COMPLEX MANIFOLDS, ALGANT HOMEWORK

Consign at least one, and preferably not more than 3, of the exercises at least 24 hours before the exam.
1.1. Let $T:=\mathbb{C} / \Lambda$ be a complex torus and let $\pi: \mathbb{C} \rightarrow T$ be the quotient map. Let \wp be the Weierstrass \wp-function for the lattice Λ and let $g_{2}, g_{3} \in \mathbb{C}$ be such that $\left(\wp^{\prime}\right)^{2}=4 \wp^{3}-g_{2} \wp-g_{3}$.
(a) Show that the following subset $C \subset \mathbb{P}^{3}$, an intersection of the two quadrics,

$$
C=\left\{(x: y: z: t) \in \mathbb{P}^{3}: y^{2}=4 x t-g_{2} x z-g_{3} z^{2}, \quad x^{2}=z t\right\}
$$

is a submanifold of \mathbb{P}^{3}.
(b) Show that the map

$$
\psi: T \longrightarrow \mathbb{P}^{3}, \quad t=\pi(z) \longmapsto\left(\wp(z): \wp^{\prime}(z): 1: \wp^{2}(z)\right)
$$

for $t \neq 0$ and $\psi(0)=(0: 0: 0: 1)$ is a holomorphic map and that $\psi(T)$ is isomorphic to T.
(c) Show that $C=\psi(T)$, hence that

$$
C \cong T
$$

1.2. (a) Let $A=\left(a_{i j}\right)$ be an invertible $(n+1) \times(n+1)$ matrix with complex coefficients. Show that the map

$$
\alpha: \mathbb{P}^{n} \longrightarrow \mathbb{P}^{n}, \quad\left(x_{0}: \ldots: x_{n}\right) \longmapsto\left(y_{0}: \ldots: y_{n}\right), \quad y_{i}:=\sum_{j=0}^{n} a_{i j} x_{j}
$$

(so α is the map induced by $A: \mathbb{C}^{n+1}-\{0\} \rightarrow \mathbb{C}^{n+1}-\{0\}$) is a biholomorphic map.
(b) Let $\lambda \in \mathbb{C}, \lambda \neq 0$. Show that

$$
\beta: \mathbb{P}^{2} \longrightarrow \mathbb{P}^{2}, \quad(x: y: z) \longmapsto(u: v: w):=\left(\lambda^{2} x: \lambda^{3} y: z\right),
$$

is a biholomorphic map and that the elliptic curves E, E^{\prime} with (affine) equations

$$
y^{2}=4 x^{3}-g_{2} x-g_{3}, \quad v^{2}=4 u^{3}-\lambda^{4} g_{2} u-\lambda^{6} g_{3}
$$

respectively, are isomorphic.
(c) Show that the curves in \mathbb{P}^{2} defined by

$$
x^{3}+y^{3}+z^{3}=0 \quad y^{2}=4 x^{3}-g_{3}
$$

are isomorphic, for any $g_{3} \in \mathbb{C}, g_{3} \neq 0$, and that these curves are also isomorphic to the complex torus \mathbb{C} / Λ where $\Lambda=\left\{n+m \omega: n, m \in \mathbf{Z}, \omega^{3}=1, \omega \neq 1\right\}$. (Hint: substitute $x=u+v$, $y=u-v$ in the Fermat equation and use affine coordinates with $u=1$).
1.3. Let E be the elliptic curve in \mathbb{P}^{2} defined by the (affine) equation

$$
y^{2}=4 x^{3}-g_{3}, \quad\left(g_{3} \neq 0\right)
$$

Let $\mathcal{O}:=(0: 1: 0)$ be the neutral element in the group law on E.
(a) Show that the points $P_{ \pm}$with affine coordinates $(x, y)=\left(0, \pm \sqrt{-g_{3}}\right)$ are points of order three.
(b) Let g_{3} be chosen in such a way that the map $F: \mathbb{C} \rightarrow \mathbb{P}^{2}, z \mapsto\left(\wp(z): \wp^{\prime}(z): 1\right)$, where \wp is the Weierstrass \wp-function for the lattice $\Lambda=\left\{n+m \omega: n, m \in \mathbf{Z}, \omega^{3}=1, \omega \neq 1\right\}$ as in Exercise 1.2 has image E. Show that

$$
\left(\wp(\omega z): \wp^{\prime}(\omega z): 1\right)=\left(\omega \wp(z): \wp^{\prime}(z): 1\right)
$$

for all $z \in \mathbb{C}$. Conclude that the image of $(1-\omega) / 3 \in \mathbb{C}$ under F is P_{+}or P_{-}.
1.4. Let X be a complex manifold and let

$$
0 \longrightarrow E \longrightarrow F \longrightarrow F / E \longrightarrow 0
$$

be an exact sequence of vector bundles on X. Let L be a line bundle on X.
Show that there is an sequence of vector bundles

$$
0 \longrightarrow E \otimes L \longrightarrow F \otimes L \longrightarrow(F / E) \otimes L \longrightarrow 0
$$

1.5. Recall that for $k \in \mathbf{Z}$ we have the line bundle $L(k)$ on \mathbb{P}^{1}. In particular, $L(0) \cong \mathbb{P}^{1} \times \mathbb{C}$ is the trivial bundle and $L(-1)$ is the tautological bundle, which, by definition, is a subbundle of $L(0)^{2}:=L(0) \oplus L(0) \cong \mathbb{P}^{1} \times \mathbb{C}^{2}$.
(a) Show that there is an exact sequence

$$
0 \longrightarrow L(-1) \longrightarrow L(0)^{2} \longrightarrow L(1) \longrightarrow 0
$$

(b) Show that the vector bundles $L(0)^{2}$ and $L(-1) \oplus L(1)$ are not isomorphic (Hint: consider their global sections).
1.6. Let X be a complex manifold of dimension n with atlas $\left\{\left(U_{\alpha}, z_{\alpha}\right)\right\}$ and denote by $F_{\alpha \beta}$: $z_{\beta}\left(U_{\alpha} \cap U_{\beta}\right) \rightarrow \mathbb{C}^{n}$ be the change of coordinates. Then the canonical bundle ω_{X} of X has transition functions $g_{\alpha \beta}:=\operatorname{det}\left({ }^{t}\left(J F_{\alpha \beta}\right)^{-1}\right)=\operatorname{det}\left(J F_{\alpha \beta}\right)^{-1}$.
(a) The canonical bundle is a complex manifold of dimension $n+1$, with a surjective map $p: \omega_{X} \rightarrow X$. Show that for a suitable atlas of ω_{X}, the transition functions of ω_{X} are

$$
G_{\alpha \beta}: \mathbb{C} \times z_{\beta}\left(U_{\alpha} \cap U_{\beta}\right) \rightarrow \mathbb{C} \times \mathbb{C}^{n}, \quad(t, u) \longmapsto\left(g_{\alpha \beta}(u) t, F_{\alpha \beta}(u)\right) .
$$

(b) Show that ω, the canonical bundle of the complex manifold ω_{X}, is the trivial bundle.
(c) The image of the zero section $s: X \rightarrow \omega_{X}$ of the line bundle ω_{X} is a smooth, codimension one, submanifold of ω_{X} which we denote by S. Recall that L_{S} is the line bundle defined by S on ω_{X}.
The complex manifold ω_{X} has the open covering $\omega_{X}=\cup p^{-1} U_{\alpha}$. We define a line bundle $p^{*} \omega_{X}$ on ω_{X} by the data $\left\{p^{-1} U_{\alpha}, p^{*} g_{\alpha \beta}:=g_{\alpha \beta} \circ p\right\}$.
Show that the line bundles L_{S} and $p^{*} \omega_{X}$ are isomorphic.
1.7. A subsheaf of a sheaf \mathcal{F} is a sheaf \mathcal{F}^{\prime} such that for every open $U \subset X, \mathcal{F}^{\prime}(U)$ is a subgroup of $\mathcal{F}(U)$, and the restriction maps of the sheaf \mathcal{F}^{\prime} are induced by those of \mathcal{F}.
(a) Let \mathcal{F} and \mathcal{G} be sheaves on X and let $\alpha: \mathcal{F} \rightarrow \mathcal{G}$ be a homomorphism of sheaves. Show that

$$
\mathcal{F}^{\prime}(U):=\operatorname{ker}\left(\alpha_{U}: \mathcal{F}(U) \rightarrow \mathcal{G}(U)\right)
$$

defines a subsheaf on X.
(b) Let \mathcal{F}^{\prime} be a subsheaf of a sheaf \mathcal{F}. Let \mathcal{G} be the presheaf defined by $\mathcal{G}(U):=\mathcal{F}(U) / \mathcal{F}^{\prime}(U)$, with restriction maps induced by those of \mathcal{F}. Show that

$$
\mathcal{G}_{a} \cong \mathcal{F}_{a} / \mathcal{F}_{a}^{\prime} \quad \text { for all } \quad a \in X
$$

(c) Let \mathcal{F} be a presheaf of abelian groups on a topological space X and let \mathcal{F}^{+}be the sheaf generated by this presheaf.

Show that the natural homomorphism of sheaves $\tau: \mathcal{F} \rightarrow \mathcal{F}^{+}$induces an isomorphism $\tau_{a}: \mathcal{F}_{a} \rightarrow \mathcal{F}_{a}^{+}$on the stalks for all $a \in X$.
1.8. Let X be a topological space and let \mathcal{F} be a sheaf of abelian groups on X.
(a) For an open subset $U \subseteq X$ and a section $s \in \mathcal{F}(U)$ define

$$
\operatorname{Supp}(s)=\left\{a \in U: s_{a} \neq 0\right\}
$$

where s_{a} is the germ of s in the stalk \mathcal{F}_{a}. Prove that $\operatorname{Supp}(s)$ is a closed subset of U.
(b) Let $Z \subseteq X$ be a closed subset. Define $\Gamma_{Z}(X, \mathcal{F})$ to be the subgroup of $\mathcal{F}(X)$ consisting of all sections whose support is contained in Z. Show that the presheaf

$$
V \mapsto \Gamma_{V \cap Z}\left(V,\left.\mathcal{F}\right|_{V}\right)
$$

is a sheaf.
1.9. Consider the sheaves $\mathcal{O}_{\mathbb{P}^{1}}(d)$ on \mathbb{P}^{1}, where $\mathcal{O}_{\mathbb{P}^{1}}(d)(U)$ are the holomorphic functions on $\pi^{-1}(U)$ which are homogeneous of degree d and where $\pi: \mathbb{C}^{2}-\{0\} \rightarrow \mathbb{P}^{1}$ is the quotient map. One can show that the sheaf $\mathcal{O}_{\mathbb{P}^{1}}(d)$ is isomorphic to the sheaf of global sections of the line bundle $L(d)$ on \mathbb{P}^{1}. The homogeneous coordinates on \mathbb{P}^{1} are $\left(x_{0}: x_{1}\right)$ so $x_{0}, x_{1} \in \mathcal{O}_{\mathbb{P}^{1}}(1)\left(\mathbb{P}^{1}\right)$.
(a) Show that

$$
\varphi: \mathcal{O}_{\mathbb{P}^{1}}(d) \longrightarrow \mathcal{O}_{\mathbb{P}^{1}}(d+1), \quad \varphi_{U}(f):=x_{0} f, \quad\left(f \in \mathcal{O}_{\mathbb{P}^{1}}(d)(U)\right),
$$

is an injective homomorphism of sheaves.
(b) Describe the stalks of the corresponding quotient sheaf $\mathcal{Q}:=\mathcal{O}_{\mathbb{P}^{1}}(d+1) / \mathcal{O}_{\mathbb{P}^{1}}(d)$ and conclude that \mathcal{Q} is the skyscraper sheaf, with group \mathbb{C}, concentrated in the point $p:=(0: 1) \in \mathbb{P}^{1}$.
(c) Show that a skyscraper sheaf is a soft sheaf.
(d) Using the long exact cohomology sequence associated to the exact sequence of sheaves on \mathbb{P}^{1} :

$$
0 \longrightarrow \mathcal{O}_{\mathbb{P}^{1}}(d) \longrightarrow \mathcal{O}_{\mathbb{P}^{1}}(d+1) \longrightarrow \mathcal{Q} \longrightarrow 0
$$

for $d=-1$, show that $H^{0}\left(\mathbb{P}^{1}, \mathcal{O}(-1)\right)=0$.
(e) Show that $H^{1}\left(\mathbb{P}^{1}, \mathcal{O}_{\mathbb{P}^{1}}(-2)\right) \neq 0$ and next that $H^{1}\left(\mathbb{P}^{1}, \mathcal{O}_{\mathbb{P}^{1}}(d)\right) \neq 0$ for all $d \leq-2$.
1.10. In this exercise we determine the vector space $\Gamma\left(\mathbb{P}^{n}, L(d)\right)$ of global sections of the line bundle $L(d)$ on \mathbb{P}^{n}.

Let Y be the submanifold of \mathbb{P}^{n} defined by $z_{n}=0$, where $\left(z_{0}: \ldots: z_{n}\right)$ are the homogeneous coordinates on \mathbb{P}^{n}. Notice that Y is isomorphic to \mathbb{P}^{n-1}.
(a) Show that $\left\{\left(U_{j}, f_{j}:=z_{n} / z_{j}\right)\right\}_{0 \leq j \leq n}$ are local equations of Y, with the standard open subsets $U_{j}:=\left\{z=\left(z_{0}: \ldots: z_{n}\right) \in \mathbb{P}^{n}: z_{j} \neq 0\right\}$.
(b) Let s be a global (holomorphic) section of the line bundle $L(d)$ on \mathbb{P}^{n} and let $\left\{s_{j}: U_{j} \rightarrow\right.$ $\mathbb{C}\}_{0 \leq j \leq n}$ be the local sections defined by s and the standard trivialization of $L(d)$, so each s_{j} is holomorphic on U_{j} and $s_{j}(z)=\left(z_{k} / z_{j}\right)^{d} s_{k}(z)$ on $U_{j} \cap U_{k}$ for $0 \leq j, k \leq n$.

Assume that $s(z)=0$ for all $z \in Y$. Show that $s=z_{n} t$ for a global (holomorphic) section t of $L(d-1)$. (Hint: show that $s_{j}=\left(z_{n} / z_{j}\right) t_{j}$ for a holomorphic function t_{j} on U_{j}).
(c) Show that the (restriction) map i^{*} is well defined, where
$i^{*}: \Gamma\left(\mathbb{P}^{n}, L(d)\right) \rightarrow \Gamma\left(\mathbb{P}^{n-1}, L(d)\right), \quad s=\left\{\left(s_{j}: U_{j} \rightarrow \mathbb{C}\right\}_{0 \leq j \leq n} \mapsto \hat{s}:=\left\{\left(s_{j}: U_{j} \cap Y \rightarrow \mathbb{C}\right)\right\}_{0 \leq j \leq n-1}\right.$ and that the kernel of the linear map i^{*} is isomorphic to $\Gamma\left(\mathbb{P}^{n}, L(d-1)\right)$.
(d) Let $\mathbb{C}\left[x_{0}, \ldots, x_{n}\right]_{d}$ be the complex vector space of homogeneous polynomials of degree d in $n+1$-variables. Show that the linear map
$j=j_{n, d}: \mathbb{C}\left[x_{0}, \ldots, x_{n}\right]_{d} \longrightarrow \Gamma\left(\mathbb{P}^{n}, L(d)\right), \quad F \longmapsto s_{F}:=\left\{\left(F\left(z_{0} / z_{j}, \ldots, z_{n} / z_{j}\right): U_{j} \rightarrow \mathbb{C}\right)\right\}_{0 \leq j \leq n}$ is well defined.
(e) Consider the case $n=1$, so $Y=(1: 0) \in \mathbb{P}^{1}$ is a point. Thus the line bundle $L(d)$ on $Y \cong \mathbb{P}^{0}$ is just $Y \times \mathbb{C} \cong \mathbb{C}$ and $\Gamma\left(\mathbb{P}^{0}, L(d)\right)=\mathbb{C}$ for all d.

Show that $i^{*}: \Gamma\left(\mathbb{P}^{1}, L(d)\right) \rightarrow \Gamma\left(\mathbb{P}^{0}, L(d)\right)$ is surjective (hint: consider $i^{*}\left(s_{F}\right)$ where $F=$ x_{0}^{d}).

Conclude, with induction on d, that $j_{1, d}$ is an isomorphism for all $d \geq 0$ and show that $\operatorname{dim} \Gamma\left(\mathbb{P}^{1}, L(d)\right)=0$ for $d<0$.
(f) Assume that $j_{n-1, d}$ is an isomorphism for all $d \geq 0$ and show that the maps i^{*} : $\Gamma\left(\mathbb{P}^{n}, L(d)\right) \rightarrow \Gamma\left(\mathbb{P}^{n-1}, L(d)\right)$ are surjective for all $d \geq 0$.
(g) Conclude that $j_{n, d}: \mathbb{C}\left[x_{0}, \ldots, x_{n}\right]_{d} \longrightarrow \Gamma\left(\mathbb{P}^{n}, L(d)\right)$ is an isomorphism for all $n, d \geq 0$ and that $\Gamma\left(\mathbb{P}^{n}, L(d)\right)=0$ for $d<0$.

