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Chapter 1

Some preliminaries about Cn

We assume that the reader has some familiarity with the notion of a holomorphic function
in one complex variable. We extend that notion with the following

Definition 1.1. Let f : Cn → C, U ⊆ Cn open with a ∈ U , and let z = (z1, . . . , zn) be
the coordinates in Cn. f is holomorphic in a = (a1, . . . , an) ∈ U if f has a convergent
power series expansion:

f(z) =
+∞∑

k1,...,kn=0

ak1,...,kn(z1 − a1)k1 · · · (zn − an)kn

This means, in particular, that f is holomorphic in each variable. Moreover, we define

OCn(U) := {f : U → C | f is holomorphic}

A map F = (F1, . . . , Fm) : U → Cm is holomorphic if each Fj is holomorphic.

Let f be a holomorphic function. One can write f(z) = g(z)+ ih(z), with g, h : U → R
smooth. The condition for f to be holomorphic on U is equivalent to the Cauchy-Riemann
conditions:

∂g

∂xj
(a) =

∂h

∂yj
(a) and

∂g

∂yj
(a) = − ∂h

∂xj
(a)

for j = 1, . . . , n, where zj = xj + iyj .

Definition 1.2. Let V ⊆ Cn be open, let F = (F1, . . . , Fm) : V → Cm be a holomorphic
map. The complex Jacobian matrix of F is

JCF :=


∂F1
∂z1

. . . ∂F1
∂zn

...
. . .

...
∂Fm
∂z1

. . . ∂Fm
∂zn

 =

(
∂Fj
∂zk

)

Now let Fj = Gj+iHj with Gj , Hj : V → R smooth R-valued functions. Let F̃ : V → R2n

defined as F̃ (z) = (G1(z), . . . , Gm(z), H1(z), . . . ,Hm(z)). The real Jacobian matrix of F
is

JRF := JRF̃ =

(
∂Gj
∂xk

∂Gj
∂yk

∂Hj
∂xk

∂Hj
∂yk

)

3



4 Chapter 1. Some preliminaries about Cn

Remark.
If F : Cn → Cm is holomorphic, then ∂Gj

∂xk
=

∂Hj
∂yk

,
∂Gj
∂yk

= −∂Hj
∂xk

that means

JRF =

(
A −B
B A

)
with A =

∂Gj
∂xk

, B =
∂Hj

∂xk

Moreover
∂Fj
∂zk

=
1

2

(
∂

∂xk
− i ∂

∂yk

)
(Gj + iHj) =

1

2

(
∂Gj
∂xk

+
∂Hj

∂yk
+ i

(
∂Hj

∂xk
− ∂Gj
∂yk

))
=

=
∂Gj
∂xk

+ i
∂Hj

∂xk
= Ajk + iBjk ⇒ JCF = A+ iB.

Lemma 1.1. Let M =
(
P Q
R S

)
∈M2n(R), and let J =

(
0 −Idn

Idn 0

)
. Then

JMJ−1 = M ⇐⇒ P = S,Q = −R ⇐⇒ M =

(
P −R
R P

)
Proof.

JMJ−1 = M ⇐⇒ JM = MJ ⇐⇒

(
−R −S
P Q

)
=

(
Q −P
S −R

)

Combining the above lemma and the previous remark, we can characterize an holo-
morphic function F : Cn → Cn (same dimension!) analyzing its real Jacobian matrix:

Proposition 1.2. A function F : Cn → Cn is holomorphic if and only if J(JRF )J−1 =

JRF , with J =
(

0 −Idn
Idn 0

)
.

Remark.
It is worth to notice that J is the matrix representing the multiplication by i from Cn

to itself, as we shall see in the following chapter. Thus, one can also state: a function
F : Cn → Cn is holomorphic if and only if its real Jacobian matrix is self-conjugate under
the conjugation action of the multiplication by i (or simply, its real Jacobian matrix
commutes with J).

Proposition 1.3. Let F : Cn → Cn holomorphic. Then det(JRF ) ≥ 0.

Proof. Consider the matrix N defined as

N =

(
Idn i · Idn
Idn −i · Idn

)
∈M2n(C), N−1 =

1

2

(
Idn Idn
−i · Idn i · Idn

)
Notice that

NJRFN
−1 =

1

2

(
Idn i · Idn
Idn −i · Idn

)(
A −B
B A

)(
Idn Idn
−i · Idn i · Idn

)
=

=
1

2

(
A+ iB −B + iA

A− iB −B − iA

)(
Idn Idn
−i · Idn i · Idn

)
=

(
A+ iB 0

0 A− iB

)
=

(
JCF 0

0 JCF

)
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Hence

det(JRF ) = det(N)det(N−1)det(JRF ) = det(NJRFN−1) =

= det(JCF )det(JCF ) = det(JCF )det(JCF ) = |det(JCF )|2 ≥ 0

Recall that an holomorphic function in one variable is a conformal mapping from R2 to
itself, that is, it preserves orientations of angles. The latter proposition shows that, when
dealing with an holomorphic function of several variables, the "orientation preserving"
property translates to a really strict condition on the determinant of the real Jacobian of
the function. As we will see in the next chapter, this condition is related in some sense
with the notion of orientation (it will imply the orientability of complex manifolds, seen
as differentiable manifolds).

Theorem 1.4 (Maximum principle). Let g : V → C be holomorphic, V ⊆ C open,
connected. Assume there is a v ∈ V such that |g(v)| ≥ |g(z)| ∀z ∈ V (|g| takes its
maximum on V ). Then g is constant, so g(z) = g(v) ∀z ∈ V .

This fundamental result about one-variable holomorphic function has many conse-
quences in complex analysis; we will only use it once in the following chapter to see that a
holomorphic function on a compact complex manifold is nothing but a constant function
(see theorem 2.3).
There exists also a "holomorphic version" of the Dini theorem (local invertibility of maps
with invertible Jacobian):

Proposition 1.5. Let V ⊆ Cn open, F : V → Cn holomorphic. Assume that JCF has
rank n in a ∈ V (i.e. JCF (a) has non-zero determinant). Then there is a neighborhoodW
of a and an holomorphic inverse G : F (W )→W such that F ◦G = idF (W ), G ◦ F = idW .

Proof. As det(JRF ) has rank 2n, det(JRF ) = |det(JCF )|2 6= 0. So, by the Dini theorem
there exist a neighborhood W of a such that it is possible to find an inverse G for the map
F regarded as a map from R2n to R2n. We are going to show that G is already the map
we need, that is, G is holomorphic; or equivalently, J(JRG)J−1 = JRG, J as in lemma
1.1.
We know that G ◦ F = idW ⇒ JRG · JRF = Id; moreover, since F is holomorphic
J(JRF )J−1 = JRF . Then J(JRG)−1J−1 = JRG

−1 ⇒ J(JRG)J−1 = (J(JRG)−1J−1)−1 =

(JRG
−1)−1 = JRG.

Definition 1.3. A function F is biholomorphic onW ⊆ Cn if there exists an holomorphic
inverse G : F (W )→W (as in the previous proposition).



Chapter 2

Basic theory of complex manifolds

Throughout this chapter, we will assume that the reader has some familiarity with the the-
ory of differentiable manifolds, since many times we will refer to (and use) the definitions
and the results related to that theory.

2.1 Complex charts and atlases

Let X be a topological manifold of dimension 2n, that is, X is a Hausdorff topological
space such that each point of X admits an open neighborhood U which is homeomorphic
to an open subset V of R2n. Such an homeomorphism x : U → V is called coordinate
neighborhood. In this course, we do not require X to be second countable (as it happened
for differentiable manifolds).

Definition 2.1. A local complex chart (U, z) of X is an open subset U ⊆ X and an
homeomorphism z : U → V := z(U) ⊂ Cn(≡ R2n).
Two local complex charts (Uα, zα), (Uβ, zβ) are compatible if the map fβα := zβ ◦ z−1

α :

zα(Uα ∩ Uβ)→ zβ(Uα ∩ Uβ) is holomorphic. The map fβα is called transition function or
coordinate change. (We note that fαβ is holomorphic, too).

Definition 2.2. A holomorphic atlas (or complex analytical atlas) of X is a collection
A = {(Uα, zα)} of local complex charts, such that X = ∪αUα and such that all transition
functions fαβ are biholomorphic, for each α, β. (In this way, each pair of charts is com-
patible).
A complex analytic structure on X is a maximal holomorphic atlas A = {(Uα, zα)}α∈I .
Maximal means: if (U, z) is a local complex chart and (U, z) is compatible with (Uα, zα)

∀α ∈ I, then (U, z) ∈ A.
A complex (analytic) manifold is a topological manifold together with a complex analytic
structure.

6



2.1. Complex charts and atlases 7

Remark.
A holomorphic atlas B = {(Uβ, zβ)}β∈J determines a (unique) maximal atlas A with
B ⊂ A and hence it determines a complex manifold. (The atlas is given by A =

{(U, z) | (U, z) compatible with (Uβ, zβ) ∀β ∈ J}).

Example(The projective space): As usual, we define Pn(C) = Pn = (Cn+1 − {0})/
∼

where u ∼ v ⇔ u = tv for some t ∈ C× = C− {0}. Let

π : Cn+1 − {0} → Pn

(u0, . . . , un) 7→ (u0 : . . . : un)

be the quotient map. Pn has the quotient topology: U ⊆ Pn is open if π−1(U) is open in
Cn+1 − {0}.
The open sets Uj := {p = (u0 : . . . : un) | uj 6= 0} of Pn together with the local complex
charts

zj : Uj → Cn

p = (u0 : . . . : un) 7→
(
u0

uj
, . . . ,

ûj
uj
, . . . ,

un
uj

)
are an holomorphic atlas of Pn. Indeed, Pn = ∪jUj . The inverse for zj is z−1

j :

(t1, . . . , tn) 7→ (t1 : . . . : tj : 1 : . . . : tn). We verify the compatibility between z0 and
z1 (the others are similar):

z0 ◦ z−1
1 : (t1, . . . , tn) 7→ (t1 : 1 : t2 : . . . : tn) 7→

(
1

t1
, . . . ,

tn
t1

)
which is an holomorphic map on z1(U0 ∩ U1).
We notice that Pn is compact: let S2n+1 = {u ∈ Cn+1 | ||u|| =

√∑
|uj | = 1} as usual.

S2n+1 is compact (closed and bounded) and the map π restricted to S2n+1 is surjective.
In fact, if p = π(u) ∈ Pn, there exists a t ∈ C× such that ||tu|| = 1; then tu ∈ S2n+1 and
π(tu) = π(u) = p. At this point, it is sufficient to notice that π is continuous to state that
Pn is compact.

Given a complex manifold X, we can think about X without its complex structure,
that is: if dimCX = n, X defines a differentiable manifold X0 with dimRX0 = 2n, where
a complex chart (U, z) gives rise to a real chart (U, z̃) via the identification

z = (z1, . . . , zn)↔ z̃ = (x1, x2, . . . , xn, y1, . . . , yn) zj = xj + iyj , xj , yj : U → R

One can easily check that if (Uα, zα), (Uβ, zβ) are compatible, then (Uα, z̃α), (Uβ, z̃β) are
compatible, too.
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Proposition 2.1. Consider a complex manifold X as a differentiable manifold X0 with
the coordinates inherited from the complex structure on X. Then X0 is orientable.

Proof. Any transition map F := zβ ◦ z−1
α : Cn → Cn on X is holomorphic, and so is

the inverse. As we’ve seen at the beginning of the chapter, det(JRF ) = |det(JCF )|2 > 0

(it is not zero since F has an inverse). It is easy to show that JRF is nothing else that
the Jacobian matrix of the transition map F̃ on X0. Then, each transition map of X0

has Jacobian with positive determinant, i.e X0 is equipped with a positive atlas, and is
positively oriented.

A simple consequence of this proposition is: not every differentiable manifold X0 can
be seen as the underlying differentiable manifold of a complex manifold X.

2.2 Holomorphic functions

Definition 2.3. Let U ⊆ X be open, f : U → C be a function. Then f is holomorphic
on U if, taken (Uα, zα) such that U ∩ Uα 6= ∅, the function

f ◦ z−1
α : zα(Uα ∩ U)→ C

is holomorphic. This definition does not depend on the choice of the coordinate (Uα, zα).
In addition, we define

OX(U) := {f : U → C | f is holomorphic}

Remark.
Let (U, z = (z1, . . . , zn)) be a local complex chart on X. Let a ∈ U with z(a) = 0, and let
f : U → C be holomorphic, Then

(f ◦ z−1)(u) =
∞∑

k1,...,kn=0

ak1,...,knu
k1
1 · · ·u

kn
n where x ∈ U, z(x) = u

This means

f(x) = (f ◦ z−1)(z(x)) =

+∞∑
k1,...,kn=0

ak1,...,knz
k1
1 (x) · · · zknn (x)

⇒ f =
+∞∑

k1,...,kn=0

ak1,...,knz
k1
1 · · · z

kn
n .

Definition 2.4. A map φ : Xn → Y m between complex manifolds is holomorphic if

wβ ◦ φ ◦ z−1
α : zα(Uα ∩ φ−1(Vβ))→ Cm

is holomorphic for all charts (Uα, zα) of X, (Vβ, wβ) of Y . It is sufficient to verify that the
above map is holomorphic for any (Uα, zα), (Vβ, wβ) in one atlas of X,Y respectively.



2.2. Holomorphic functions 9

Example: The projection map π : Cn+1−{0} → Pn is holomorphic. To check this, we use
the atlases {(Cn+1−{0}, idCn+1−{0})} for Cn+1−{0} and {(Uj , zj)}j=1,...,n defined on Pn

as in the example of the previous section. We will check the definition only for j = 0.

(z0 ◦ π ◦ idCn+1−{0})(u0, . . . , un) = z0(u0 : . . . : un) =

(
u1

u0
, . . . ,

un
u0

)
This map is holomorphic on π−1(U0).

Proposition 2.2. Let φ : Xn → Y m be a holomorphic map between complex manifolds.
Let (U, z), (V,w) be local complex charts of X,Y respectively such that φ(U) ⊆ V . The
map F := w ◦ φ ◦ z−1 is holomorphic; assume that JCF (a) has constant rank k ∀a ∈ U
(i.e., with the usual terminology, φ has constant rank on U). Then for any a ∈ U there
exists a neighborhood W of a, local complex charts (U ′, z′), (V ′, w′) with a ∈ U ′ ⊆ W

such that φ(U ′) ⊆ V ′, z′(a) = 0, w′(φ(a)) = 0 and F ′ := w′ ◦ φ ◦ (z′)−1 : (u1, . . . , un) 7→
(u1, . . . , uk, 0, . . . , 0).

Proof. Similar to the proof for differentiable manifolds, using Prop. 1.5, too.

Theorem 2.3. Let X be a (connected) compact complex manifold, let f : X → C be a
holomorphic function. Then f is constant.

Proof. |f | : X → R is a continuous function, X is compact ⇒ {|f(x)| : x ∈ X} is
compact, hence bounded. Thus, there is an x0 ∈ X such that |f(x0)| = M is maximal.
Let a = f(x0) ∈ C. Obviously, f−1(a) is closed in X (it is a pre-image of a point); if
we are able to show that f−1(a) is open, too, then f−1(a) = X, that implies f(x) = a

∀x ∈ X.
Let x ∈ f−1(a), (U, z) be a chart with z(x) = 0. Then F : f ◦ z−1 : z(U) → C is
holomorphic on the open subset z(U) ⊆ Cn; F (0) = f(x) = a and |F | has a maximum in
z = 0. Let ε > 0 such that Bε := {y ∈ Cn : ||y|| < ε} ⊆ z(U). For y ∈ Bε, the function
g(t) := F (ty) is holomorphic on {t ∈ C : ||ty|| < ε} and |g| takes its maximum in t = 0.
By the "maximum principle" (theorem 1.4), g is constant ⇒ a = g(0) = g(1) = F (y),
that means F (y) = a ∀y ∈ Bε. Hence f ≡ a on z−1(Bε), an open subset of X containing
x. Hence f−1(a) is open.

This result is somewhat surprising and disappointing: the condition of compactness
for X, which usually makes life a lot easier when dealing with a manifold, does not allow
us to consider holomorphic functions on X, since all of them are constant. As we will see
in the following chapter, some interesting results will be achieved looking at meromorphic
functions on complex tori (which are compact complex manifolds).
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2.3 The complex tangent space and cotangent space

Consider a complex manifold X and its underlying differentiable manifold X0. Let a ∈ X0

and let C∞a be the R-vectorspace of germs of smooth R-valued functions in a. TaX0 :=

{v : C∞a → R | v is R-linear and a derivation} is the tangent space to X0 in a. If a ∈ U
where (U, z̃ = (x1, x2, . . . , xn, y1, . . . , yn)) is the real chart associated to a complex chart
(U, z), we have a R-basis of TaX0(∼= R2n):

∂

∂x1

∣∣∣∣
a

, . . . ,
∂

∂xn

∣∣∣∣
a

,
∂

∂y1

∣∣∣∣
a

, . . . ,
∂

∂yn

∣∣∣∣
a

where
∂

∂xj

∣∣∣∣
a

(f) =
∂(f ◦ z̃−1)

∂tj
(z̃(a))

∂

∂yj

∣∣∣∣
a

(f) =
∂(f ◦ z̃−1)

∂tn+j
(z̃(a))

Let A0
a be the C-vector space of germs of smooth C-valued functions in a. A0

a = C∞a ⊕iC∞a ,
since f = g+ih, g, h ∈ C∞a for each f ∈ A0

a. Any v ∈ TaX0 defines by C-linear extension a
derivation on A0

a, that is, g+ih 7→ v(g)+iv(h). Let (TaX0)C = TaX0⊗RC = TaX0⊕iTaX0

be the complexification of TaX0; then dimC(TaX0)C = dimR(TaX0) = 2n. We point out
that elements of (TaX0)C are v+ iw, v, w ∈ TaX0 and clearly (v+ iw)(f) = v(f)+ iw(f) =

v(g + ih) + iw(g + ih) = v(g)− w(h) + i(v(h) + w(g)).

Notice that the dimension of (TaX0)C, that seems to be the correct tangent space to
X, is twice the dimension of the complex manifold. It is clear that we have to cut out
some part of it, in order to have something similar to the usual notion of tangent space
for differential manifolds.

Definition 2.5. A complex structure on a R-vector space V is a R-linear endomorphism
J such that J2 = −Id.

The multiplication by i from Cn to itself induces a complex structure on R2n ∼= Cn:

Cn ·i
> Cn

R2n

∼=
∨

.......
J
> R2n

∼=
∨

(. . . , xj + iyj , . . .) > (. . . , ixj − yj , . . .)

(. . . , xj , . . . , yj , . . .)

∼=
∨

(. . . ,−yj , . . . , xj , . . .)

∼=
∨

So

J

(
x

y

)
=

(
−y
x

)
⇒ J =

(
0 −Id
Id 0

)
⇒ J2 =

(
−Id 0

0 −Id

)
For example, if n = 1 we get J =

(
0 −1
1 0

)
; its eigenvalues are ±i with corresponding

eigenvectors
(

1
∓i
)
. Furthermore, one easily verifies that in the general case the eigenvalues

are still ±i, and the corresponding eigenspaces are, respectively:

Ei =

〈
1
0
...
0
−i
0
...
0

 ,


0
1
...
0
0
−i
...
0

 , . . . ,


0
...
0
1
0
...
0
−i


〉
, E−i =

〈
1
0
...
0
i
0
...
0

 ,


0
1
...
0
0
i
...
0

 , . . . ,


0
...
0
1
0
...
0
i


〉
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(dimE±i = n; the number of zeroes between 1 and ±i is n− 1 in each vector). Moreover
C2n = (R2n)C = Ei ⊕ E−i.
Since we can identify TaX0 with R2n using the basis ∂

∂x1

∣∣∣
a
, . . . , ∂

∂yn

∣∣∣
a
, we immediately

obtain a map Ja in TaX0 that is the equivalent of J in R2n: to be precise,

Ja :


∂
∂xj

∣∣∣
a
7→ ∂

∂yj

∣∣∣
a

∂
∂yj

∣∣∣
a
7→ − ∂

∂xj

∣∣∣
a

By C-linear extension of Ja on (TaX0)C, we get the following eigenspaces:

T 1,0
a X := {w ∈ (TaX0)C | Jaw = iw} The holomorphic tangent space

T 0,1
a X := {w ∈ (TaX0)C | Jaw = −iw} The anti-holomorphic tangent space

Note that (TaX0)C = T 1,0
a X⊕T 0,1

a X and dimC(T 1,0
a X) = dimC(T 0,1

a X) = n. Analogously
to the situation in R2n, the vectors

{
sj = ∂

∂xj

∣∣∣
a
− i ∂

∂yj

∣∣∣
a

}
and

{
s̃j = ∂

∂xj

∣∣∣
a

+ i ∂
∂yj

∣∣∣
a

}
are

basis of T 1,0
a X and T 0,1

a X, respectively. Then if we define

∂

∂zj

∣∣∣∣
a

:=
1

2

(
∂

∂xj

∣∣∣∣
a

− i ∂
∂yj

∣∣∣∣
a

)
, j ∈ {1, . . . , n}

∂

∂z̄j

∣∣∣∣
a

:=
1

2

(
∂

∂xj

∣∣∣∣
a

+ i
∂

∂yj

∣∣∣∣
a

)
, j ∈ {1, . . . , n}

these vectors are again basis of T 1,0
a X and T 0,1

a X, respectively (the reason why we prefer
these basis to {sj} and {s̄j} is only due to having analogies with the usual relation in Cn).
If f = g + ih ∈ A0

a, then

2
∂

∂z̄j

∣∣∣∣
a

f =

(
∂

∂xj

∣∣∣∣
a

+ i
∂

∂yj

∣∣∣∣
a

)
(g + ih) =

(
∂g

∂xj
(a)− ∂h

∂yj
(a)

)
+ i

(
∂h

∂xj
(a) +

∂g

∂yj
(a)

)
This means (dropping the a dependence, to lighten notation)

∂f

∂z̄j
= 0⇔ ∂g

∂xj
=

∂h

∂yj
,
∂h

∂xj
= − ∂g

∂yj

that are the Cauchy-Riemann equations. Then, if f is the germ of a holomorphic function,
∂f
∂z̄j

= 0 for each j: thus w(f) = 0 for all w ∈ T 0,1
a X. So, to study holomorphic functions

we only need T 1,0
a X, that from now on will be considered as the "correct" tangent space

to X in a.
Now we can define T 1,0

a X,T 0,1
a X intrinsically:

Definition 2.6.

T 0,1
a X := {w ∈ (TaX0)C | w(f) = 0 ∀f ∈ A0

a, f holomorphic}

T 1,0
a X := {w̄ = w − iw2 | w = w1 + iw2 ∈ T 0,1

a X0}

We say that T 1,0
a X is the tangent space to X in a.
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Remark.
One checks that

∂

∂zj
(zk) =

∂

∂tj
(xk + iyk) =

0 j 6= q

1 j = k

so ∀w ∈ T 1,0
a X there is a holomorphic function f such that w(f) 6= 0.

Consider T ∗aX0 := HomR(TaX0,R). For f ∈ C∞a we have its differential df = (df)a ∈
T ∗aX0, defined by the relation (df)(v) := v(f) ∈ R. We know that T ∗aX0 = 〈dx1, . . . , dyn〉,
where x1, . . . , yn are the coordinates of the real chart derived from a complex chart (U, z).
Define (T ∗aX0)C = T ∗aX0⊗RC = T ∗ax0⊕iT ∗ax0: this space is equal to (T ∗aX)1,0⊕(T ∗aX)0,1 =

〈. . . , dzj . . .〉 ⊕ 〈. . . , dz̄j . . .〉 where dzj = dxj + idyj , dz̄j = dxj − idyj . Moreover

dzj
(

∂

∂zk

)
= δjk, dzj

(
∂

∂z̄k

)
= 0 = dz̄j

(
∂

∂zk

)
, dz̄j

(
∂

∂z̄k

)
= δjk

As an example, we check the first relation:

dzk
(
∂

∂zj

)
=

∂

∂zj
zk =

1

2

(
∂

∂xj
− i ∂

∂yj

)
(xk + iyk) =

1

2
(δjk + 0 + 0 + (−i)iδjk) = δjk

This means, in particular, (T ∗aX)1,0 = (T 1,0
a X)∗.

Now consider A0
a as defined previously. We have the map

d = da : A0
a → (T ∗aX0)C

f 7→ df := (df)a =

n∑
j=1

∂f

∂xj
(a)(dxj)a +

∂f

∂yj
(a)(dyj)a

or, in the new basis,

(df)a =

n∑
j=1

∂f

∂zj
(a)(dzj)a +

n∑
j=1

∂f

∂z̄j
(a)(dz̄j)a = ∂f + ∂̄f

So we have d = ∂ + ∂̄, and ∂̄f = 0 if f is holomorphic. Since we want to work with
holomorphic functions on X and we want (df)a to be an element of our cotangent space,
the following definition arises naturally:

Definition 2.7. The cotangent space of X in a is (T ∗aX)1,0 = (T 1,0
a X)∗.

2.4 Differential forms

Let V ⊂ X be an open subset. Define Er(V ) := {smooth, real valued r-forms on V } for
0 ≤ r ≤ 2n. Take a local coordinate U . On U ∩ V , for ω ∈ Er(V ), we can write ω =∑

#I=r fIdxI where I = {i1, . . . , ir}, i1 < . . . < ir, dxI = dxi1 ∧ . . .∧ dxir , fI : U ∩ V → R
smooth (note that now dxj+n := dyj).
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Let Ar(V ) := Er(V )C = {smooth, complex valued r-forms on V } = {η = η1 +

iη2 | η1, η2 ∈ Er(V )}. Note that ω(a) ∈
∧r T ∗aX0 if ω ∈ Er(V ), while η(a) ∈

∧r(T ∗aX0)C

if η ∈ Ar(V ). Moreover

r∧
(T ∗aX0)C =

⊕
p,q≥0
p+q=r

(
r∧
T ∗aX

)p,q

where (
∧r T ∗aX)p,q := 〈. . . , dzI ∧ dz̄J , . . .〉 with I, J multi-indices, #I = p, #J = q, so

that I := {i1, . . . , ip}, i1 < . . . < ip, J := {j1, . . . , jq}, j1 < . . . < jq, p + q = r and
dzI ∧ dz̄J = dzi1 ∧ . . . ∧ dzip ∧ dz̄j1 ∧ . . . ∧ dz̄jq (thus dimC (

∧r T ∗aX)p,q =
(
n
p

)(
n
q

)
).This

induces a decomposition
Ar(V ) =

⊕
p,q≥0
p+q=r

Ap,q(V )

where Ap,q(V ) = {η ∈ Ar(V ) | η
∣∣
U∩V =

∑
#J=q

#I=p

fI,JdzI ∧ dz̄J}.

Definition 2.8. Ωr(V ) := {ω ∈ Ar,0(V ) | ω =
∑

#I=r

fIdzI , fI holomorphic}.

For real r-forms, we have the exterior derivative d : Er(V )→ Er+1(V ). If we extend it
C-linearly, we get d : Ar(V )→ Ar+1(V ) (simply: d(η1 + iη2) = dη1 + idη2).
Recall that df = ∂f + ∂̄f for f ∈ A0(X), and

∂f =
∑
j

∂f

∂zj
dzj ∈ A1,0(X) ∂̄f =

∑
j

∂f

∂z̄j
dz̄j ∈ A0,1(X)

Similarly, if η ∈ Ap,q(X), we have

dη = d(
∑

#J=q

#I=p

fI,JdzI ∧ dz̄J) =
∑

#J=q

#I=p

dfI,J ∧ dzI ∧ dz̄J =

=
∑

#J=q

#I=p

∂fI,J ∧ dzI ∧ dz̄J +
∑

#J=q

#I=p

∂̄fI,J ∧ dzI ∧ dz̄J ∈ Ap+1,q(X)⊕Ap,q+1(X)

Hence d = ∂ + ∂̄ : Ap,q → Ap+1,q ⊕Ap,q+1. Now, since d2 = 0 on Er and then on Ar,

0 = (∂ + ∂̄)2 = ∂2︸︷︷︸
∈Ap+2,q

+ ∂ ◦ ∂̄ + ∂̄ ◦ ∂︸ ︷︷ ︸
∈Ap+1,q+1

+ ∂̄2︸︷︷︸
∈Ap,q+2

⇒

∂2 = ∂̄2 = 0

∂̄ ◦ ∂ = −∂ ◦ ∂̄

Consider the projection πp,q : Ar =
⊕
s,t≥0
s+t=r

As,t → Ap,q. Then ∂ = πp+1,q ◦d : Ap,q → Ap+1,q

and ∂̄ = πp,q+1 ◦ d.
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Proposition 2.4. Let f : X → Y be a holomorphic map between complex manifolds.
Then

1. f∗πp,qY = πp,qX ◦ f∗(that implies f∗Ap,qY ⊆ A
p,q
X );

2. f∗∂Y = ∂Xf
∗ (notice the similarities with f∗d = df∗ for the real case).

Proof. 1. Let g : Y → C be a smooth function. Recall that f∗(dg) = d(g ◦ f). Let
(V,w = (w1, . . . , wm)) be a local complex chart on Y . Each wj is holomorphic on
V , hence also wj ◦ f is holomorphic: this means ∂̄(wj ◦ f) = 0. Thus

f∗(dwj) = d(wj ◦ f) = ∂(wj ◦ f) + ∂̄(wj ◦ f)︸ ︷︷ ︸
=0

∈ A1,0(X)

so f∗A1,0(Y ) ⊆ A1,0(X); similarly, f∗A0,1(Y ) ⊆ A0,1(X) (just notice that w̄j ◦ f is
antiholomorphic, and then ∂(w̄j ◦ f) = 0).
Now let η =

∑
I,J gI,JdwI ∧ dw̄J ∈ Ar(Y ). We have

f∗(πp,qη) = f∗
( ∑

#J=q

#I=p

gI,JdwI ∧ dw̄J
)

=
∑

#J=q

#I=p

(gI,J ◦ f)f∗(dwi1) ∧ . . . ∧ f∗(dw̄jq)

and

πp,qX (f∗η) = πp,qX

∑
I,J

(gI,J ◦ f)f∗(dwI) ∧ f∗(dw̄J)

 =

=
∑

#J=q

#I=p

(gI,J ◦ f)f∗(dwi1) ∧ . . . ∧ f∗(dw̄jq)

This shows the equality we wanted to prove.

2. Let ω ∈ Ap,q(Y ). Then

∂X(f∗ω) = (πp+1,q
X ◦ d)(f∗ω) = πp+1,q

X ((d ◦ f∗)(ω)) = πp+1,q
X ((f∗ ◦ d)(ω))

By the above result

(πp+1,q
X ◦ f∗)(dω) = (f∗ ◦ πp+1,q

Y )(dω) = f∗(∂Y ω)

showing what needed.

2.5 Complex submanifolds

Definition 2.9. A complex submanifold of a complex manifold X is a subset Y ⊆ X such
that for each a ∈ Y there exists a local complex chart (U, z = (z1, . . . , zn)) of X, called
"preferred chart", with z(a) = 0 and z(U ∩Y ) = {u ∈ z(U) ⊆ Cn | uk+1 = . . . = un = 0}.
A complex submanifold is a complex manifold itself, of dimension k: if (U, z) is a preferred
chart, one obtains a complex chart of Y by (U ∩Y, z|U∩Y ) where now z|U∩Y : U ∩Y → Ck.
The compatibility for those charts follows from the compatibility of the charts on X.



2.5. Complex submanifolds 15

The following theorems will give us two ways to obtain complex submanifolds. In the
first case, we will show that the pre-image of a a point via a "sufficiently regular" map
is a submanifold. The second theorem shows that under certain (strong) condition for
φ : X → Y , the image φ(X) is an embedded submanifold of Y - intuitively, it means that
φ(X) is contained in Y in some "non-singular" way.

Theorem 2.5. Let φ : Xn → Y m be a holomorphic map between complex manifolds,
with n > m. Let b ∈ φ(X) ⊆ Y such that the rank of φ is maximal (rk(φ) = m)
∀a ∈ φ−1(b). Then φ−1(b) is a complex submanifold of X of dimension n−m.

Proof. Since φ has maximal rank on φ−1(b), it also has maximal rank on a neighborhood
of φ−1(b) in X ("det 6= 0" is an open condition). By Proposition 2.2, there are local charts
(U, z), (V,w) with a ∈ U such that φ(U) ⊆ V, z(a) = 0, w(φ(a)) = w(b) = 0 and

w ◦ φ ◦ z−1 : (u1, . . . , un) 7→ (u1, . . . , um)

Hence z(U ∩ φ−1(b)) = {u ∈ z(U) | z−1(u) ∈ φ−1(b)⇔ φ(z−1(u)) = b⇔ w(φ(z−1(u))) =

w(b) = 0}. Since w(b) = (u1, . . . , um), we obtain z(U ∩ φ−1(b)) = {u = (u1, . . . , un) ∈
z(U) | u1 = . . . = um = 0}. Then, if u ∈ z(U∩φ−1(b)) one has u = (0, . . . , 0, um+1, . . . , un).
After a permutation of the coordinates in Cn, this clearly shows that z is a preferred chart
for φ−1(b) in a.

Theorem 2.6. Let φ : Y → X be an injective holomorphic map between complex
manifolds with dimY = m ≤ n = dimX, such that φ has maximal rank m on all Y . If Y
is compact, then f(Y ) is a submanifold of X and φ : Y → φ(Y ) is a biholomorphic map
(we say that φ(Y ) is isomorphic to Y and that φ is an embedding).

Proof. First, we show that the continuous, bijective map φ : Y → φ(Y ) is a homeomor-
phism. It suffices to show that φ is open.
Let W ⊂ Y be open, then Y \W is closed in Y . Since Y is compact, Y \W is compact,
too. φ is continuous, so φ(Y \ W ) is compact in φ(Y ) ⊆ X and since X is Hausdorff
φ(Y \W ) is closed in φ(Y ). Therefore its complement in φ(Y ), which is φ(W ), is open in
φ(Y ). This shows that φ is open.
Given a ∈ Y , there are local charts (U, z), (V,w) of X,Y respectively with a ∈ V, φ(V ) ⊆
U, z ◦ φ ◦ w−1 : (u1, . . . , um) 7→ (u1, . . . , um, 0, . . . , 0) (because rk(φ) = m). As φ is a
homeomorphism and V is open in Y , φ(V ) is open in φ(Y ): then there is an open set U ′

of X such that φ(V ) = φ(Y ) ∩ U ′. Since φ(V ) ⊆ U , φ(V ) = φ(Y ) ∩ (U ′ ∩ U). Hence

z(φ(Y ) ∩ (U ∩ U ′)) = z(φ(V )) = {u ∈ z(U ∩ U ′) | u = (u1, . . . , um, 0, . . . , 0)}

This shows that φ(Y ) has a preferred chart, that is, φ(Y ) is a submanifold.
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2.6 Submanifolds of Pn

In this section we will look closely to some examples of submanifolds; each of them will be
contained in some Pn. The main tools to find such manifolds are the two theorems seen
in the previous sections. Moreover, we will see another way to find submanifolds in Pn,
that is, as zero locus of some homogeneous polynomials.

Fermat hypersurface

Let F : Cn → C, (z1, . . . , zn) 7→ 1 + zk1 + . . .+ zkn with k 6= 0. The rank of F is the rank
of the 1× n matrix JCF = (kzk−1

1 , . . . , kzk−1
n ), hence JCF has maximal rank (rank 1) in

each point except for z = 0. Since F (0) = 1, F−1(0) does not contain 0 . By theorem 2.5,
Z = {z ∈ C | 1 + zk1 + . . .+ zkn = 0} is a complex manifold of dimension n− 1.
Now consider Pn and the usual projection π : Cn+1 − {0} → Pn. Let Z = {π(z) = (z0 :

. . . : zn) ∈ Pn | zk0 + . . .+ zkn = 0}. Z is a complex manifold, because Z has an open cover
Z ∩ Uj = {(z0 : . . . : zn) ∈ Z | zj 6= 0} and each Zj ∩ Uj is basically the same as Z in the
previous example (after a composition with charts). Then Z is a complex manifold of Pn,
called Fermat hypersurface. Z is compact (it is closed in the compact manifold Pn).

The Veronese map

The Veronese map is a function φd : Pn → Pm, where m =
(
n+d
d

)
− 1: the map sends

(x0 : . . . : xn) in points of Pm which coordinates are all possible monomials with variables
x0, . . . , xn, of degree d (thus the expression for m).
The following examples will all consider a really special case, that is, n = 1. In this case,
φd(P1) is called rational normal curve.

• Consider the Veronese map with n = 1, d = 3:

φ3 =: ϕ : P1 → P2

(s : t) 7→ (s3 : s2t : st2 : t3)

This map makes sense, since it is easily verified that ϕ(s : t) 6= (0 : 0 : 0 : 0) (that
point is not in P3! We say that ϕ has no base locus). Moreover, ϕ is well defined:

(s : t) = (λs : λt) ∀λ ∈ C× ⇒ ϕ(λs : λt) = λ3ϕ(s : t) = ϕ(s : t)

We show now that ϕ is holomorphic. Recall that P1 = U0 ∪ U1 and P3 = ∪3
j=0Ũj ,

according to the usual atlas on Pn, and notice that ϕ(U0) ⊆ Ũ0, ϕ(U1) ⊆ Ũ3. If
F := z̃0 ◦ ϕ ◦ z−1

0 : z0(U0) ⊆ C→ C3,

F (u) = z̃0(ϕ(1 : u)) = z̃0(1 : u : u2 : u3) = (u, u2, u3) for u ∈ U0

that is a holomorphic map. In a similar fashion, G := z̃3 ◦ ϕ ◦ z−1
1 is holomorphic;

then ϕ is holomorphic everywhere, since P1 = U0 ∪ U1. Note also that ϕ is injec-
tive, and both JF =

(
∂Fj
∂u

)
= (1, 2u, 3u2) and JG have rank 1. Moreover, P1 is

compact, so by theorem 2.6 we get that ϕ(P1) is a submanifold of P3 and P1 ∼= ϕ(P1).
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• Now consider the Veronese map with n = 1, d = 2:

φ2 =: ϕ : P1 → P3

(s : t) 7→ (s2 : st : t2)

Just doing the same steps as the previous example, it is easy to show that this map
is well defined and holomorphic. On U0 ⊆ P1, ϕ(1 : t) = (1 : t : t2), so ϕ is injective
on U0; one similarly checks that it is injective also on U1, and then φ is injective on
the whole P1. Moreover ϕ has rank 1, thus P1 ∼= ϕ(P1).

The Segre map

The general form of the Segre map is

σ : Pn × Pm → P(n+1)(m+1)−1

((x0 : . . . : xn), (y0 : . . . : ym)) 7→ (x0y0 : x0y1 : . . . : xiyj−1 : xiyj : . . . : xnym)

We will consider the particular case n = m = 1:

φ : P1 × P1 → P3

((s : t), (u : v)) 7→ (su : sv : tu : tv)

φ has no base locus: suppose it has, then (su : sv : tu : tv) = (0 : 0 : 0 : 0) means
su = sv = 0, but (u : v) 6= (0 : 0) ⇒ s = 0. Similarly we obtain t = 0, but since
(s : t) 6= (0 : 0) we have a contradiction.
φ is well defined (easy check) and it is holomorphic: as an example, consider the usual
charts U0 × U ′0 of P1 × P1 (where s = u = 1). One has φ((1 : t), (1 : v)) = (1 : v : t : tv),
so φ(U0 × U ′0) ⊆ Ũ0 with Ũ0 chart of P3. Then

F := z̃0 ◦ φ ◦ {z−1
0 , (z′0)−1} : (a, b) 7→ (a, b, ab)

is clearly holomorphic, so φ is holomorphic on U0 × U ′0. In a similar way one can show φ

is holomorphic on the whole P1 × P1.
φ is injective and has maximal rank. We work again on U0 × U ′0. The expression for
φ in this set (shown above) clearly implies injectivity, while JCF =

(
1 0
0 1
t v

)
⇒ rkF =

rk(φ|U0×U ′0) = 2, so φ has maximal rank in this set. Again, similar calculations show that
φ is injective and has rank 2 on every Ui × U ′j , i, j = 0, 1.
Since P1 × P1 is compact, φ(P1 × P1) ∼= P1 × P1.

Remark.
We want to underline that P1 × P1 6∼= P2 (even if they have the same dimension 2).
They are not even diffeomorphic: suppose they are. Then, there exists a diffeomorphism
α : P1 × P1 ∼−→ P2 that induces an isomorphism α∗ : H2

DR(P1 × P1) → H2
DR(P2) on the
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de Rham cohomology groups. It is known that H2k
DR(Pn(C)) = R if k = 0, . . . , n; by the

Künneth formula we obtain

H2
DR(P1 × P1) ∼= H0

DR(P1)⊗H2
DR(P1)⊕H1

DR(P1)⊗H1
DR(P1)⊕H2

DR(P1)⊗H0
DR(P1) ∼=

∼= (R⊗ R)
∼=R

⊕ 0⊕ (R⊗ R)
∼=R

∼= R2 6∼= R ∼= H2
DR(P2)

which leads us to a contradiction.

2.6.1 Complete intersections

Consider a homogeneous polynomial f ∈ C[x0, . . . , xn] of degree d, that is, f(tx) =

f(tx0, . . . , txn) = tdf(x0, . . . , xn) ∀t ∈ C. Deriving with respect to t,
n∑
i=0

∂f

∂xi
(tx)xi = dtd−1f(x0, . . . , xn)

t=1⇒
n∑
i=0

xi
∂f

∂xi
= d · f

The last equation is called Euler’s Relation.

Proposition 2.7. Let f1, . . . , fm ∈ C[x0, . . . , xn] be homogeneous polynomials of de-
gree dj , j ∈ {1, . . . ,m}. Let Y = {x ∈ Pn | f1(x) = . . . = fm(x) = 0} (a projective
algebraic set) with n > m. Then, if rk

(
∂fj
∂xk

(x)
)

= m ∀x ∈ Y , k ∈ {0, . . . , n} and
j ∈ {1, . . . ,m}, Y is a complex submanifold of Pn, which is compact, of dimension n−m.
Y is called a complete intersection of degree (d1, . . . , dm) in Pn.

Proof. It suffices to know that Y ∩ Ui is a complex submanifold of each Ui ⊆ Pn, ∀i. As
an example, we do the case i = 0 (the others are similar).
Let F = (f1, . . . , fm) : U0 → Cm. Then F−1(0) = Y ∩ U0. If we show that rk(F ) = m

∀x ∈ F−1(0), then we are done: this is equivalent to show that G := F ◦ z−1
0 : Cn → Cm

has rank m ((U0, z0) is the chart in which we are working). By Euler’s Relation, for any
given j we have

∑n
k=0 xk

∂fj
∂xk

(x) = dj · fj(x); then if x ∈ Y ∩ U0 we have

1 · ∂fj
∂x0

(x) + x1
∂fj
∂x1

(x) + . . .+ xn
∂fj
∂xn

(x) = dj · 0 = 0

or, equivalently,


∂f1
∂x0

...
∂fm
∂x0

 is a linear combination of


∂f1
∂x1

...
∂fm
∂x1

 , . . . ,

 ∂f1
∂xm

...
∂fm
∂xm

. This means

that rk
(
∂fj
∂xk

(x)
)
with k ∈ {1, . . . , n} and j ∈ {1, . . . ,m} is the same as rk

(
∂fj
∂xk

(x)
)
with

k ∈ {0, . . . , n} and j ∈ {1, . . . ,m}.
We have

∂Gj
∂zk

=
∂(fj ◦ z−1

0 )

∂zk
=
∂fj
∂xk

k = 1, . . . , n

and then

rk
(
∂Gj
∂zk

(x)

)
k=1,...,n
j=1,...,m

= rk
(
∂fj
∂xk

(x)

)
k=1,...,n
j=1,...,m

= rk
(
∂fj
∂xk

(x)

)
k=0,...,n
j=1,...,m

= m.

where the last equality was our assumption.
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Example: Let P : x0x2 − x2
1. P is a homogeneous polynomial of degree 2. Consider

Y := {x ∈ P2 | P (x) = 0}. We want to show that Y is a complex submanifold of P2

of dimension 1 as a complete intersection of degree 2 in P2: that is, our goal is to show
rk
(
∂P
∂xk

)
= 1. We have

v =

(
∂P

∂x0
,
∂P

∂x1
,
∂P

∂x2

)
= (x2 − x2

1, x0x2 − 2x1, x0 − x2
1)

Take x ∈ Y . Suppose x1 = 0: then v = (x2, x0x2, x0) but since x0x2 = x2
1 = 0, v =

(x2, 0, x0). Clearly x2, x0 can’t be zero at the same time, so v 6= (0, 0, 0). Now suppose
x1 6= 0: then we can write x = (y0 : 1 : y2). Then y0y2 = 1 ⇒ v = (y2 − 1,−1, y0 − 1) 6=
(0, 0, 0). So rk(v) = 1.
To be honest, we have already seen the submanifold Y , but it was in another form. We
want to prove that Y = φ2(P1), where φ2 is the Veronese map with n = 1, d = 2 (we have
already talked about this map).

φ2(P1) ⊆ Y : Just substitute the coordinates of a generic point x = (s2 : st : t2) ∈ φ2(P1)

inside P to get P (x) = 0.

φ2(P1) ⊇ Y : Consider x = (x0 : x1 : x2) ∈ Y . Suppose x0 6= 0. Then we can assume
(x0 : x1 : x2) = (1 : y1 : y2), and by the definition of Y we have y2 = y2

1. Thus
x = (1 : y1 : y2

1) = φ2(1 : y1).
Suppose now x0 = 0. Then we get x1 = 0, so x = (0 : 0 : 1) = φ2(0 : 1).

Remark.
We gather here some useful observations:

• It is possible to show that any smooth conic in P2 (Y in the previous example is one
of those) is isomorphic to P1. On the other hand, not every smooth cubic in P2 is
isomorphic to P1.

• It turns out that a rational normal curve can be expressed as a complete intersection
only if d ≤ 2. Sometimes it is still possible to find a set of equations that describes
φd(P1), but the number of these equations will not be equal to the codimension of
the manifold in Pm. As an example consider the following set of equation in P3:

Q1 : x0x2 − x2
1 = 0

Q2 : x0x3 − x1x2 = 0

Q3 : x1x3 − x2
2 = 0

We want to check that Q := {x ∈ P3 | Q1(x) = Q2(x) = Q3(x) = 0} = ϕ(P1), where
ϕ := φ3 (see the first example in the Veronese map section).

ϕ(P1) ⊆ Q : Just substitute the coordinates of a generic point (s3 : s2t : st2 : t3) ∈
ϕ(P1) inside Q1, Q2, Q3 and observe that the three polynomials are automati-
cally zero.
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ϕ(P1) ⊇ Q : Consider x = (x0 : x1 : x2 : x3) ∈ Q. Suppose x0 6= 0. Then we can
assume (x0 : x1 : x2 : x3) = (1 : y1 : y2 : y3), and the equations defining Q give
us y2 = y2

1 and y3 = y3
1. Thus x = (1 : y1 : y2

1 : y3
1) = ϕ(1 : y1).

Suppose now x0 = 0. Then we get x1 = x2 = 0, so x = (0 : 0 : 0 : 1) = ϕ(0 : 1).

Notice that, as previously stated, we have 3 equations defining Q but ϕ(P1) has
codimension 2 in P3.

• With some calculations (which are really similar to what we have already done) one
can show that Y := {x ∈ P3 | x0x3 − x1x2 = 0} ∼= φ(P1 × P1) where φ is the Segre
map with n = m = 1. Moreover, any smooth quadric in P3 is isomorphic to P1×P1.



Chapter 3

The Weierstrass ℘-function; complex
tori and cubics in P2

3.1 Complex tori

Definition 3.1. Let w1, . . . w2n ∈ Cn be linearly independent vectors (considering Cn as a
R-vector space), that is, Cn = Rw1⊕ . . .⊕Rw2n. Consider the lattice Λ := {z ∈ Cn | z =

k1w1 + . . .+ k2nw2n, kj ∈ Z}. The quotient C
n/

Λ is called complex torus.

The lattice Λ is an additive subgroup of Cn, isomorphic to Z2n. Thus T is isomorphic

to R2n/
Z2n =

(
R/

Z
)2n

as a group; the usual identification R/
Z ' S1 shows why we see

T as a torus. Furthermore, notice that T can be seen as C
n/
∼ where z ∼ w ⇔ z−w ∈ Λ.

T is a topological space with the quotient topology and it is Hausdorff. The projection
π : Cn → Cn/

Λ = T is an open map. Indeed, take V ⊆ Cn open and consider π(V ): then
π(V ) is open if π−1(π(V )) (the saturation of V ) is open, but

π−1(π(V )) =
⊔
λ∈Λ

(V + λ) which is open (infinite union of translated open sets).

Since T = π(Π), where Π = {t1w1 + . . . + t2nw2n | 0 ≤ tj ≤ 1} is a compact set in Cn,
and π is a continuous map, then T is compact.

Let’s find the local complex charts for T . For x ∈ T , choose any z ∈ Cn such that
π(z) = x. Choose a neighborhood V of z in Cn such that πV := π|V : V → π(V ) is a bi-
jection (for example, V = {z+ t1w1 + . . .+ t2nw2n | |tj | < 1

2}). Then if z, z′ ∈ V, z−z′ 6∈ Λ

unless z = z′. Since π is continuous and open, πV is an homeomorphism. Then we can
choose (π(V ), π−1

V ) as local complex charts for x.
If (π−1

W ◦ (π−1
V )−1)(z) = z′ then πW (z) = πV (z′)⇒ π(z) = π(z′), that means z = z′+λ for

some λ ∈ Λ. Then π−1
W ◦ (π−1

V )−1 is just a translation, for each choice of V,W : thus, the
transition maps on T with this atlas are holomorphic, or in other words, T is a complex
manifold.

21
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Locally, π : Cn → T is holomorphic. In fact, restricting π to those sets V in which it
is a bijection, then π−1

V ◦ πV ◦ idCn = idCn which is clearly holomorphic.
If f is holomorphic on π(V ) ⊆ T , V as above, then f ◦π : π−1(V ) =

⊔
λ∈Λ(V +λ)→ Cn is

holomorphic as it is a composition of holomorphic function, and it is periodic of period λ
for each choice of λ ∈ Λ, since π is periodic of this period. Conversely, any F : π−1(V )→
Cn holomorphic and Λ-periodic defines a holomorphic function f on T by the relation
f(π(z)) = F (z).

3.2 Elliptic functions

Consider the one-dimensional torus T = C/
Λ, Λ = Zw1 + Zw2. T is compact, so any

holomorphic function on T is constant; or equivalently, any holomorphic function F : C→
C such that F (z) = F (z + w1) = F (z + w2) is constant. It is then clear that we must
analyze functions on T that have some kind of singularities, in order to have something
interesting to study.

Definition 3.2. A function f on a complex manifold X is meromorphic if for any x ∈ X
there is a connected neighborhood V of x and there are holomorphic functions g, h on V ,
h 6≡ 0, such that f = g

h on Ṽ := {v ∈ V | h(v) 6= 0}. (We observe that this definition
makes sense, since h is holomorphic and it can’t be zero on the whole V without being
the zero function).

Definition 3.3. Let Λ be a lattice. An elliptic function (depending from Λ) is a mero-
morphic function on C such that F (z + λ) = F (z) ∀z ∈ C, λ ∈ Λ.
From what we observed above, there is a bijective correspondence between elliptic func-
tions on C that are Λ-periodic, and meromorphic functions on T = C/

Λ.

Let F = G
H be a meromorphic function on V ⊆ C. Then for a ∈ V , we have the

following convergent power series:

G(z) = (z − a)k(b0 + b1(z − a) + . . .) k ∈ Z, k ≥ 0, b0 6= 0

H(z) = (z − a)l(c0 + c1(z − a) + . . .) l ∈ Z, l ≥ 0, c0 6= 0

Then F (z) = (z − a)n(d0 + d1(z − a) + . . .), n = k − l, d0 = b0
c0
6= 0 or shortly F (z) =

+∞∑
k=n

ak(z − a)k with an = d0.

Definition 3.4. Let f(z) =
∑+∞

k=n ak(z − a)k with an 6= 0. The order of f in a (denoted
as orda(f)) is the number n. If n > 0, we say that f has a zero of order n; if n < 0 f has
a pole of order |n|.
The residue of f in a is Resa(f) := a−1.

Remark.
If f is an elliptic function, Resa(f) = Resa+λ(f) and orda(f) = orda+λ(f).
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Moreover, since the zeroes and the poles of a meromorphic function are isolated and T is
compact, then a meromorphic function on T has only finitely many zeroes and poles (or
equivalently, an elliptic function has a finite number of poles in Π).

Let Π := {sw1 + tw2 ∈ C | 0 ≤ s, t < 1}. Then π is bijective, if we restrict to Π. For
any α ∈ C, also π : α+ Π→ T is a bijection.

Proposition 3.1. Let F be an elliptic function. Let α ∈ C such that F has no poles
and no zeroes on ∂(α+ Π) =: C. Then

1.
∑

a∈α+Π

Resa(F ) = 0;

2.
∑

a∈α+Π

orda(F ) = 0.

Proof. 1. By Cauchy’s residue theorem (cfr. Complex Analysis course)∑
a∈α+Π

Resa(F ) =
1

2πi

∫
C
F (z)dz =

1

2πi

4∑
i=1

∫
Si

F (z)dz

where each Si is a segment of C. We have z ∈ S1 ⇔ z = α + tw1, t ∈ [0, 1]

and z ∈ S3 ⇔ z = α + tw1 + w2, t ∈ [0, 1]. But since F is elliptic, F (α + tw1 +

w2) = F (α+ tw1), t ∈ [0, 1], so F takes the same values on S1 and S3. This implies∫
S1
F (z)dz +

∫
S3
F (z)dz = 0, because S1 and S3 are taken with opposite directions.

The same happens for the integrals on S2 and S4, and consequently
∫
C F (z)dz = 0.

This proves the assertion.

2. By the Argument Principle (cfr. Complex Analysis course)∑
a∈α+Π

orda(F ) =
1

2πi

∫
C

F ′(z)

F (z)
dz

Then, simply noticing that F ′ is again elliptic of the same period of F (just try
to compute it) and that F ′

F is again elliptic of the same period, we can apply the
previous result to obtain what we need.

Corollary. There are no meromorphic functions on T that have only one pole of order
1 on T .

Proof. Suppose there exist such an f . Then the corresponding elliptic function F = f ◦ π
has only one pole of order 1 in a ∈ Π, so F (z) = a−1

(
1

z−a

)
+
∑+∞

k=0 ak(z − a)k with
a−1 6= 0. But then, for a suitable α,

∑
a∈α+Π Resa(F ) = a−1 leading to a contradiction

with point 1 in the previous proposition.

Definition 3.5. Let F be an elliptic function with zeroes of order m1, . . . ,mk in Π and
poles of order n1, . . . , nl in Π. We define deg(f) = deg(F ) =

∑
mi where f is the

meromorphic function on T corresponding to F . (Note that, by previous proposition
(point 2),

∑
mi =

∑
ni).
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3.3 The Weierstrass ℘-function

Definition 3.6. Let Λ = Zw1 + Zw2 be a lattice in C. The function

℘(z) :=
1

z2
+
∑
w∈Λ
w 6=0

(
1

(z − w)2
− 1

w2

)

is called Weierstrass ℘-function. ℘ is meromorphic in C, holomorphic on C \Λ with poles
of order 2 in each w ∈ Λ.

Proposition 3.2.

1. ℘(−z) = ℘(z) (℘ is even).

2. ℘ is an elliptic function (depending from Λ).

3. deg(℘) = 2.

4. ℘ is surjective.

Proof. 1. 1
(−z−w)2

− 1
w2 = 1

(z−(−w))2
− 1

(−w)2
, but Λ = −Λ⇒ ℘(z) = ℘(−z).

2. ℘′(z) = − 2
z3

+
∑

w 6=0
−2

(z−w)3
= −2

∑
w

1
(z−w)3

. Hence ℘′(z + w) = ℘′(z) for each
w ∈ Λ (as w + Λ = Λ). ℘ is meromorphic, so ℘′ is meromorphic, too: thus ℘′

is elliptic function. This implies ℘(z + w1) = ℘(z) + c1 for some c1 ∈ C. If we
choose z = −w1

2 , then ℘(w1
2 ) = ℘(−w1

2 ) + c1; but ℘ is even, so c1 = 0. Similarly
℘(z + w2) = ℘(z) and then ℘ is elliptic.

3. The degree of ℘ is 2 since ℘ has only one pole in Π of order 2 (namely, 0).

4. Clearly, the function ℘ − c for any choice of c ∈ C has the same poles of ℘ in Π,
hence the same zeroes of ℘ in Π. This means ∃z0 ∈ Π such that ℘(z0) = c, so ℘ is
surjective.

Lemma 3.3.

1. The function ℘′ has degree 3, and it has three distinct zeroes in Π, each of multiplicity
one: those are w1

2 ,
w2
2 ,

w3
2 where w3 = w1 + w2.

2. The function z 7→ ℘(z) − c, for each choice of c ∈ C has a double zero in z0 ∈ Π if
and only if c ∈ {u1, u2, u3} where ui = ℘(wi2 ). Moreover, the ui are three distinct
complex numbers.

Proof. 1. As seen before, ℘′ has only poles in w ∈ Λ of order 3. The only pole of ℘′ in
Π is 0, so deg(℘′) = 3.
Since ℘ is even, ℘′ is odd, so ℘′(−z) = −℘′(z). Moreover, ℘′ is elliptic: then

℘′
(wi

2

)
= −℘′

(
−wi

2

)
= −℘′

(
−wi

2
+ wi

)
= −℘′

(wi
2

)
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Hence ℘′(wi2 ) = 0 for i = 1, 2, 3. As deg(℘′) = 3, these must be all zeroes of ℘′ and
they must have multiplicity one.

2. ℘(z) − c has a double zero in z0 ∈ Π ⇔ ℘(z0) = c and the derivative in z = z0 is
zero ⇔ ℘(z0) = c, ℘′(z0) = 0, that is, z0 = wi

2 , i = 1, 2, 3 and c = ℘
(
wi
2

)
= ui.

If ui = uj and i 6= j, then z 7→ ℘(z)− uj has a double zero in both wi
2 and wj

2 . But
this means deg(℘(z)− ui) ≥ 4, in contrast with the fact that ℘(z)− ui has only one
pole of order 2 in Π.

Definition 3.7. We call Eisenstein series the number Gn(Λ) :=
∑
w∈Λ
w 6=0

1
wn .

Gn(Λ) is defined for n ≥ 3. Notice that Gm(Λ) = 0 if m is odd, because Λ = −Λ and
Gm(−Λ) = (−1)mGm(Λ).

Theorem 3.4. For all z ∈ C, we have:

(℘′(z))2 = 4℘(z)3 − g2℘(z)− g3 g2 = 60G4(Λ), g3 = 140G6(Λ)

Proof. Recall that 1 + t+ t2 + . . . = 1
1−t . Deriving, we obtain

1

(1− t)2
= 0 + 1 + 2t+ 3t2 + . . . ⇒ 1

(1− t)2
=

+∞∑
k=0

(k + 1)tk

Hence

1

(z − w)2
− 1

w2
=

1

w2

(
1(

z
w − 1

)2 − 1

)
=

1

w2

(
1 + 2

( z
w

)
+ . . .− 1

)
=

+∞∑
k=1

(k + 1)

wk+2
zk

This means

℘(z) =
1

z2
+

+∞∑
k=1

(k + 1)

(∑
w∈Λ
w 6=0

1

wk+2

)
zk =

1

z2
+

+∞∑
k=1

(k + 1)Gk+2(Λ)zk =

=
1

z2
+ 3G4(Λ)z2 + 5G6(Λ)z4 + . . .

and

℘′(z) = − 2

z3
+ 6G4(Λ)z + 20G6(Λ)z3 + . . . ⇒ (℘′(z))2 =

4

z6
− 24G4(Λ)

1

z2
+ . . .

With a simple computation, one can show that h(z) := (℘′(z))2 − (4℘(z)3 − g2℘(z)− g3)

has no pole in 0 ∈ Π (each term with zn and n < 0 vanishes) and h(0) = 0. As ℘, ℘′ do
not have poles on π − {0}, h is holomorphic on Π and periodic (since ℘, ℘′ are). But a
periodic holomorphic function on C is equivalent to a holomorphic function on the compact
manifold T , which must be constant; the fact that h(0) = 0 implies h ≡ 0 as we wanted
to show.
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Theorem 3.5. The polynomial P (x) = 4x2 − g2x − g3 has three distinct zeroes if and
only if ∆ := g3

2 − 27g2
3 6= 0 (∆ is the discriminant of P ).

Proof. P has a double zero⇔ P, P ′ have a common zero. P ′(x) = 12x2− g2 ⇒ the zeroes
of P ′ are x± = ±

√
g2
12 . Now

P (x±) = x±(4x2
± − g2)− g3 = ±

√
g2

12

(
4
g2

12
− g2

)
− g3 = ∓2

3
g2

√
g2

12
− g3

Hence P (x±) = 0⇔ g2
3 = 4

9
g32
12 ⇔ g3

2 − 27g2
3 = 0.

Remark.
Notice that (℘′(z))2 = 4℘(z)3 − g2℘(z) − g3 = 4

∏3
i=1(℘(z) − ai) for some ai ∈ C which

are the zeroes of P (x) = 4x3 − g2x− g3. As ℘′(z) = 0 for z ∈ Π only if z = wi
2 , i = 1, 2, 3

and ℘
(
wi
2

)
= ui, we get (℘′(z))2 = 4

∏3
i=1(℘(z) − ui). Recall that the ui are distinct, so

P (x) has three distinct zeroes and ∆ 6= 0 (for any lattice Λ!)

Example: Let Λ = Z[i] = {n + mi : m,n ∈ Z, i2 = −1}. Notice that iΛ = Λ, thus
G6(Λ) = G6(iΛ) =

∑
w 6=0

1
(iw)6

= −
∑

w 6=0
1
w6 = −G6(Λ) ⇒ G6(Λ) = 0, and then g3 = 0,

too. ∆ 6= 0, so g2 6= 0. So we have the equation (℘′(z))2 = 4℘3 − g2℘.
In general, Gm(cΛ) = g−mGm(Λ) (and if iΛ = Λ, then i(cΛ) = c(iΛ) = cΛ). Hence,
choosing a suitable c ∈ C, we get that for Λ = cZ[i] the equation (℘′)2 = 4℘− d℘ is true,
for any choice of d 6= 0. For example, d = 4 gives

(
℘′

2

)
= ℘3 − ℘.

Moreover,

℘(iz) =
1

(iz)2
+
∑
w∈Λ
w 6=0

(
1

(iz − w)2
− 1

w2

)
= − 1

z2
+
∑
w∈Λ
w 6=0

(
1

(iz − iw)2
− 1

(iw)2

)
= −℘(z)

and then i℘′(iz) = −℘′(z)⇒ ℘′(iz) = i℘′(z).

Remark.
Similarly, one can consider Λ = Z[ρ], ρ = e

2πi
3 (hexagonal lattice). In this case g2 = 0, g3 6=

0 and ℘(ρz) = ρ℘(z), ℘′(ρz) = ℘′(z).

3.4 Tori and cubic curves

Theorem 3.6. Consider

φ : T = C/
Λ→ P2

t = π(z) 7→

(℘(z) : ℘′(z) : 1) if z 6∈ Λ

(0 : 1 : 0) if z ∈ Λ

Then φ is holomorphic with image φ(T ) = E := {(x : y : z) ∈ P2 | − y2z + 4x3 − g2xz
2 −

g3z
3 = 0}. Moreover, φ is injective and has maximal rank 1 on T .
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Proof. First we show that φ is holomorphic on T − {0}.
Let t ∈ T − {0}. Then φ(t) ∈ U2 ⊆ P2.

T − {0} ⊇ V
φ
> φ(V ) ⊆ U23(x : y : z)

C ⊇ Ṽ

(πV )−1

∨

C2

z2
∨

3
(x
z
,
y

z

)∨

We must check that F := z2 ◦φ ◦ ((πV )−1)−1 = z2 ◦φ ◦π is holomorphic on Ṽ ; this is true
since

F (z) = z2(φ(π(z))) = z2((℘(z) : ℘′(z) : 1)) = (℘(z), ℘′(z)).

φ has maximal rank in C \ Λ if and only if JCF (z) =
(
℘′(z)
℘′′(z)

)
6= ( 0

0 ) (for z ∈ C \ Λ).
Suppose not: then there exists a z such that ℘′(z) = 0, hence z = wi

2 . As we have seen,
these are simple zeroes of ℘′, hence ℘′′(wi2 ) 6= 0, a contradiction with our assumption.
Hence JCF (z) 6= 0 ∀z ∈ C \ Λ.
Now we check that φ is holomorphic in a neighborhood of 0. φ(π(0)) = (0 : 1 : 0) ∈ U1;
let Ṽ be a neighborhood of 0 ∈ C and let z ∈ Ṽ . Then

F (z) := (z1 ◦ φ ◦ ((πV )−1)−1)(z) = (z1 ◦ φ ◦ π)(z) = z1(℘(z) : ℘′(z) : 1) =

(
℘(z)

℘′(z)
,

1

℘′(z)

)
(We can divide by ℘′(z) since we are near 0). Recall that ℘(z) = 1

z2
(1 + a1z + . . .) and

℘′(z) = −2
z2

(1 + b1z + . . .), then

℘(z)

℘′(z)
= −z

2
(1 + c1z + . . .)

1

℘′(z)
= −z

3

2
(1 + d1z + . . .)

This shows that F is holomorphic in 0, so φ is holomorphic.

φ has maximal rank in t = 0 if and only if

( (
℘
℘′

)′
(z)(

1
℘′

)′
(z)

)
6= ( 0

0 ) in z = 0. A simple calculation

shows ( ℘℘′)′ (z)(
1
℘′

)′
(z)


z=0

=

(
−1

2 + . . .

−3z2

2 + . . .

)
z=0

=

(
−1

2

0

)

so φ has maximal rank in 0.
This final considerations allow us to say that φ is holomorphic and has maximal rank on
the whole T . We still have to prove that φ(T ) = E and that φ is injective.
φ(T ) ⊆ E is clear, since (℘′)2 = 4℘3 − g2℘ − g3. We prove φ(T ) ⊇ E: let P = (x :

y : z) ∈ E. If z = 0, then by the definition of E, x = 0, so P = (0 : 1 : 0) and then
P = φ(0) ∈ φ(T ). Now we assume z 6= 0, that is P = (x : y : 1). ℘ is surjective, so for
any x ∈ C, there exists a z ∈ C such that ℘(z) = x. As P ∈ E, we get

y2 = 4x3 − g2x− g3 = 4℘(z)3 − g2℘(z)− g3 = (℘′(z))2 ⇒ y = ±℘′(z)

If y = ℘′(z), P = (x : y : 1) = φ(π(z)); if y = −℘′(z), x = ℘(z) = ℘(−z) and
y = −℘′(z) = ℘′(−z), hence P = φ(π(−z)).
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φ is also injective. Let z1, z2 ∈ Π such that φ(π(z1)) = φ(π(z2)). If z1 = 0, then
φ(π(z1)) = (0 : 1 : 0) = φ(π(z2))⇒ z2 = 0. If z1, z2 6= 0, then℘(z1) = ℘(z2) ⇒ z1 = z2 ∨ z1 = −z2 + w for a suitable w ∈ Λ

℘′(z1) = ℘′(z2)

If z1 = z2 we are done. If z1 = −z2 + w, ℘′(z2) = ℘′(z1) = ℘′(−z2 + w) = −℘′(z2) ⇒
℘′(z2) = 0 → z2 = wi

2 , but also z1 =
wj
2 because ℘′(z1) = ℘′(z2). As ℘(z1) = ℘(z2), we

have ℘
(wj

2

)
= ℘

(
wi
2

)
that is ui = uj ⇒ i = j (the ui are distinct).

Remark.
Since T is compact, we get that φ : T → E is biholomorphic, so T ∼= E.
Such cubic curves E in P2 are called elliptic curves.

3.4.1 Addition law on cubic curves

We have seen that φ : T → E is a biholomorphism. T is a group, hence E inherits
a group structure. More precisely: given P,Q ∈ E, and P = φ(π(z1)), Q = φ(π(z2)),
then we define P + Q := φ(π(z1) + π(z2)) = φ(π(z1 + z2)). The neutral element is
φ(π(0)) = (0 : 1 : 0) =: O.
Let us consider a special case: z2 = −z1. ThenP = φ(π(z1)) = (℘(z1) : ℘′(z1) : 1) = (a : b : 1)

Q = φ(π(z2)) = (℘(−z1) : ℘′(−z1) : 1) = (℘(z1) : −℘′(z1) : 1) = (a : −b : 1)

So, if P = (a : b : 1) then Q = −P = (a : −b : 1). Notice that the line l = 〈P,Q〉 has
equation X = aZ and l ∩ E = {P,−P,O}.

Theorem 3.7. Let F be an elliptic function (with respect to Λ). Let α ∈ C such that
F has no poles and zeroes on C, the boundary of α+ Π. Then∑

a∈α+Π

orda(F ) · a ∈ Λ

Proof. We know (by the Argument Principle) that F ′

F = n
z−a + . . . where n = orda(F ).

Notice that z F
′

F = (a+ (z − a))F
′

F = an
z−a + . . . hence Resa

(
z F
′

F

)
= an = orda(F ) · a. So,

the theorem follows if we are able to show that

1

2πi

∫
C
z
F ′

F
dz ∈ Λ.

We divide the integral on the parallelogram C into four segments Si, i ∈ {1, 2, 3, 4}, with
S3 = S1 + w2 and S4 = S2 − w1.

I :=

∫
S1

z
F ′(z)

F (z)
dz +

∫
S3

u
F ′(u)

F (u)
dz =

∫
S1

z
F ′(z)

F (z)
dz +

∫
S1

−(z + w2)
F ′(z + w2)

F (z + w2)
dz
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Since F, F ′ are elliptic, F
′(z+w2)
F (z+w2) = F ′(z)

F (z) and then

I = −w2

∫
S1

F ′(z)

F (z)
dz =

[
d logF =

1

F
dF =

F ′

F
dz

]
= −w2 |logF |z=α+w1

z=α =

= −w2(log(F (α+ w1))− log(F (α))) = −w22πik, for some k ∈ Z.

A similar proof shows
∫
S2

+
∫
S4

= w12πil, l ∈ Z yielding

1

2πi

∫
C
z
F ′

F
dz = lw1 + (−k)w2 ∈ Λ.

Corollary. Any line M : aX + bY + cZ = 0 in P2 cuts the curve E in 3 points P =

φ(π(z1)), Q = φ(π(z2)), R = φ(π(z3)) such that z1+z2+z3 ∈ Λ (⇒ π(z1+z2+z3) = 0 ∈ T ,
so P +Q+R = O in E).

Proof. Let b = 0 (then O = (0 : 1 : 0) ∈ M). Then M is aX + cZ = 0: if a = 0, we get
M : Z = 0 and clearly M ∩ E = {O,O,O} that is ok. If a 6= 0, then M : X = −

(
c
a

)
Z

and we already know we get M ∩E = {P,−P,O}, with P = (x : y : 1) and x = − c
a . This

is ok again, since P = φ(π(z)),−P = φ(π(−z)), O = φ(π(0)) and z + (−z) + 0 = 0.
Now let b 6= 0. Then M ∩ E = φ({π(z) ∈ T − {0} | a℘(z) + b℘′(z) + c}). In general,
a function f(z) = m℘(z) + n℘′(z) + q with n 6= 0 is elliptic, has a pole of order 3 in
0 (since ℘′(z) has) and is holomorphic on C \ Λ, so has degree 3. The elliptic function
a℘(z) + b℘′(z) + c has degree 3, so has 3 zeroes in α+ Π, say z1, z2, z3, and a pole of order
3 in w ∈ (α+ Π) ∩ Λ. By previous theorem,

1 · z1 + 1 · z2 + 1 · z3 + 3 · w ∈ Λ ⇒ z1 + z2 + z3 ∈ Λ

So, given P,Q ∈ E, let M = 〈P,Q〉 be the line spanned by P and Q. By the above
corollary, E ∩M = {P,Q,R} and moreover P +Q+R = O.

Definition 3.8. Given P,Q ∈ E elliptic curve, we define P + Q := −R, where R is the
point on E as found in the above construction. (To find "explicitly" the point −R, note
that 〈R,O〉 cuts E in {R,O,−(R+O) = −R}).

Corollary. The addition law + defined above endows an elliptic curve E with a group
structure.

The proof of this corollary is quite straightforward (simply check the group definition,
using previous results). It is still possible to prove it without using elliptic functions, but
in that case, proving associativity of + is more complicated.

If g2, g3 ∈ Q, then E(Q) := {(x, y) ∈ Q2 | y2 = 4x3 − g2x − g3} ∪ {O} is an abelian
group. More generally, the following theorem holds:
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Theorem 3.8 (Mordell’s theorem). E(Q) ∼= ZN⊕T with T finite (T is the "torsion"
group). The integer N is called rank of E.

One of the main problems is: which are the possible values for N? Until now, math-
ematicians have found cubics with rank ≤ 30, but we have no clue whether N is even
bounded. The Birch-Swinnerton-Dyer conjecture (currently, one of the millennium prize
problems), if proven true, would give a way to determine N .

Exercise: Find P ∈ E such that 3P = O (flexes of E).
In general, the points P, P,−2P ∈ E stay on the same line, since their sum is O (this line
is the tangent line to E in P because it has a double zero in P ). But 3P = O means
P = −2P , that is: in our case, the line has a flex in P . We notice

{flexes on E} = {P ∈ E | 3P = O} = {z ∈ Π | 3z ∈ Λ}

If z = sw1 + tw2, 0 ≤ s, t < 1 the above condition is equivalent to 3z = (3s)w1 + (3t)w2 ∈
Λ⇒ s, t ∈ {0, 1

3 ,
2
3}, so a cubic E has nine flexes in total.

Remark.
Any smooth cubic curve C in P2 has nine flexes; choosing coordinates such that (0 : 1 : 0)

is a flex and z = 0 is the flex line, then the equation of C becomes

y2 + a1xy + a3y = x3 + a2 + a4x+ a6 ai ∈ C

It is possible to show that, in suitable coordinates, C has equation

y2 = 4x3 − g2x− g3

There is a theorem which asserts that if ∆ = g3
2 − 27g2

3 6= 0 for g2, g3 ∈ C (this condition
is equivalent to C smooth), then there exists a lattice Λ such that g2 = 60G4(Λ) and
g3 = 140G6(Λ). This leads us to a conclusion:

Any smooth cubic in P2 is isomorphic to a T = C/
Λ.

3.4.2 Isomorphisms between tori

Let T1, T2 be tori, Ti ∼= C/
Λi

and let Ti ∼= Ei, cubic curves with equation Ei : y2 = 4x3 −
aix− bi (ai = g2(Λi), bi = g3(Λi)). Let ψ : T1 → T2 be an isomorphism; up to translation,
we can assume ψ(0) = 0.
Let fi be the meromorphic function on Ti such that fi ◦ πi is the ℘-function for Λi (here
πi : C → C/

Λi
is the quotient map). Similarly, let gi be the map such that gi ◦ πi is ℘′

(relatively to Λi). Then we have

g2
i = 4f3

i − aifi − bi on Ti

and fi, gi are holomorphic on Ti − {0} with a pole of order 2 (3 for gi) in 0. Hence
f2 ◦ ψ, g2 ◦ ψ are holomorphic on T1 − {0} and have a pole of order 2 (3 for g2 ◦ ψ) in
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0 ∈ T1. Thus, there is an a ∈ C, a 6= 0 such that f2 ◦ ψ − af1 has a pole of order ≤ 1

in 0 ∈ T1 and is holomorphic on T1 − {0}. Hence, by corollary of proposition 3.1, this
function is constant, so f2 ◦ ψ = af1 + b, b ∈ C. Similarly, ∃c, d, e ∈ C, c 6= 0 such that
g2 ◦ ψ = cg1 + df1 + e.

T1
ψ
> T2

E1

φ1
∨

..........
h
> E2

φ2
∨

We obtained that E1 3 (x : y : 1) = (f1(t) : g1(t) : 1), t ∈ T1 gets mapped through h in
(f2(ψ(t)) : g2(ψ(t)) : 1) = (af1(t) + b : g1(t) + df1(t) + e : 1), i.e. h : (x : y : 1) 7→ (ax+ b :

dx+ cy + e : 1). So h is a linear map!
On T2, we have

g2
2 = 4f3

2 − a2f2 − b2
ψ
 (cg1 + df1 + e)2 = 4(af1 + b)3 − a2(af1 + b)− b2

(cg1 + df1 + e)2 = "even part" +

"odd part"︷ ︸︸ ︷
2cdf1g1 + 2ceg1, but the right hand side in the previous

equation is an even function. Since the equality must be true for all t ∈ T1, the "odd part"
is identically zero for all t ∈ T1; moreover, f1g1 has a pole of order 5, g1 a pole of order 3,
but they can’t cancel. Then cd = 0, ce = 0, but c 6= 0⇒ d = e = 0. Thus

(cg1)2 = 4(af1 + b)3 − a2(af1 + b)− b2 (from what we have said before)

c2 · g2
1 = (4f3

1 − a1f1 − b1) · c2 (differential equation for ℘ in T1)

⇒ 0 = 4(a3 − c2)f3
1 + 12a2bf2

1 + . . . (subtract the two equations)

Again, the equality must hold for all t ∈ T1, but f3
1 and f2

1 have poles of order 6 and 4,
respectively. Then a3 = c2, a2b = 0; a 6= 0, so b = 0, a3 = c2. Let λ ∈ C such that λ2 = a,
then c2 = λ6 ⇒ c = λ3 or c = (−λ)3. In both cases a = µ2, c = µ3, where µ = ±λ. Thus

f2 ◦ ψ = µ2f1 g2 ◦ ψ = µ3g1

This means: if there exists an isomorphism between E1 and E2, this must be of the form

h : E1 → E2

(x : y : 1) 7→ (µ2x : µ3y : 1)

The relation y2 = 4x3 − a1x− b1 holds for any (x : y : 1) ∈ E1, but we have also

(µ3y)2 = 4(µ2x)3 − a2µ
2x− b2 ⇒ µ6y2 = 4µ6x3 − a2µ

2x− b2 ⇒ y2 = 4x3 − a2

µ4
x− b2

µ6

Thus we get:

Corollary. Let Ei : y2 = 4x3 − aix − bi be cubic curves. Then E1
∼= E2 if and only if

a1 = a2
µ4

and b1 = b2
µ6
, for some µ ∈ C, µ 6= 0.

There is a numerical invariant for isomorphic elliptic curves. It is indeed possible to
prove that E1

∼= E2 if and only if j(E1) = j(E2), where j(y2 = 4x3 − g2x − g3) :=

1728
g32

g32−27g23
. Moreover, ∀c ∈ C, there always exists a lattice Λ such that j(T

/
Λ) = c.


