
COMPLEX MANIFOLDS, ALGANT HOMEWORK

Consign at least one, and preferably not more than 3, of the exercises at least 24 hours before
the exam.

1.1. Let T := C/Λ be a complex torus and let π : C → T be the quotient map. Let ℘ be the
Weierstrass ℘-function for the lattice Λ and let g2, g3 ∈ C be such that (℘′)2 = 4℘3 − g2℘− g3.

(a) Show that the following subset C ⊂ P3, an intersection of the two quadrics,

C = {(x : y : z : t) ∈ P3 : y2 = 4xt− g2xz − g3z
2, x2 = zt } ,

is a submanifold of P3.
(b) Show that the map

ψ : T −→ P3, t = π(z) 7−→ (℘(z) : ℘′(z) : 1 : ℘2(z))

for t ̸= 0 and ψ(0) = (0 : 0 : 0 : 1) is a holomorphic map and that ψ(T ) is isomorphic to T .
(c) Show that C = ψ(T ), hence that

C ∼= T .

1.2. (a) Let A = (aij) be an invertible (n+1)× (n+1) matrix with complex coefficients. Show
that the map

α : Pn −→ Pn, (x0 : . . . : xn) 7−→ (y0 : . . . : yn), yi :=
n∑

j=0

aijxj

(so α is the map induced by A : Cn+1 − {0} → Cn+1 − {0}) is a biholomorphic map.
(b) Let λ ∈ C, λ ̸= 0. Show that

β : P2 −→ P2, (x : y : z) 7−→ (u : v : w) := (λ2x : λ3y : z),

is a biholomorphic map and that the elliptic curves E, E ′ with (affine) equations

y2 = 4x3 − g2x− g3, v2 = 4u3 − λ4g2u− λ6g3,

respectively, are isomorphic.
(c) Show that the curves in P2 defined by

x3 + y3 + z3 = 0 y2 = 4x3 − g3

are isomorphic, for any g3 ∈ C, g3 ̸= 0, and that these curves are also isomorphic to the complex
torus C/Λ where Λ = {n + mω : n,m ∈ Z, ω3 = 1, ω ̸= 1}. (Hint: substitute x = u + v,
y = u− v in the Fermat equation and use affine coordinates with u = 1).
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1.3. Let E be the elliptic curve in P2 defined by the (affine) equation

y2 = 4x3 − g3, (g3 ̸= 0).

Let O := (0 : 1 : 0) be the neutral element in the group law on E.

(a) Show that the points P± with affine coordinates (x, y) = (0,±
√
−g3) are points of order

three.
(b) Let g3 be chosen in such a way that the map F : C → P2, z 7→ (℘(z) : ℘′(z) : 1), where ℘

is the Weierstrass ℘-function for the lattice Λ = {n +mω : n,m ∈ Z, ω3 = 1, ω ̸= 1} as
in Exercise 1.2 has image E. Show that

(℘(ωz) : ℘′(ωz) : 1) = (ω℘(z) : ℘′(z) : 1)

for all z ∈ C. Conclude that the image of (1− ω)/3 ∈ C under F is P+ or P−.

1.4. Let X be a complex manifold and let

0 −→ E −→ F −→ F/E −→ 0

be an exact sequence of vector bundles on X. Let L be a line bundle on X.
Show that there is an sequence of vector bundles

0 −→ E ⊗ L −→ F ⊗ L −→ (F/E)⊗ L −→ 0.

1.5. Recall that for k ∈ Z we have the line bundle L(k) on P1. In particular, L(0) ∼= P1 ×C is
the trivial bundle and L(−1) is the tautological bundle, which, by definition, is a subbundle of
L(0)2 := L(0)⊕ L(0) ∼= P1 × C2.

(a) Show that there is an exact sequence

0 −→ L(−1) −→ L(0)2 −→ L(1) −→ 0.

(b) Show that the vector bundles L(0)2 and L(−1)⊕ L(1) are not isomorphic (Hint: consider
their global sections).

1.6. Let X be a complex manifold of dimension n with atlas {(Uα, zα)} and denote by Fαβ :
zβ(Uα ∩ Uβ) → Cn be the change of coordinates. Then the canonical bundle ωX of X has
transition functions gαβ := det(t(JFαβ)

−1) = det(JFαβ)
−1.

(a) The canonical bundle is a complex manifold of dimension n + 1, with a surjective map
p : ωX → X. Show that for a suitable atlas of ωX , the transition functions of ωX are

Gαβ : C× zβ(Uα ∩ Uβ) → C× Cn, (t, u) 7−→ (gαβ(u)t, Fαβ(u)).

(b) Show that ω, the canonical bundle of the complex manifold ωX , is the trivial bundle.
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(c) The image of the zero section s : X → ωX of the line bundle ωX is a smooth, codimension
one, submanifold of ωX which we denote by S. Recall that LS is the line bundle defined
by S on ωX .
The complex manifold ωX has the open covering ωX = ∪p−1Uα. We define a line bundle
p∗ωX on ωX by the data {p−1Uα, p

∗gαβ := gαβ ◦ p}.
Show that the line bundles LS and p∗ωX are isomorphic.

1.7. A subsheaf of a sheaf F is a sheaf F ′ such that for every open U ⊂ X, F ′(U) is a subgroup
of F(U), and the restriction maps of the sheaf F ′ are induced by those of F .

(a) Let F and G be sheaves on X and let α : F → G be a homomorphism of sheaves. Show
that

F ′(U) := ker(αU : F(U) → G(U))
defines a subsheaf on X.

(b) Let F ′ be a subsheaf of a sheaf F . Let G be the presheaf defined by G(U) := F(U)/F ′(U),
with restriction maps induced by those of F . Show that

Ga
∼= Fa/F ′

a for all a ∈ X .

(c) Let F be a presheaf of abelian groups on a topological space X and let F+ be the sheaf
generated by this presheaf.

Show that the natural homomorphism of sheaves τ : F → F+ induces an isomorphism
τa : Fa → F+

a on the stalks for all a ∈ X.

1.8. Let X be a topological space and let F be a sheaf of abelian groups on X.

(a) For an open subset U ⊆ X and a section s ∈ F(U) define

Supp(s) = {a ∈ U : sa ̸= 0 },
where sa is the germ of s in the stalk Fa. Prove that Supp(s) is a closed subset of U .

(b) Let Z ⊆ X be a closed subset. Define ΓZ(X,F) to be the subgroup of F(X) consisting of
all sections whose support is contained in Z. Show that the presheaf

V 7→ ΓV ∩Z(V,F|V )
is a sheaf.

1.9. Consider the sheaves OP1(d) on P1, where OP1(d)(U) are the holomorphic functions on
π−1(U) which are homogeneous of degree d and where π : C2 − {0} → P1 is the quotient map.
One can show that the sheaf OP1(d) is isomorphic to the sheaf of global sections of the line
bundle L(d) on P1. The homogeneous coordinates on P1 are (x0 : x1) so x0, x1 ∈ OP1(1)(P1).

(a) Show that

φ : OP1(d) −→ OP1(d+ 1), φU(f) := x0f, ( f ∈ OP1(d)(U) ),

is an injective homomorphism of sheaves.
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(b) Describe the stalks of the corresponding quotient sheafQ := OP1(d+1)/OP1(d) and conclude
that Q is the skyscraper sheaf, with group C, concentrated in the point p := (0 : 1) ∈ P1.

(c) Show that a skyscraper sheaf is a soft sheaf.
(d) Using the long exact cohomology sequence associated to the exact sequence of sheaves on

P1:
0 −→ OP1(d) −→ OP1(d+ 1) −→ Q −→ 0 ,

for d = −1, show that H0(P1,O(−1)) = 0.
(e) Show that H1(P1,OP1(−2)) ̸= 0 and next that H1(P1,OP1(d)) ̸= 0 for all d ≤ −2.

1.10. In this exercise we determine the vector space Γ(Pn, L(d)) of global sections of the line
bundle L(d) on Pn.

Let Y be the submanifold of Pn defined by zn = 0, where (z0 : . . . : zn) are the homogeneous
coordinates on Pn. Notice that Y is isomorphic to Pn−1.

(a) Show that {(Uj, fj := zn/zj)}0≤j≤n are local equations of Y , with the standard open subsets
Uj := {z = (z0 : . . . : zn) ∈ Pn : zj ̸= 0}.

(b) Let s be a global (holomorphic) section of the line bundle L(d) on Pn and let {sj : Uj →
C}0≤j≤n be the local sections defined by s and the standard trivialization of L(d), so each
sj is holomorphic on Uj and sj(z) = (zk/zj)

dsk(z) on Uj ∩ Uk for 0 ≤ j, k ≤ n.
Assume that s(z) = 0 for all z ∈ Y . Show that s = znt for a global (holomorphic) section

t of L(d− 1). (Hint: show that sj = (zn/zj)tj for a holomorphic function tj on Uj).
(c) Show that the (restriction) map i∗ is well defined, where

i∗ : Γ(Pn, L(d)) → Γ(Pn−1, L(d)), s = {(sj : Uj → C}0≤j≤n 7→ ŝ := {(sj : Uj∩Y → C)}0≤j≤n−1

and that the kernel of the linear map i∗ is isomorphic to Γ(Pn, L(d− 1)).
(d) Let C[x0, . . . , xn]d be the complex vector space of homogeneous polynomials of degree d in

n+ 1-variables. Show that the linear map

j = jn,d : C[x0, . . . , xn]d −→ Γ(Pn, L(d)), F 7−→ sF := {(F (z0/zj, . . . , zn/zj) : Uj → C)}0≤j≤n

is well defined.
(e) Consider the case n = 1, so Y = (1 : 0) ∈ P1 is a point. Thus the line bundle L(d) on

Y ∼= P0 is just Y × C ∼= C and Γ(P0, L(d)) = C for all d.
Show that i∗ : Γ(P1, L(d)) → Γ(P0, L(d)) is surjective (hint: consider i∗(sF ) where F =

xd0).
Conclude, with induction on d, that j1,d is an isomorphism for all d ≥ 0 and show that

dimΓ(P1, L(d)) = 0 for d < 0.
(f) Assume that jn−1,d is an isomorphism for all d ≥ 0 and show that the maps i∗ :

Γ(Pn, L(d)) → Γ(Pn−1, L(d)) are surjective for all d ≥ 0.
(g) Conclude that jn,d : C[x0, . . . , xn]d −→ Γ(Pn, L(d)) is an isomorphism for all n, d ≥ 0 and

that Γ(Pn, L(d)) = 0 for d < 0.


