COMPLEX MANIFOLDS, ALGANT HOMEWORK

Consign at least one, and preferably not more than 3, of the exercises at least 24 hours before the exam.

1.1. Let $T := \mathbb{C}/\Lambda$ be a complex torus and let $\pi : \mathbb{C} \to T$ be the quotient map. Let \wp be the Weierstrass \wp -function for the lattice Λ and let $g_2, g_3 \in \mathbb{C}$ be such that $(\wp')^2 = 4\wp^3 - g_2\wp - g_3$. (a) Show that the following subset $C \subset \mathbb{P}^3$, an intersection of the two quadrics,

$$C = \{ (x:y:z:t) \in \mathbb{P}^3 : y^2 = 4xt - g_2xz - g_3z^2, \quad x^2 = zt \} ,$$

is a submanifold of \mathbb{P}^3 .

(b) Show that the map

$$\psi: T \longrightarrow \mathbb{P}^3, \qquad t = \pi(z) \longmapsto (\wp(z):\wp'(z):1:\wp^2(z))$$

for $t \neq 0$ and $\psi(0) = (0:0:0:1)$ is a holomorphic map and that $\psi(T)$ is isomorphic to T. (c) Show that $C = \psi(T)$, hence that

$$C \cong T$$

1.2. (a) Let $A = (a_{ij})$ be an invertible $(n+1) \times (n+1)$ matrix with complex coefficients. Show that the map

$$\alpha: \mathbb{P}^n \longrightarrow \mathbb{P}^n, \qquad (x_0:\ldots:x_n) \longmapsto (y_0:\ldots:y_n), \quad y_i:=\sum_{j=0}^n a_{ij}x_j$$

(so α is the map induced by $A : \mathbb{C}^{n+1} - \{0\} \to \mathbb{C}^{n+1} - \{0\}$) is a biholomorphic map. (b) Let $\lambda \in \mathbb{C}, \lambda \neq 0$. Show that

$$\beta: \mathbb{P}^2 \longrightarrow \mathbb{P}^2, \qquad (x:y:z) \longmapsto (u:v:w) := (\lambda^2 x: \lambda^3 y:z)$$

is a biholomorphic map and that the elliptic curves E, E' with (affine) equations

$$y^2 = 4x^3 - g_2x - g_3, \qquad v^2 = 4u^3 - \lambda^4 g_2 u - \lambda^6 g_3,$$

respectively, are isomorphic.

(c) Show that the curves in \mathbb{P}^2 defined by

$$x^3 + y^3 + z^3 = 0 \qquad y^2 = 4x^3 - g_3$$

are isomorphic, for any $g_3 \in \mathbb{C}$, $g_3 \neq 0$, and that these curves are also isomorphic to the complex torus \mathbb{C}/Λ where $\Lambda = \{n + m\omega : n, m \in \mathbb{Z}, \omega^3 = 1, \omega \neq 1\}$. (Hint: substitute x = u + v, y = u - v in the Fermat equation and use affine coordinates with u = 1).

1.3. Let E be the elliptic curve in \mathbb{P}^2 defined by the (affine) equation

$$y^2 = 4x^3 - g_3, \qquad (g_3 \neq 0).$$

Let $\mathcal{O} := (0:1:0)$ be the neutral element in the group law on E.

- (a) Show that the points P_{\pm} with affine coordinates $(x, y) = (0, \pm \sqrt{-g_3})$ are points of order three.
- (b) Let g_3 be chosen in such a way that the map $F : \mathbb{C} \to \mathbb{P}^2$, $z \mapsto (\wp(z) : \wp'(z) : 1)$, where \wp is the Weierstrass \wp -function for the lattice $\Lambda = \{n + m\omega : n, m \in \mathbb{Z}, \ \omega^3 = 1, \ \omega \neq 1\}$ as in Exercise 1.2 has image E. Show that

$$(\wp(\omega z):\wp'(\omega z):1) = (\omega\wp(z):\wp'(z):1)$$

for all $z \in \mathbb{C}$. Conclude that the image of $(1-\omega)/3 \in \mathbb{C}$ under F is P_+ or P_- .

1.4. Let X be a complex manifold and let

 $0 \longrightarrow E \longrightarrow F \longrightarrow F/E \longrightarrow 0$

be an exact sequence of vector bundles on X. Let L be a line bundle on X.

Show that there is an sequence of vector bundles

$$0 \longrightarrow E \otimes L \longrightarrow F \otimes L \longrightarrow (F/E) \otimes L \longrightarrow 0.$$

1.5. Recall that for $k \in \mathbb{Z}$ we have the line bundle L(k) on \mathbb{P}^1 . In particular, $L(0) \cong \mathbb{P}^1 \times \mathbb{C}$ is the trivial bundle and L(-1) is the tautological bundle, which, by definition, is a subbundle of $L(0)^2 := L(0) \oplus L(0) \cong \mathbb{P}^1 \times \mathbb{C}^2$.

(a) Show that there is an exact sequence

$$0 \longrightarrow L(-1) \longrightarrow L(0)^2 \longrightarrow L(1) \longrightarrow 0.$$

(b) Show that the vector bundles $L(0)^2$ and $L(-1) \oplus L(1)$ are not isomorphic (Hint: consider their global sections).

1.6. Let X be a complex manifold of dimension n with atlas $\{(U_{\alpha}, z_{\alpha})\}$ and denote by $F_{\alpha\beta}$: $z_{\beta}(U_{\alpha} \cap U_{\beta}) \to \mathbb{C}^{n}$ be the change of coordinates. Then the canonical bundle ω_{X} of X has transition functions $g_{\alpha\beta} := \det({}^{t}(JF_{\alpha\beta})^{-1}) = \det(JF_{\alpha\beta})^{-1}$.

(a) The canonical bundle is a complex manifold of dimension n + 1, with a surjective map $p: \omega_X \to X$. Show that for a suitable atlas of ω_X , the transition functions of ω_X are

$$G_{\alpha\beta}: \mathbb{C} \times z_{\beta}(U_{\alpha} \cap U_{\beta}) \to \mathbb{C} \times \mathbb{C}^{n}, \qquad (t, u) \longmapsto (g_{\alpha\beta}(u)t, F_{\alpha\beta}(u)).$$

(b) Show that ω , the canonical bundle of the complex manifold ω_X , is the trivial bundle.

(c) The image of the zero section $s: X \to \omega_X$ of the line bundle ω_X is a smooth, codimension one, submanifold of ω_X which we denote by S. Recall that L_S is the line bundle defined by S on ω_X .

The complex manifold ω_X has the open covering $\omega_X = \bigcup p^{-1}U_{\alpha}$. We define a line bundle $p^*\omega_X$ on ω_X by the data $\{p^{-1}U_{\alpha}, p^*g_{\alpha\beta} := g_{\alpha\beta} \circ p\}$.

Show that the line bundles L_S and $p^*\omega_X$ are isomorphic.

1.7. A subsheaf of a sheaf \mathcal{F} is a sheaf \mathcal{F}' such that for every open $U \subset X$, $\mathcal{F}'(U)$ is a subgroup of $\mathcal{F}(U)$, and the restriction maps of the sheaf \mathcal{F}' are induced by those of \mathcal{F} .

(a) Let \mathcal{F} and \mathcal{G} be sheaves on X and let $\alpha : \mathcal{F} \to \mathcal{G}$ be a homomorphism of sheaves. Show that

$$\mathcal{F}'(U) := \ker(\alpha_U : \mathcal{F}(U) \to \mathcal{G}(U))$$

defines a subsheaf on X.

(b) Let \mathcal{F}' be a subsheaf of a sheaf \mathcal{F} . Let \mathcal{G} be the presheaf defined by $\mathcal{G}(U) := \mathcal{F}(U)/\mathcal{F}'(U)$, with restriction maps induced by those of \mathcal{F} . Show that

$$\mathcal{G}_a \cong \mathcal{F}_a / \mathcal{F}'_a$$
 for all $a \in X$.

(c) Let \mathcal{F} be a presheaf of abelian groups on a topological space X and let \mathcal{F}^+ be the sheaf generated by this presheaf.

Show that the natural homomorphism of sheaves $\tau : \mathcal{F} \to \mathcal{F}^+$ induces an isomorphism $\tau_a : \mathcal{F}_a \to \mathcal{F}_a^+$ on the stalks for all $a \in X$.

- **1.8.** Let X be a topological space and let \mathcal{F} be a sheaf of abelian groups on X.
- (a) For an open subset $U \subseteq X$ and a section $s \in \mathcal{F}(U)$ define

$$\operatorname{Supp}(s) = \{a \in U : s_a \neq 0\},\$$

where s_a is the germ of s in the stalk \mathcal{F}_a . Prove that $\operatorname{Supp}(s)$ is a closed subset of U.

(b) Let $Z \subseteq X$ be a closed subset. Define $\Gamma_Z(X, \mathcal{F})$ to be the subgroup of $\mathcal{F}(X)$ consisting of all sections whose support is contained in Z. Show that the presheaf

$$V \mapsto \Gamma_{V \cap Z}(V, \mathcal{F}|_V)$$

is a sheaf.

1.9. Consider the sheaves $\mathcal{O}_{\mathbb{P}^1}(d)$ on \mathbb{P}^1 , where $\mathcal{O}_{\mathbb{P}^1}(d)(U)$ are the holomorphic functions on $\pi^{-1}(U)$ which are homogeneous of degree d and where $\pi : \mathbb{C}^2 - \{0\} \to \mathbb{P}^1$ is the quotient map. One can show that the sheaf $\mathcal{O}_{\mathbb{P}^1}(d)$ is isomorphic to the sheaf of global sections of the line bundle L(d) on \mathbb{P}^1 . The homogeneous coordinates on \mathbb{P}^1 are $(x_0 : x_1)$ so $x_0, x_1 \in \mathcal{O}_{\mathbb{P}^1}(1)(\mathbb{P}^1)$. (a) Show that

$$\varphi: \mathcal{O}_{\mathbb{P}^1}(d) \longrightarrow \mathcal{O}_{\mathbb{P}^1}(d+1), \qquad \varphi_U(f) := x_0 f, \qquad (f \in \mathcal{O}_{\mathbb{P}^1}(d)(U)),$$

is an injective homomorphism of sheaves.

- (b) Describe the stalks of the corresponding quotient sheaf $\mathcal{Q} := \mathcal{O}_{\mathbb{P}^1}(d+1)/\mathcal{O}_{\mathbb{P}^1}(d)$ and conclude that \mathcal{Q} is the skyscraper sheaf, with group \mathbb{C} , concentrated in the point $p := (0:1) \in \mathbb{P}^1$.
- (c) Show that a skyscraper sheaf is a soft sheaf.
- (d) Using the long exact cohomology sequence associated to the exact sequence of sheaves on \mathbb{P}^1 :

$$0 \longrightarrow \mathcal{O}_{\mathbb{P}^1}(d) \longrightarrow \mathcal{O}_{\mathbb{P}^1}(d+1) \longrightarrow \mathcal{Q} \longrightarrow 0$$

for d = -1, show that $H^0(\mathbb{P}^1, \mathcal{O}(-1)) = 0$.

(e) Show that $H^1(\mathbb{P}^1, \mathcal{O}_{\mathbb{P}^1}(-2)) \neq 0$ and next that $H^1(\mathbb{P}^1, \mathcal{O}_{\mathbb{P}^1}(d)) \neq 0$ for all $d \leq -2$.

1.10. In this exercise we determine the vector space $\Gamma(\mathbb{P}^n, L(d))$ of global sections of the line bundle L(d) on \mathbb{P}^n .

Let Y be the submanifold of \mathbb{P}^n defined by $z_n = 0$, where $(z_0 : \ldots : z_n)$ are the homogeneous coordinates on \mathbb{P}^n . Notice that Y is isomorphic to \mathbb{P}^{n-1} .

- (a) Show that $\{(U_j, f_j := z_n/z_j)\}_{0 \le j \le n}$ are local equations of Y, with the standard open subsets $U_j := \{ z = (z_0 : \ldots : z_n) \in \mathbb{P}^n : z_j \neq 0 \}.$
- (b) Let s be a global (holomorphic) section of the line bundle L(d) on \mathbb{P}^n and let $\{s_j : U_j \to d\}$ $\mathbb{C}_{0\leq j\leq n}$ be the local sections defined by s and the standard trivialization of L(d), so each s_j is holomorphic on U_j and $s_j(z) = (z_k/z_j)^d s_k(z)$ on $U_j \cap U_k$ for $0 \le j, k \le n$. Assume that s(z) = 0 for all $z \in Y$. Show that $s = z_n t$ for a global (holomorphic) section
 - t of L(d-1). (Hint: show that $s_i = (z_n/z_i)t_i$ for a holomorphic function t_i on U_i).
- (c) Show that the (restriction) map i^* is well defined, where

$$i^*: \Gamma(\mathbb{P}^n, L(d)) \to \Gamma(\mathbb{P}^{n-1}, L(d)), \quad s = \{(s_j: U_j \to \mathbb{C}\}_{0 \le j \le n} \mapsto \hat{s} := \{(s_j: U_j \cap Y \to \mathbb{C})\}_{0 \le j \le n-1}$$

and that the kernel of the linear map i^* is isomorphic to $\Gamma(\mathbb{P}^n, L(d-1)).$

(d) Let $\mathbb{C}[x_0,\ldots,x_n]_d$ be the complex vector space of homogeneous polynomials of degree d in n + 1-variables. Show that the linear map

$$j = j_{n,d} : \mathbb{C}[x_0, \dots, x_n]_d \longrightarrow \Gamma(\mathbb{P}^n, L(d)), \qquad F \longmapsto s_F := \{(F(z_0/z_j, \dots, z_n/z_j) : U_j \to \mathbb{C})\}_{0 \le j \le n}$$

is well defined.

(e) Consider the case n = 1, so $Y = (1 : 0) \in \mathbb{P}^1$ is a point. Thus the line bundle L(d) on $Y \cong \mathbb{P}^0$ is just $Y \times \mathbb{C} \cong \mathbb{C}$ and $\Gamma(\mathbb{P}^0, L(d)) = \mathbb{C}$ for all d.

Show that $i^* : \Gamma(\mathbb{P}^1, L(d)) \to \Gamma(\mathbb{P}^0, L(d))$ is surjective (hint: consider $i^*(s_F)$ where F = x_{0}^{d}).

Conclude, with induction on d, that $j_{1,d}$ is an isomorphism for all $d \ge 0$ and show that $\dim \Gamma(\mathbb{P}^1, L(d)) = 0 \text{ for } d < 0.$

- (f) Assume that $j_{n-1,d}$ is an isomorphism for all $d \geq 0$ and show that the maps i^* : $\Gamma(\mathbb{P}^n, L(d)) \to \Gamma(\mathbb{P}^{n-1}, L(d))$ are surjective for all $d \ge 0$.
- (g) Conclude that $j_{n,d}: \mathbb{C}[x_0,\ldots,x_n]_d \longrightarrow \Gamma(\mathbb{P}^n,L(d))$ is an isomorphism for all $n,d \ge 0$ and that $\Gamma(\mathbb{P}^n, L(d)) = 0$ for d < 0.