mathbb{P}(E)}(-1)$ is a holomorphic subbundle of π^*E and that its restriction to each fibre is isomorphic the tautological bundle of \mathbb{P}^r .

(c) Prove that if X is a compact Kähler manifold, then $\mathbb{P}(E)$ is also a compact Kähler manifold.

Exercise 4. Compute the Hodge diamonds of the following manifolds.

- (a) A compact complex curve of genus g.
- (b) The complex projective space \mathbb{P}^r .
- (c) A complex torus \mathbb{C}^n/Λ .