
KÄHLER GEOMETRY AND HODGE THEORY

ANDREAS HÖRING

The aim of these lecture notes is to give an introduction to analytic geometry,
that is the geometry of complex manifolds, with a focus on the Hodge theory of
compact Kähler manifolds. It starts with an introduction to complex manifolds
and the objects naturally attached to them (differential forms, cohomology theo-
ries, connections...). In Section 2 we will also study the positivity of holomorphic
line bundles and make the relation with intersection theory of curves on compact
complex surfaces. In Section 3 the analytic results established in the Appendix A
(by O. Biquard) are used to prove the existence of the Hodge decomposition on
compact Kähler manifolds. Finally in Section 4 we prove the Kodaira vanishing
and embedding theorems which establish the link with complex algebraic geometry.

Among the numerous books on this subject, we especially recommend the ones by
Jean-Pierre Demailly [Dem96], Claire Voisin [Voi02] and Raymond Wells [Wel80].
Indeed our presentation usually follows closely one of these texts.
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1. Complex manifolds

In this chapter we will see that complex manifolds are differentiable manifolds
whose transition functions are holomorphic and we will adapt the notions of tangent
bundle and differential forms to this new context. In analogy to the definition
of the de Rham cohomology in differential geometry, we will use the calculus of
(p, q)-forms and the differential operator ∂ to define the Dolbeault cohomology
groups of a complex manifold. The subject of the Hodge Theorem 3.36 is to relate
this cohomology theory to de Rham cohomology, but this needs serious technical
preparation and will be the subject of the following sections.

Throughout the whole text, we assume that the reader is familiar with the basic
notions of differential geometry as explained in [Biq08]. We will use the term
differentiable as a synonym for smooth or C∞1. Let U ⊂ Cn be an open subset
and f : U → C be any complex-valued function. We say that f is differentiable if
for some R-linear identification Cn ' R2n and C ' R2, the composition f : U ⊂
R2n → C ' R2 is differentiable. It is straightforward to see that this definition
does not depend on the choice of the identifications.

1.A. Holomorphic functions in several variables. In this section we recall
very briefly the notions from holomorphic function theory of several variables. A
reader who is not so familiar with this subject may want to consult [Voi02, Ch.1].
For a much more ample introduction to the function theory of several complex
variables, [Gun90, KK83, LT97] are standard references.

1.1. Definition. Let U ⊂ Cn be an open subset, and let f : U → C be a (complex-
valued) differentiable function. We say that f is holomorphic in the point a ∈ U if
for all j ∈ {1, . . . , n} the function of one variable

zj 7→ f(a1, . . . , aj−1, zj , aj+1, . . . , an)

is holomorphic in aj .

1.2. Exercise. Let U ⊂ Cn be an open subset, and let f : U → C be a differentiable
function.

a) Denote by z1, . . . , zn the standard coordinates on U , and by xj (resp. yj) their
real and imaginary parts. Show that f is holomorphic in a ∈ U if and only if

∂f

∂zj
(a) := 1

2

(
∂f

∂xj
+ i

∂f

∂yj

)
(a) = 0 ∀ j = 1, . . . , n.

b) For a ∈ U , consider the R-linear application given by the differential

dfa : Cn → C.

Show that the function f is holomorphic in a if and only if dfa is C-linear. �

1In many cases, the C∞-condition is actually much more than what we will need. For the sake
of simplicity we will make this assumption throughout the whole text.
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1.3. Definition. Let a ∈ Cn be a point. The polydisc around a with multiradius
R ∈ (R+)n is the set

D(a,R) := {z ∈ Cn | |zj − aj | < Rj for all j ∈ {1, . . . , n}}.

If R = (1, . . . , 1) and a = 0, we abbreviate D(0, R) by Dn and call Dn the unit disc
in Cn.

1.4. Theorem. [Voi02, Thm.1.17] Let U ⊂ Cn be an open subset, and let f : U →
C be a differentiable function. The function f is holomorphic in every point z0 ∈ U
if and only if it satisfies one of the following conditions:

(1) For every point a ∈ U there exists a polydisc D ⊂ U such that the power
series

f(a+ z) =
∑
I

αIz
I ,

converges for every a+ z ∈ D.
(2) If D = D(a, r) is a polydisc contained in U , then for every z ∈ D

f(z) =
(

1
2πi

)n ∫
|ζj−aj |=rj

f(ζ) dζ1
ζ1 − z1

∧ . . . ∧ dζn
ζn − zn

1.5. Exercise. (Maximum principle) Let f : U ⊂ Cn → C be a holomorphic
function. If |f | admits a local maximum in a point z0 ∈ U , there exists a polydisc
D around z0 such that f |D is constant. �

The notion of holomorphic function immediately generalises to the case of a map
with values in Cm.

1.6. Definition. Let U ⊂ Cn be an open subset, and let f : U → Cm be a
differentiable map. We say that f is holomorphic in the point z0 ∈ U if f1, . . . , fm
are holomorphic in z0 for every j = 1, . . . ,m.

A holomorphic map f : U → Cn is locally biholomorphic in the point z0 ∈ U if
there exists a neighbourhood V ⊂ U of z0 such that f |V is bĳective onto f(V ) and
f |−1
V is holomorphic. It is biholomorphic if it is bĳective on its image and locally

biholomorphic in every point.

1.7. Definition. Let U ⊂ Cn be an open subset, and let f : U → Cm be a
holomorphic map. The Jacobian matrix of f at a point a ∈ U is the matrix

Jf (a) =
(
∂fk
∂zj

(a)
)

16k6m,16j6n

.

As for differentiable maps, a holomorphic map whose Jacobian matrix has locally
constant rank admits locally a simple representation:

1.8. Theorem. (Rank theorem, [KK83, Thm.8.7]) Let U ⊂ Cn be an open subset,
let f : U → Cm be a holomorphic map, and let z0 ∈ U be a point such that Jf (z) has
constant rank k in a neighbourhood of z0. Then there exist open neighbourhoods
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z0 ∈ V ⊂ U and f(z0) ∈ W ⊂ Cm and biholomorphic mappings φ : Dn → V and
ψ : W → Dm such that φ(0) = z0, ψ(f(z0)) = 0 and

ψ ◦ f ◦ φ : Dn → Dm

is given by
(z1, . . . , zn) 7→ (z1, . . . , zk, 0, . . . , 0).

1.9. Exercise. Let f : U ⊂ Cn → Cn be a holomorphic map. Show that f is
locally biholomorphic in the point z0 ∈ U if and only if

det Jf (z0) 6= 0.

�

1.10. Exercise. (Cauchy-Riemann equations) Let U ⊂ Cn be an open subset, and
let f = (f1, . . . , fm) : U → Cm be a differentiable function such that

fj(z) = fj(z1, . . . , zn).

Set
xk = Re(zk), yk = Im(zk) and uj = Re(fj), vj = Im(fj)

for all j ∈ {1, . . . ,m} and k ∈ {1, . . . , n}. Show that f is holomorphic if and only if
∂uj
∂xk

= ∂vj
∂yk

,
∂uj
∂yk

= − ∂vj
∂xk

for all j ∈ {1, . . . ,m} and k ∈ {1, . . . , n}. �

1.11. Exercise. Let V ⊂ Cn be a simply connected open subset. Let φ : V → R be
a differentiable pluriharmonic function, i.e. a function such that for every a, b ∈ Cn

the restriction of φ to the line V ∩ {a+ bζ | ζ ∈ C} is harmonic. Then there exists
a holomorphic function f : V → C such that Re(f) = φ. �

1.12. Theorem. (Hartog’s theorem) Let ∆ be a polydisc of dimension at least
two, and let f : ∆ \ 0→ C be a holomorphic function. Then there exists a unique
holomorphic function f̄ : ∆→ C such that f̄ |∆\0 = f .

1.B. Complex manifolds.

1.13. Definition. A complex manifold of dimension n is a connected Hausdorff
topological space X such that there exists a countable covering (Ui)i∈I by open
sets and homeomorphisms φi : Ui → Vi onto open sets Vi ⊂ Cn such that for all
(i, j) ∈ I × I, the transition functions

φj ◦ φ−1
i |φi(Ui∩Uj) : φi(Ui ∩ Uj)→ φj(Ui ∩ Uj)

are biholomorphic. We call the collection (Ui, φi)i∈I a complex atlas of the manifold.

A complex manifold is compact if the underlying topological space is compact.

As in the case of differential geometry [Biq08, Ch.1.2], we say that two atlas are
equivalent if their union is still an atlas. This defines an equivalence relation on the
set of complex atlas on X.
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1.14. Definition. A complex structure on X is the data of an equivalence class of
a complex atlas on X.

1.15. Remark. Note that in contrast to differentiable manifolds, it is in general
not possible to choose the whole affine space is a coordinate chart: just take X = D
the unit disc, then by Liouville’s theorem there is no non-constant holomorphic
map C → D. We say that a complex manifold X is (Brody-)hyperbolic if it does
not admit non-constant holomorphic maps f : C → X. Deciding whether certain
manifolds are hyperbolic is a very active (and difficult!) research subject.

1.16. Examples.

1. Let U ⊂ Cn be an open set. Then U is a complex manifold, an atlas is given by
one chart.

2. More generally let X be a complex manifold of dimension n, and let U ⊂ X

be a connected open set. Then U has an induced structure of complex manifold of
dimension n.

3. Let Λ ⊂ Cn be a lattice of rank 2n. Then the quotient group X := Cn/Λ
endowed with the quotient topology has a unique holomorphic structure induced
by the standard holomorphic structure on Cn (cf. Exercise 1.17). We call X a
complex torus2.

4. Let V be a complex vector space of dimension n + 1 and let P(V ) be the set
of complex lines in V passing through the origin, i.e. the set of complex subvector
spaces of dimension one. If v ∈ V \ 0 is a point, then Cv, the complex vector
space generated by v is an element of P(V ) which we denote by [v]. Furthermore
if v′ = λv for some λ ∈ C∗, then [v′] = [v]. Vice versa if l ∈ P(V ), there exists
a v ∈ V \ 0 such that l = [v] and v is unique up to multiplication by an element
λ ∈ C∗. Therefore we have a surjective map

π : V \ 0→ P(V ), v 7→ [v]

and we endow P(V ) with the quotient topology defined by π and the standard
topology on V .

Let V ' Cn+1 be a C-linear isomorphism, then we can write v = (v0, . . . , vn) and
we call

[v0 : . . . : vn]
homogeneous coordinates of [v] ∈ P(V ). As in the case of the real projective space,
we can then define a structure of complex manifold on P(V ) as follows: for every
i ∈ {0, . . . , n}, set

Ui := {[v] ∈ P(V ) | vi 6= 0}
and

φi : Ui → Cn, [v] 7→ (v0
vi
, . . . ,

v̂i
vi
, . . . ,

vn
vi

).

2In the sequel whenever we writeX := Cn/Λ, we implicitly assume that the lattice has maximal
rank. Equivalently X is always supposed to be compact.
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With this definition we have

φi(Ui ∩ Uj) = {(z1, . . . , zn) | zj 6= 0},

so the transition functions φj ◦ φ−1
i |φi(Ui∩Uj) : φi(Ui ∩ Uj)→ φj(Ui ∩ Uj) given by

(z1, . . . , zn) 7→ [z1 : . . . : zi−1 : 1 : zi : . . . : zn] 7→ (z1
zj
, . . . ,

ẑj
zj
, . . . ,

zi−1

zj
,

1
zj
,
zi
zj
, . . . ,

zn
zj

)

are well-defined and biholomorphic. One checks easily that the complex structure
on P(V ) does not depend on the choice of the isomorphism V ' Cn+1.

Very often we will denote by Pn the projective space P(Cn+1).

1.17. Exercise. Let X be a complex manifold, and let Γ be a subgroup of the
group of automorphisms of X. We say that Γ acts properly discontinuous on X if
for any two compact subsets K1,K2 ⊂ X, we have

γ(K1) ∩K2 6= ∅

for at most finitely many γ ∈ Γ. The group acts without fixed points if

γ(x) 6= x ∀ γ ∈ Γ.

Suppose that Γ acts properly discontinuous and without fixed points on X, and
denote by X/Γ the set of equivalence classes under this action. Show that X/Γ
admits a unique complex structure such that the natural map π : X → X/Γ is
holomorphic and locally biholomorphic. �

1.18. Exercise. Show that as a differentiable manifold, we have

Pn ' S2n+1/S1,

where S2n+1 ⊂ Cn+1 ' R2n+2 denotes the unit sphere and S1 ⊂ C acts on Cn+1

by scalar multiplication

S1 × Cn+1 → Cn+1, (λ, x) 7→ λ · x.

In particular the topological space Pn(C) is compact. �

1.19. Exercise. (Grassmannian) Let V be a complex vector space of dimension n.
For an integer 0 < r < n, we define the Grassmannian as the set

Gr(V ) := {S ⊂ V subspace of dimension r}.

Fix a Hermitian product on V and denote by UV ⊂ GL(V,C) the unitary group
with respect to this metric. Show that we have a surjective map

UV → Gr(V ).

We endow Gr(V ) with the quotient topology induced by the surjection UV →
Gr(V ). Show that Gr(V ) is a compact topological space.

We define an atlas on Gr(V ) as follows: for any Ti ⊂ V a subspace of dimension
n− r, set

Ui := {S ⊂ V of dimension r | S ∩ Ti = 0}.
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Choose an arbitrary Si ∈ Ui, then we can define

φi : Ui → Hom(Si, Ti) ' Cr(n−r)

by associating to S ∈ Ui the unique linear map f ∈ Hom(Si, Ti) such that

S ⊂ V = Si ⊕ Ti
is the graph of f . Show that the maps φi = φi(Si, Ti) define a complex atlas on
Gr(V ). �

1.20. Exercise. (Hopf varieties) Let λ be a real number such that 0 < λ < 1. We
define a group action

Z× (Cn \ 0)→ (Cn \ 0), (m, z) 7→ λmz,

and denote by H the quotient (Cn \ 0)/Z. Show that H admits the structure of a
complex manifold and is diffeomorphic to S2n−1 × S1. Hint: note that Cn \ 0 is
diffeomorphic to S2n−1 × R+. �

1.21. Definition. Let X (resp. Y ) be a complex manifold of dimension n (resp.
m) and denote by (Ui, φi : Ui → Vi)i∈I (resp. (Mj , ψj : Mj → Nj)j∈J) the
corresponding atlas. A holomorphic map from X to Y is a continuous map f :
X → Y such that for every (i, j) ∈ I × J , the map

φj ◦ f ◦ φ−1
i : Vi ⊂ Cn → Nj ⊂ Cm

is holomorphic.

A holomorphic function on a complex manifold X is a holomorphic map f : X → C.

1.22. Example. The Hopf varieties (cf. Exercise 1.20) admit a holomorphic map
f : H → Pn−1 defined as follows: by definition

H = (Cn \ 0)/Z and Pn−1 = (Cn \ 0)/C∗

and it is straightforward to see that the projection π : Cn \ 0 → Pn−1 factors
through the projection π : Cn \ 0→ H.

1.23. Exercise. Show that the fibres of f are elliptic curves. �

1.24. Exercise. Let V be a complex vector space of dimension n, and fix an
integer 0 < r < n. Show that there exists a natural biholomorphism between the
Grassmannians (cf. Exercise 1.19)

Gr(V )→ Gn−r(V ∗),

where V ∗ is the dual space of V . �

1.25. Exercise. Show that a holomorphic function on a compact complex manifold
is constant. �

1.26. Remark. We define the category of complex manifolds as the topological
spaces that locally look like open sets in some Cn and the holomorphic functions as
the holomorphic maps to C. While this approach is very close to the corresponding
definitions in differential geometry, an equivalent approach that is closer to the
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spirit of modern algebraic geometry is to define a complex manifold as a ringed space
(X,OX) whereX is a topological space and OX is the structure sheaf (cf. Definition
1.57), i.e. the sheaf of rings whose sections we define to be the holomorphic ones.
For more details on this point of view, cf. [Wel80, Ch.1].

1.27. Definition. A holomorphic map f : X → Y is a submersion (resp. immer-
sion) if for every x ∈ X, there exists a coordinate neighbourhood of x such that
the Jacobian of f has the maximal rank dimY (resp. dimX). A holomorphic map
f : X → Y is an embedding if it is an immersion and f is a homeomorphism from
X onto f(X).

1.28. Remark. It is an easy exercise to check that the rank of the Jacobian does not
depend on the choice of the coordinate charts. Note also that a proper holomorphic
map f : X → Y is an embedding if and only if it is injective and immersive.

1.29. Definition. Let X be a complex manifold of dimension n, and let Y ⊂ X be
a closed connected subset. Then Y is a submanifold of X of codimension k if for
each point x ∈ Y , there exist an open neighbourhood U ⊂ X and a holomorphic
submersion f : U → Dk such that U ∩ Y = f−1(0).

1.30. Example. Let X and Y be complex manifolds of dimension n and m respec-
tively. Let f : X → Y be a holomorphic map, and y ∈ Y such that the Jacobian
Jf has rank m for every x ∈ f−1(y). Then the fibre f−1(y) is a submanifold of
dimension n−m.

1.31. Exercise.

a) Show that a submanifold of a complex manifold is a complex manifold.

b) Show that the image of an embedding f : X → Y is a submanifold of Y . �

1.32. Exercise. Let X be a compact complex submanifold of Cn. Show that X
has dimension zero (Hint: cf. Exercise 1.25). �

1.33. Exercise. (1-dimensional complex tori)

Let Λ ⊂ C be a lattice, and let X := C/Λ be the associated complex torus.

a) Show that X is diffeomorphic to S1 × S1.

b) Let ϕ : C/Λ → C/Λ′ be a biholomorphic map such that ϕ(0) = 0. Show that
there exists a unique α ∈ C∗ such that αΛ = Λ′ and such that the diagram

C

π

z 7→αz
C

π′

C/Λ
ϕ

C/Λ′

commutes. Hint: recall (or prove) that the group of biholomorphic automorphisms
of C is Aut(C) = {z 7→ αz + β | α ∈ C∗, β ∈ C}.

c) Show that X is biholomorphic to a torus of the form X(τ) := C/(Z + Zτ) where
τ ∈ C such that Im(τ) > 0.
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d) Let H := {τ ∈ C | Im(τ) > 0} be the Poincaré upper half plane. We define a
group action

SL(2,Z)×H→ H, (
(
a b

c d

)
, τ) 7→ aτ + b

cτ + d
.

Show that the biholomorphic equivalence classes of complex tori of dimension 1
have a natural bĳection with H/SL(2,Z).

Remark: the set H/SL(2,Z) has a natural complex structure. „The J-invariant “
defines a biholomorphism H/SL(2,Z)→ C (cf. e.g. [Eke06]). �

1.34. Definition. A projective manifold is a submanifold X ⊂ PN such that there
exist homogeneous polynomials f1, . . . , fk ∈ C[X0, . . . , XN ] of degree d1, . . . , dk
such that

X = {x ∈ PN | f1(x) = . . . = fk(x) = 0}.

Let f1, . . . , fk ∈ C[X0, . . . , XN ] be homogeneous polynomials. We will establish a
sufficient (but not necessary!) condition for the closed set

X = {x ∈ PN | f1(x) = . . . = fk(x) = 0}

to be a submanifold of PN .

Let π : CN+1 \ 0→ PN be the projection map, we call π−1(X) the affine cone over
X. It is straightforward to see that

π−1(X) = {x ∈ (CN+1 \ 0) | f1(x) = . . . = fk(x) = 0},

where we consider the fj as polynomials on CN+1. Suppose now that for every
x ∈ π−1(X), the Jacobian matrix

J =
(
∂fj
∂zl

)
16j6k,06l6N

has rank k. Then π−1(X) is a submanifold of (CN+1 \ 0) of dimension N + 1− k.
A straightforward computation shows that X is a submanifold of PN of dimension
N − k.

1.35. Definition. A projective submanifold X ⊂ Pn of dimension m defined by
n−m homogeneous polynomials of degree d1, . . . , dn−m such that the Jacobian has
rank n−m in every point is called a complete intersection.

1.36. Exercise. Let f1, . . . , fk ∈ C[X0, . . . , XN ] be homogeneous polynomials of
degree d1, . . . , dk and set

X := {x ∈ PN | f1(x) = . . . = fk(x) = 0}.

Show that X is a submanifold of codimension m if and only if the Jacobian matrix

J =
(
∂fj
∂zl

)
16j6k,06l6N

has rank m for every point in the affine cone π−1(X). �
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1.37. Exercise. Let f ∈ C[X0, . . . , XN ] be a homogeneous irreducible polynomial
and set

X := {x ∈ PN | f(x) = 0}.
Then the hypersurface X is smooth, i.e. a submanifold, if and only if

{x ∈ PN | ∂f

∂X0
(x) = . . . = ∂f

∂XN
(x) = 0}

is empty. Show that this criterion is not true for homogeneous polynomials that
are reducible.

Hint: this exercise is more difficult than it seems at first glance. You will need the
Jacobian criterion for smoothness, e.g. [Fis76, 2.15]. �

1.38. Exercise. Show that

C := {[X : Y : Z : T ] ∈ P3 | XT − Y Z = Y 2 −XZ = Z2 − Y T = 0}

is a submanifold of dimension one of P3. Can you find two homogenuous polyno-
mials f1, f2 such that, as a set,

C = {[X : Y : Z : T ] ∈ P3 | f1([X : Y : Z : T ]) = f2([X : Y : Z : T ]) = 0} ?

What is the rank of the Jacobian matrix? �

1.39. Exercise. Let V be a complex vector space of dimension n, and fix an integer
0 < k < n. Let Gk(V ) be the Grassmannian defined in Exercise 1.19. We define a
map

ψ : Gk(V )→ P(
k∧
V )

as follows: let U ⊂ V be a subspace of dimension k and let u1, . . . , uk be a basis of
U . The multivector

u1 ∧ . . . ∧ uk
gives a point in P(

∧k
V ).

a) Show that ψ is well-defined, i.e. does not depend on the choice of the basis.
Show that ψ defines an embedding, the Plücker embedding.

b) Show that Gk(V ) is a projective manifold.

Hint: show that imψ can be identified with the set of multivectors w ∈
∧k

V that
are decomposable, i.e. there exists vectors v1, . . . , vk ∈ V such that

w = v1 ∧ . . . ∧ vk.

For every w ∈
∧k

V consider the linear map

φw : V →
k+1∧

V, v 7→ v ∧ w.

and prove that w is decomposable if and only if rkφw 6 n− k.

c) Set V := C4, and let e1, . . . , e4 be the canonical basis. Every 2-vector w ∈
∧2 C4

has a unique decomposition

w = X0e1 ∧ e2 +X1e1 ∧ e3 +X2e1 ∧ e4 +X3e2 ∧ e3 +X4e2 ∧ e4 +X5e3 ∧ e4.
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Show that for the homogeneous coordinates [X0 : . . . : X5] on P(
∧2 C4), the Plücker

embedding of G(2,C4) in P(
∧2 C4) ' P5 has the equation

X0X5 −X1X4 +X2X3 = 0.

�

The statement b) of the preceding exercise has the following vast generalisation.

1.40. Theorem. (Chow’s theorem) Let X be a compact complex manifold that
admits an embedding X ↪→ PN into some projective space. Then X is algebraic,
i.e. defined by a finite number of homogeneous polynomials.

1.C. Vector bundles. We will now define two different notions of vector bundles.
Complex vector bundles are just differentiable vector bundles with complex values
while holomorphic bundles have holomorphic transition functions.

1.41. Definition. Let X be a differentiable manifold. A complex vector bundle
of rank r over X is a differentiable manifold E together with a surjective map
π : E → X such that

(1) for every x ∈ X, the fibre Ex := π−1(x) is isomorphic to Cr

(2) for every x ∈ X, there exists an open neighbourhood U of x and a diffeo-
morphism h : π−1(U)→ U × Cr such that

π|π−1(U) = p1 ◦ h

and for all x ∈ U ,
p2 ◦ h : Ex → Cr

is a C-vector space isomorphism3. We call (U, h) a local trivialisation of
the vector bundle E.

We call E the total space of the vector bundle and X the base space.

Let (Uα, hα) and (Uβ , hβ) be two local trivialisations of E, then the map

hα ◦ h−1
β : (Uα ∩ Uβ)× Cr → (Uα ∩ Uβ)× Cr

induces a differentiable map

gαβ : Uα ∩ Uβ → GL(C, r)

where gαβ(x) is the C-linear isomorphism hxα ◦ (hxβ)−1 : Cr → Cr. The functions
gαβ are called the transition functions of the vector bundle E.

1.42. Exercise. Show that the transition functions satisfy the cocycle relations

gαβ ◦ gβγ ◦ gγα = Id

on Uα ∩ Uβ ∩ Uγ and
gαα = Id

3Throughout the whole text we will denote by p1 : X × Y → X and p2 : X × Y → Y the
natural projection on the first and second factor of a product X × Y .
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on Uα. Vice versa given an open covering Uα and a collection of functions gαβ :
Uα ∩ Uβ → GL(C, r) that satisfy these relations, there exists a unique complex
vector bundle E with these transition functions. �

1.43. Example. Let X be a differentiable manifold, then its tangent bundle TX
is a real vector bundle of rank dimR X =: n over X. The complexified vector
bundle TX ⊗R C is a complex vector bundle of rank n over X. More precisely, let
gαβ : Uα ∩ Uβ → GL(R, n) be the transition functions of TX . Using the inclusion
GL(R, n) ⊂ GL(C, n), we define TX ⊗R C as the complex vector bundle given by
the transition functions gαβ : Uα ∩ Uβ → GL(C, n). We will study this example in
detail in Subsection 1.D.

1.44. Definition. Let X be a complex manifold. Let π : E → X be a complex
vector bundle given by transition functions gαβ : Uα ∩ Uβ → GL(C, r). The vector
bundle is holomorphic if the transition functions gαβ are holomorphic.

1.45. Exercise. Let π : E → X be a holomorphic vector bundle over a complex
manifold X. Show that the total space E is a complex manifold. �

The trivial bundleX×Cr is of course a holomorphic vector bundle. More interesting
and very important in the following is the tangent bundle.

1.46. Definition. Let X be a complex manifold of dimension n and denote by
(Ui, φi : Ui → Vi)i∈I the corresponding atlas. We define the holomorphic tangent
bundle TX as the vector bundle of rank n that is trivial over Ui for every i ∈ I and
the transition morphisms

Uα ∩ Uβ × Cn ⊂ Uβ × Cn → Uα ∩ Uβ × Cn ⊂ Uα × Cn

are given by
(u, v) 7→ (u, Jφα◦φ−1

β
,u(v)),

where Jφα◦φ−1
β
,u is the Jacobian matrix of φα ◦ φ−1

β at the point u.

1.47. Remark. As in the case of real differential geometry, one can define the
tangent bundle in terms of equivalence classes of paths through a point [Biq08,
Ch.1.3].

Yet another way of seeing the tangent bundle is in terms of derivations (cf. also
[Wel80, p.15f]): for any open set U ⊂ X, let OX(U) be the C-algebra of holomorphic
functions f : U → C. For a point x ∈ X we set

OX,x := lim
−→

x∈U⊂Xopen
OX(U),

the C-algebra of germs of holomorphic functions. A derivation of the algebra OX,x
is a C-linear map D : OX,x → C that satisfies the Leibniz rule

D(fg) = D(f) · g(x) + f(x) ·D(g) ∀ f, g ∈ OX,x.

The tangent space of X at x is the space of all derivations of OX,x.
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1.48. Exercise. Let V be a complex vector space of dimension n and fix an integer
0 < r < n. The Grassmannian Gr(V ) parametrises the subspaces of dimension r
of V , and we denote by [U ] ∈ Gr(V ) the point corresponding to U ⊂ V . In this
spirit we define the total space of the tautological vector bundle Ur(V ) as

{([U ], x) ∈ Gr(V )× V | x ∈ U} ⊂ Gr(V )× V.

The projection on the first factor gives a map π : Ur(V )→ Gr(V ). Show that this
defines a holomorphic vector bundle of rank r. �

1.49. Examples. A very useful tool for constructing vector bundles is to take
well-known constructions from linear algebra and use Exercise 1.42 to show that
these constructions ”glue“ together to a vector bundle. More precisely let X be a
complex manifold, and let E and F be complex (resp. holomorphic) vector bundles
over X. Then one can define the following complex (resp. holomorphic) vector
bundles over X.

• E ⊕ F , the direct sum.
• E ⊗ F , the tensor product.
• Hom(E,F ), the vector bundle of fibrewise C-linear maps from E to F .
• E∗ := Hom(E,C), the fibrewise C-linear maps from E to C.
•
∧k

E, the k-th exterior algebra of E, in particular the determinant bundle
detE :=

∧rkE
E.

• SkE, the k-th symmetric product of E.

Let us show for two examples how these constructions work: let Uα be an open cov-
ering of X that trivialises both E and F , and let gαβ : Uα ∩Uβ → GL(C, rkE) and
hαβ : Uα ∩Uβ → GL(C, rkF ) be the transition functions for E and F respectively.
Then E ⊕ F is the vector bundle of rank rkE + rkF with transition functions

fαβ :=
(
gαβ 0
0 hαβ

)
.

It is straightforward to see that fαβ satisfies the cocycle relations.

Analogously E∗ := Hom(E,C) is the vector bundle of rank rkE with transition
functions

fβα := gtαβ ∈ GL(C, rkE).

Then we have

fαβ ◦ fβγ ◦ fγα = gtβα ◦ gtγβ ◦ gtαγ
= (g−1

αβ )t ◦ (g−1
βγ )t ◦ (g−1

γα )t

= (gtγα ◦ gtβγ ◦ gtαβ)−1

= ((gαβ ◦ gβγ ◦ gγα)t)−1 = Id

1.50. Definition. Let X be a complex manifold, and denote by TX its tangent
bundle. We call

ΩX := T ∗X
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the cotangent bundle,
KX := detΩX

the canonical bundle and
K∗X = detTX

the anticanonical bundle of X.

1.51. Definition. Let X be a complex manifold and let π1 : E1 → X and π2 :
E2 → X be complex (resp. holomorphic) vector bundles of rank r over X. We say
that E1 is isomorphic to E2 if there exists a diffeomorphism (resp. biholomorphism)
φ : E1 → E2 that is fibrewise C-linear such that

π1 = π2 ◦ φ.

1.52. Exercise. Let X be a complex manifold. In analogy to Exercise 1.42 it is
immediate to see that if Uα is an open covering of X and gαβ : Uα ∩ Uβ → C∗ a
collection of holomorphic functions such that

gαβ ◦ gβγ ◦ g◦α = Id

on Uα ∩ Uβ ∩ Uγ and
gαα = Id

on Uα, there exists a holomorphic line bundle (vector bundle of rank one) L with
these transition functions. Show that L is isomorphic to the trivial line bundleX×C
if and only if up to taking a refinement of the covering, there exist holomorphic
functions sα : Uα → C∗ such that

gαβ = sβ
sα

on Uα ∩ Uβ .

Show that the set of isomorphism classes of holomorphic line bundles on X has a
natural group structure. We will denote this group by Pic(X), the Picard group of
X. �

1.53. Exercise. Let f : X → Y be a holomorphic map between complex manifolds,
and let π : E → Y be a complex (resp. holomorphic) vector bundle of rank r. We
define the pull-back f∗E as the closed set

f∗E = {(x, v) ∈ X × E | f(x) = π(v)} ⊂ X × E.

Let π′ : f∗E → X be the map induced on f∗E by the projection p1 : X ×E → X.
Show that π′ : f∗E → X is a complex (resp. holomorphic) vector bundle of rank
r. If gαβ : Uα ∩ Uβ → GL(C, r) are the transition functions of E, what are the
transition functions of f∗E ? �

This exercise shows in particular that if U ⊂ X is a submanifold and E a vector
bundle over X, then the restriction E|U given by restricting the transition functions
to U defines a vector bundle.
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1.54. Definition. Let π : E → X be a complex vector bundle over a differentiable
manifold E. A (global) section of E is a differentiable map s : X → E such that
π ◦ s = Id.

If X is a complex manifold and E is a holomorphic vector bundle, a (global) section
of E is a holomorphic map s : X → E such that π ◦ s = Id.

1.55. Remarks.

1. The definition of a section makes sense, since the total space of a holomorphic
vector bundle is a complex manifold.

2. Complex vector bundles have many sections, since we have local bump functions
at our disposal. For holomorphic vector bundles, the situation is very different (see
Exercise 1.60 below).

3. The set of global sections of a complex or holomorphic vector bundle has a
natural C-vector space structure given by fibrewise addition. If E is a complex
vector bundle over X, we will denote by

C∞(X,E)

the space of differentiable sections. If E is a holomorphic vector bundle over X, we
will denote by

Γ(X,E)
the space of holomorphic sections.

4. Let E be a complex (resp. holomorphic) vector bundle of rank r over X, and
let x ∈ X be a point. A local frame (resp. local holomorphic frame) of E around x
is given by an open neighbourhood x ∈ U ⊂ X and sections s1, . . . , sr ∈ C∞(U,E)
(resp. s1, . . . , sr ∈ Γ(U,E)) such that for all x ∈ U , the vectors s1(x), . . . , sr(x) are
a basis of Ex.

As an example, let TX be the tangent bundle. Let x ∈ U ⊂ X be a coordinate
neighbourhood with local holomorphic coordinates z1, . . . , zn. The description of
the tangent bundle in terms of derivation (Remark 1.47) shows that the partial
derivations ∂

∂zj
form a holomorphic frame for TX |U .

1.56. Exercise. Let π : E → X be a complex (resp. holomorphic) vector bundle
of rank r over X, and let x ∈ X be a point. Let s1, . . . , sr ∈ C∞(U,E) (resp.
s1, . . . , sr ∈ Γ(U,E)) be a local frame (resp. local holomorphic frame). Show that
the frame induces a trivialisation h : π−1(U)→ U × Cr. �

1.57. Definition. Let X be a topological space. A sheaf of abelian groups F on
X consists of the data

a) for every open set U ⊂ X, an abelian group F (U) and

b) for every inclusion V ⊂ U of open sets, a morphism of abelian groups

rUV : F (U)→ F (V ),

that satisfies the following conditions:
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(1) F (∅) = 0.
(2) rUU is the identity map F (U)→ F (U).
(3) If W ⊂ V ⊂ U are three open subsets, then rUW = rVW ◦ rUV .
(4) If U is an open subset and Vi is an open covering of U , and s ∈ F (U) such

that rUVi(s) = 0 for all i, then s = 0.
(5) If U is an open subset and Vi is an open covering of U , and si ∈ F (Vi) are

sections such that

rVi(Vi∩Vj)(si) = rVj(Vi∩Vj)(sj)

for all i, j, then there exists a unique s ∈ F (U) such that rUVi(s) = si.

1.58. Exercise. a) Let X be a complex manifold, and let E be a holomorphic
vector bundle over X. For every U ⊂ X an open set, let Γ(U,E) be the vector
space of sections of E|U . Furthermore if V ⊂ U is another open set, we define
rUV : Γ(U,E)→ Γ(V,E) by restricting a section of E|U to the open subset V .

Show that this defines a sheaf of abelian groups on X which we will call the sheaf
of sections OX(E). In particular if we take E to be the trivial bundle, this shows
that the holomorphic functions form a sheaf of abelian groups (in fact of a sheaf of
rings), the structure sheaf OX .

Note that the same statement (and proof) holds for the space of sections C∞(U,E)
of a complex vector bundle E.

b) Let X be a complex manifold. We say that a sheaf of abelian groups F on X is
invertible if there exists an open covering (Uα)α∈A such that F |Uα ' OUα . Show
that we have a bĳection between invertible sheaves and holomorphic line bundles
on X. �

We come now to the most important line bundle in algebraic geometry: the tauto-
logical line bundle over the projective space.

1.59. Example. Recall that Pn = (Cn+1 \ 0)/C∗ can be seen as the set of lines in
Cn+1 passing through the origin and we denote by [l] ∈ Pn the point corresponding
to l ⊂ Cn+1. In this spirit we define the total space of the tautological line bundle
OPn(−1) as

{([l], x) ∈ Pn × Cn+1 | x ∈ l} ⊂ Pn × Cn+1.

The projection on the first factor p1 : Pn×Cn+1 → Pn gives a map π : OPn(−1)→
Pn and it is clear that π−1(l) is exactly the line l ⊂ Cn+1.

Let Ui = {[l] ∈ Pn | li 6= 0} be the standard open set, then we define a section
si ∈ Γ(Ui,OPn(−1)) by

[l0 : . . . : ln] 7→ ( l0
li
, . . . ,

ln
li

).

Since the i-th component of si is equal to 1, the section si does not vanish in any
point. Therefore we can use si to define the local trivialisation

hi : π−1(Ui)→ Ui × C, ([l], x) 7→ ([l], λi),
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where λi is the unique complex number such that x = λisi([l]).

On the open set Ui ∩ Uj , we have

hi ◦ h−1
j : (Ui ∩ Uj)× C→ (Ui ∩ Uj)× C, ([l], λj) 7→ ([l], λjsj([l])) 7→ ([l], λi),

where λj is the unique complex number such that λisi([l]) = λjsj([l]). Looking at
the i-th coordinate, we see that

λi = λj
li
lj
.

Thus the transition function gij : Ui ∩ Uj → C∗ is given by

gij = li
lj
.

Using the constructions of vector bundles in Example 1.49, we define for all k ∈ N

OPn(−k) := OPn(−1)⊗k

and
OPn(k) := OPn(−k)∗.

Set furthermore OPn(0) for the trivial line bundle, then for all k ∈ Z the transition
functions of the line bundle OPn(k) are

gij = ( lj
li

)k.

1.60. Exercise. Let OP1(k) be the line bundles on P1 defined in Example 1.59.
Show that

Γ(P1,OP1(k)) =


0 if k < 0,
C if k = 0,
homog. polynomials of two variables of degree k if k > 0.

Generalise the statement to the line bundles OPn(k) on Pn. �

1.61. Definition. Let π : E → X be a complex (resp. holomorphic) vector bundle
of rank r over a complex manifold. A submanifold F ⊂ E is a subbundle of rank
m if

(1) F ∩ Ex is a subvector space of dimension m for every x ∈ X,
(2) π|F : F → X has the structure of complex (resp. holomorphic) vector

bundle induced by E, i.e. there exist local trivialisations Ui for E and F
such that the transition functions of F are the restriction of the transition
function of E to the corresponding subspaces.

1.62. Examples.

1. The tautological bundle OPn(−1) is a subbundle of the trivial vector bundle
Pn × Cn+1.

2. Let Y ⊂ X be a submanifold of a complex manifold X. Then the tangent bundle
TY is a subbundle of the restricted tangent bundle TX |Y .
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1.63. Exercise. (a bit harder, but interesting) Let X be a complex manifold, and
let E be a holomorphic subbundle of rank r of the trivial vector bundle X × Cn.
Show that there exists a unique holomorphic map f : X → Gr(Cn) such that
E = f∗Ur(Cn), where Ur(Cn) is the tautological bundle (Exercise 1.48). Hint:
set-theoretically, the definition of f is clear. For x ∈ X, the image f(x) is the point
corresponding to the subspace Ex ⊂ Cn. �

1.64. Exercise. Let X be a complex manifold, and let π : E → X and ψ : F → X

be holomorphic vector bundles over X. A morphism of vector bundles of rank k
is a holomorphic map φ : E → F such that π = ψ ◦ φ and for every x ∈ X, the
induced map

φx := φ|Ex : Ex → Fx

is C-linear of rank k. Show that imφ is a holomorphic subbundle of rank k of F .
We set

kerφ := {e ∈ E | φπ(e)(e) = 0}.
Show that kerφ is a holomorphic subbundle of rank rkE − k of E. �

1.65. Exercise. Let X be a complex manifold of dimension n, and let S,E and
Q be holomorphic vector bundles over X. Let φ : S → E and ψ : E → Q be
morphisms of vector bundles. We say that the sequence

S
φ→ E

ψ→ Q

is exact at E if imφ = kerψ.

a) Let
0→ S

φ→ E
ψ→ Q→ 0.

be an exact sequence of vector bundles, i.e. a sequence that is exact at S,E and
Q. Show that we have an induced isomorphism

detE ' detS ⊗ detQ

b) Let L → X be a holomorphic line bundle, and let σ ∈ Γ(X,L) be a non-zero
section. We set

D := {x ∈ X | σ(x) = 0}
and suppose that D is smooth. Show that there exists a well-defined global section

dσ ∈ Γ(D, (ΩX ⊗ L)|D),

such that locally (i.e. in a trivialising neighbourhood U of L) we have dσ|U∩D = ds

where s is a holomorphic function on U corresponding to the section σ.

Suppose now that dσ(x) 6= 0 for all x ∈ D. Show that we have an exact sequence
on D

0→ TD → TX |D → L|D → 0,
where TD → TX |D is the natural inclusion between of the tangent bundles. Deduce
the adjunction formula

KD ' (KX ⊗ L)|D.
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c) Show that on X = Pn we have an exact sequence

(1.1) 0→ OPn → OPn(1)⊕n+1 → TPn → 0.

This sequence is called the Euler sequence. Deduce that

K∗Pn ' OPn(n+ 1).

d) Let H ⊂ Pn be a submanifold defined by a homogeneous polynomial of degree
d. Show that we have an exact sequence on H

0→ TH → TPn |H → OPn(d)|H → 0,

where TH → TPn |H is the natural inclusion of tangent bundles. Deduce that

K∗H ' OPn(n+ 1− d)|H .

Generalise to the case of a complete intersection (cf. Definition 1.35).

e) Show that the twisted cubic (cf. Exercise 1.38) is not a complete intersection. �

1.D. The complexified (co-)tangent bundle. We will now start the systematic
investigation of the relation between the differentiable and the complex structure of
a complex manifold. The main tool will be the decomposition of the complexified
(co-)tangent bundle into holomorphic and anti-holomorphic parts. We will illustrate
the concept on the example of vector spaces, then generalise to the situation of
vector bundles.

Let V be a real vector space of real dimension 2n, and let J : V → V be a R-linear
isomorphism such that J2 = −Id. We call J a complex structure on V . Indeed,
J induces a structure of complex vector space where the scalar multiplication is
defined by

(α+ iβ)v := αv + βJ(v) ∀ α, β ∈ R.
Vice versa if V is a complex vector space of dimension n, then it can be considered
as a real vector space of dimension 2n and the multiplication by i defines an R-linear
endomorphism of V that is a complex structure.

Let V be a real vector space of real dimension 2n, and let J be a complex structure
on V . Consider the complexification V ⊗R C of V , then V has complex dimension
2n. We extend J to a C-linear map on V ⊗R C by setting

J(v ⊗ α) = J(v)⊗ α.

It is clear that the extended morphism still satisfies J2 = −Id, so the endomorphism
J is diagonalisable and has two eigenvalues {i,−i}. We denote by V 1,0 (resp. V 0,1)
the eigenspace corresponding to i (resp. −i). Thus we get a canonical identification

V ⊗R C = V 1,0 ⊕ V 0,1.

Furthermore we can define a conjugation on V ⊗R C by setting

v ⊗ α = v ⊗ α ∀ v ∈ V, α ∈ C.

With this definition, we obtain an equality of subspaces

V 0,1 = V 1,0.
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1.66. Example. Let Cn the complex vector space of n-tuples (z1, . . . , zn), and
let zj = aj + ibj be its decomposition in real and imaginary parts: this gives an
identification of Cn with the real vector space of 2n-tuples (a1, b1, . . . , an, bn). The
scalar multiplication by i in Cn induces a linear map J : R2n → R2n given by

(a1, b1, . . . , an, bn) 7→ (−b1, a1, . . . ,−bn, an).

We call J the standard complex structure on R2n.

Denote now by x1, y1, . . . , xn, yn the canonical basis on the complexified vector
space R2n ⊗R C. The extended morphism J is then given by

xj 7→ yj , yj 7→ −xj .

Therefore
xj − iyj ∀ j ∈ {1, . . . , n}

forms a basis of the i-eigenspace and

xj + iyj ∀ j ∈ {1, . . . , n}

forms a basis of the −i-eigenspace. Since xj = xj and yj = yj , we have

xj − iyj = xj + iyj ,

so the −i-eigenspace is the conjugate of the i-eigenspace.

We will now define the analogue of a complex structure in the case of differentiable
manifolds.

1.67. Definition. Let X be a differentiable manifold of dimension 2n. An almost
complex structure on X is a differentiable vector bundle isomorphism J : TX → TX
such that J2 = −Id.

1.68. Remark. In general a differentiable manifold of even dimension does not
admit an almost complex structure [Wel80, p.31].

1.69. Proposition. A complex manifold X induces an almost complex structure
on its underlying differentiable manifold, that is it defines a differentiable vector
bundle isomorphism J : TX,R → TX,R such that J2 = −Id.

The key point of this proposition is as follows: the tangent space TX of a com-
plex manifold is a holomorphic vector bundle of rank dimX, in particular TX,x is
a complex vector space of dimension n. Let TX,R be the tangent bundle of the
underlying differentiable manifold, then TX,R,x is a real vector space of dimension
2n. The complex structure on TX,R,x will be defined by constructing a canonical
isomorphism between TX,R,x and the real vector space underlying TX,x.

Proof. We follow the proof in [Wel80] and proceed in two steps : first we define
for every x ∈ X a complex structure on TX,R,x. Then we show that the complex
structure does not depend on the choices made in the definition. It will be imme-
diate from the construction that the vector bundle isomorphism J : TX,R → TX,R
is differentiable.
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Step 1. Fix a point x ∈ X and let φ : U → V ⊂ Cn be a coordinate neighbourhood
such that φ(x) = 0. Denote by z1, . . . , zn the local holomorphic coordinates around
x, and by

x1 = Re(z1), y1 = Im(z1), . . . , xn = Re(zn), yn = Im(zn)

the local differentiable coordinates induced by them. Then the holomorphic vector
fields ∂

∂z1
, . . . , ∂

∂zn
(resp. the differentiable vector fields ∂

∂x1
, ∂
∂y1

. . . , ∂
∂xn

, ∂
∂yn

) give
a local frame of TX (resp. TX,R), so they define a biholomorphism

TX |U ' U × Cn

and a diffeomorphism
TX,R|U ' U × R2n

The construction of the coordinates gives an isomorphism of (real) vector bundles

U × Cn ' U × R2n.

Thus we have an isomorphism of differentiable vector bundles

TX |U ' U × Cn ' TX,R|U

which defines a complex structure on TX,R|U .

Step 2. In order to see that the definition does not depend on the choice of the
holomorphic coordinates, let f : V → V be a biholomorphism such that f(0) = 0.
Let ζ1, . . . , ζn be the local holomorphic coordinates around x such that

ζj = fj(z1, . . . , zn),

and
ξ1 = Re(ζ1), η1 = Im(ζ1), . . . , ξn = Re(ζn), ηn = Im(ζn)

the local differentiable coordinates induced by them. The diffeomorphism f can
then be expressed in these local coordinates by

ξj = uj(x1, . . . , xn, y1, . . . , yn) ηj = vj(x1, . . . , xn, y1, . . . , yn)

where uj and vj are the real and imaginary parts of fj . By definition of the
tangent bundle, the real Jacobian of this map is a transition function between the
corresponding trivialisations of the tangent bundle. Since for both trivialisations,
the complex structure is defined by the standard complex structure, we only have to
check if the transition function commutes with the operator J . The real Jacobian
is a n× n matrix of 2× 2-blocks(

∂uj
∂xk

∂uj
∂yk

∂vj
∂xk

∂vj
∂yk

)
.

Since f is holomorphic the Cauchy-Riemann equations (1.10) hold, so(
∂uj
∂xk

∂uj
∂yk

∂vj
∂xk

∂vj
∂yk

)
=

(
∂vj
∂yk

∂uj
∂yk

−∂uj∂yk

∂vj
∂yk

)
.
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Thus the Jacobian is a n× n matrix of 2× 2-blocks of the form(
a b

−b a

)
.

Since the operator J is the standard complex structure, its matrix is a n×n matrix
of 2× 2-blocks of the form (

0 −1
1 0

)
.

along the diagonal and zero elsewhere. It is straightforward to see that the two
matrices commute. �

1.70. Remark. A much harder question to answer is which almost complex struc-
tures arise from a structure of complex manifolds. This question is answered by the
Newlander-Nirenberg theorem: an almost complex structure comes from a com-
plex structure if and only if the almost complex structure is integrable in terms of
Lie brackets. For a proof of this statement in the case when X is a real-analytic
manifold, cf. [Voi02, p.56].

As in the case of vector spaces, the existence of a complex structure on TX,R induces
a canonical decomposition of the complexified bundle: let X be a complex manifold,
and set

TX,C := TX,R ⊗R C

for the complexification of the real tangent bundle (it is a complex vector bundle of
rank 2n over X, cf. Example 1.43). We extend the complex structure J : TX,R →
TX,R to a C-linear isomorphism

J ⊗R IdC : TX,C → TX,C

which we still denote by J and which satisfies J2 = −Id. We denote by T 1,0
X (resp.

T 0,1
X ) the vector bundle of +i-eigenspaces (resp. −i-eigenspaces) for J . These are

complex vector bundles of rank n and we have

TX,C = T 1,0
X ⊕ T 0,1

X .

We extend the conjugation on C to a conjugation on TX,C = TX,R⊗R C by tensoring
with IdTX,R . By the definition of T 1,0

X and T 0,1
X we get

T 0,1
X = T 1,0

X .

Let TX be the holomorphic tangent bundle of X, then we have a natural inclusion

TX ↪→ TX,C = TX,R ⊗R C

which can locally be defined as follows: let z1, . . . , zn be local holomorphic coordi-
nates and xj = Re(zj) and yj = Im(zj) the local coordinates induced by z1, . . . , zn
on the underlying differentiable manifold. Then we have

∂

∂zj
= 1

2
( ∂

∂xj
− i ∂

∂yj
) ∀ j ∈ {1, . . . , n}.
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Since in these local coordinates J maps ∂
∂xj

to ∂
∂yj

and ∂
∂yj

to − ∂
∂xj

, the subbundle
TX ↪→ TX,R ⊗R C identifies to the subbundle of i-eigenspaces T 1,0

X . Although this
identification shows that T 1,0

X naturally carries a structure of holomorphic vector
bundle, we will consider it in the following as a mere complex vector bundle. In par-
ticular a section of T 1,0

X is only supposed to be a differentiable section. Note further-
more that the holomorphic coordinates z1, . . . , zn induce a local (anti-holomorphic)
frame of the complex vector bundle T 0,1

X given by
∂

∂zj
= 1

2
( ∂

∂xj
+ i

∂

∂yj
).

By duality, the decomposition

TX,C = T 1,0
X ⊕ T 0,1

X .

induces a decomposition of ΩX,C := T ∗X,C into

(1.2) ΩX,C = Ω1,0
X ⊕ Ω0,1

X ,

where Ω1,0
X := (T 1,0

X )∗,Ω0,1
X = (T 0,1

X )∗. Thus we get a decomposition of the complex-
valued differentiable 1-forms into what we will call forms of type (1, 0) and (0, 1).
More generally we get

ΩkX,C :=
k∧

ΩX,C =
⊕
p+q=k

Ωp,qX ,

where

Ωp,qX :=
p∧

Ω1,0
X ⊗

q∧
Ω0,1
X

is the vector bundle of (p, q)-forms on X.

1.71. Definition. A k-form of type (p, q) with p+ q = k is a differentiable section
of the subbundle Ωp,qX ⊂ ΩkX,C.

The formal definition of the vector bundles Ωp,qX can be easily understood in local
coordinates: fix a point x ∈ X, and let z1, . . . , zn be local holomorphic coordinates
around x. Let x1, y1, . . . , xn, yn be the corresponding local differentiable coordi-
nates, then

dx1, dy1, . . . , dxn, dyn

are a local frame of ΩX,C. Let α ∈ C∞(X,ΩX,C) be a 1-form, then we have locally

α =
n∑
j=1

αjdxj + βjdyj .

We have seen before that ∂
∂z1

, . . . , ∂
∂z1

and ∂
∂z1

, . . . , ∂
∂zn

are a local frame of T 1,0
X

and T 0,1
X , so we can define the dual frames dz1, . . . , dzn and dz1, . . . , dzn. Note that

dzj = dxj + idyj

and
dzj = dxj − idyj
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for all j ∈ {1, . . . , n}. Thus we get a local decomposition of α in its components of
type (1, 0) and (0, 1)

α =
n∑
j=1

γjdzj + δjdzj .

where γj = αj − iβj and δj = αj + iβj . More generally, let α ∈ C∞(X,Ωp,qX ) be a
form of type (p, q), then we have in local coordinates

α =
∑

|J|=p,|K|=q

αJ,KdzJ ∧ dzK ,

where αJ,K are differentiable functions and we use the usual multi-index notation.

1.72. Exercise. Let f : X → Y be a holomorphic map between complex manifolds.

a) Show that the pull-back

f∗ : C∞(Y,ΩkY,C)→ C∞(X,ΩkX,C)

respects the decomposition in forms of type (p, q), i.e. if ω has type (p, q), then also
f∗ω.

b) Let Tf : TX,C → f∗TY,C be the tangent map. Show that Tf (T 1,0
X ) ⊂ f∗T 1,0

Y and
Tf (T 0,1

X ) ⊂ f∗T 0,1
Y . �

1.73. Exercise. Let z1, . . . , zn and xj = Re(zj), yj = Im(zj) be the canonical
complex and real coordinates on Cn. We denote by

dλ = dx1 ∧ dy1 ∧ . . . ∧ dxn ∧ dyn

the standard volume form on R2n. Show that we have

dλ = i

2
dz1 ∧ dz1 ∧ . . . ∧

i

2
dzn ∧ dzn

and that for every ϕ ∈ End(Cn)

ϕ∗dλ = |det
C
ϕ|2dλ

and detR ϕ = |detC ϕ|2, where detR ϕ denotes the determinant of ϕ seen as an
element of EndR(Cn).

Deduce that a complex variety always admits a canonical orientation. (Hint: show
that if ∂

∂z1
, . . . , ∂

∂zn
is a local frame of TX , the local frame ∂

∂x1
, ∂
∂y1

, . . . , ∂
∂xn

, ∂
∂yn

is
an oriented basis of TX,R.)

Deduce that we have a canonical isomorphism

e : H2n
c (X,C)→ C, [α] 7→

∫
X

α.

�
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1.E. Exterior differentials. If X is a differentiable manifold, we can consider for
every k ∈ N the exterior differential

d : C∞(X,ΩkX)→ C∞(X,Ωk+1
X ),

which satisfies the Leibniz rule

d(α ∧ β) = dα ∧ β + (−1)kα ∧ dβ ∀ α ∈ C∞(X,ΩkX), β ∈ C∞(X,ΩlX)

Let now X be a complex manifold, then d ⊗ IdC defines an exterior differential
on the complexified cotangent bundle ΩX,C = ΩX,R ⊗R C which for simplicity of
notation we will denote by

d : C∞(X,ΩkX,C)→ C∞(X,Ωk+1
X,C).

If α ∈ C∞(X,ΩkX,C) is a form of type (p, q) then we can decompose dα according
to the decomposition

C∞(X,Ωk+1
X,C) =

⊕
p′+q′=k+1

C∞(X,Ωp
′,q′

X ),

into
dα =

∑
p′+q′=k+1

βp
′,q′

and it is natural to ask how this decomposition looks like. We start by considering
the case where α : X → C is a complex-valued differentiable function on X (i.e. a
section of C∞(X,Ω0

X,C)). Then

dα ∈ C∞(X,ΩX,C) = C∞(X,Ω1,0
X )⊕ C∞(X,Ω0,1

X )

and we define ∂α (resp. ∂α) to be the (1, 0)-part (resp. (0, 1)-part).

Fix now a point x ∈ X, and let z1, . . . , zn be local holomorphic coordinates around
x. Let x1, y1, . . . , xn, yn be the corresponding local differentiable coordinates, then

dα =
n∑
j=1

∂α

∂xj
dxj + ∂α

∂yj
dyj

=
n∑
j=1

1
2
( ∂α
∂xj
− i ∂α

∂yj
)dzj +

n∑
j=1

1
2
( ∂α
∂xj

+ i
∂α

∂yj
)dzj

=
n∑
j=1

∂α

∂zj
dzj + ∂α

∂zj
dzj ,

thus we get the local expressions

∂α =
n∑
j=1

∂α

∂zj
dzj

and

∂α =
n∑
j=1

∂α

∂zj
dzj .
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More generally, let α ∈ C∞(X,Ωp,qX ) be a complex-valued differentiable form of
type (p, q) given in local coordinates

α =
∑

|J|=p,|K|=q

αJ,KdzJ ∧ dzK ,

where αJ,K are differentiable functions. Since d(dzJ ∧ dzK) = 0 for all multiindices
J,K, we get by the Leibniz rule

dα =
∑

|J|=p,|K|=q

d(αJ,K)dzJ ∧ dzK

=
∑

|J|=p,|K|=q

∂(αJ,K)dzJ ∧ dzK +
∑

|J|=p,|K|=q

∂(αJ,K)dzJ ∧ dzK

=
∑

|J|=p,|K|=q

n∑
l=1

∂αJ,K
∂zl

dzl ∧ dzJ ∧ dzK +
∑

|J|=p,|K|=q

∂αJ,K
∂zl

dzl ∧ dzJ ∧ dzK .

We see that dα decomposes uniquely into a sum of two forms, one of type (p+1, q),
the other of type (p, q + 1), so

dα ∈ C∞(X,Ωp+1,q
X )⊕ C∞(X,Ωp,q+1

X ).

1.74. Definition. Let X be a complex manifold, and let α ∈ C∞(X,Ωp,qX ) be a
differentiable form of type (p, q). Then we define ∂α (resp. ∂α) as the component
of type (p, q + 1) (resp. (p+ 1, q)) of dα.

More generally, if α ∈ C∞(X,ΩkX,C) is a complex-valued differentiable form of
degree k, let α =

∑
p+q=k α

p,q be its unique decomposition in forms of type (p, q).
Then we set

∂α :=
∑
p+q=k

∂αp,q, ∂α :=
∑
p+q=k

∂ αp,q.

Note that by definition, we have

∂α = ∂α.

We will now show some properties of these operators.

1.75. Lemma. Let X be a complex manifold, and let α ∈ C∞(X,ΩkX,C) and
β ∈ C∞(X,Ωk′X,C). Then the operators ∂ and ∂ satisfy the Leibniz rule, that is

∂(α ∧ β) = ∂α ∧ β + (−1)kα ∧ ∂β

and
∂(α ∧ β) = ∂α ∧ β + (−1)kα ∧ ∂β.

Proof. Note first that by the additivity of ∂ it is sufficient to show the equality
under the additional assumption that α has type (p, q) and β has type (p′, q′). By
the usual Leibniz rule

d(α ∧ β) = dα ∧ β + (−1)kα ∧ dβ,
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thus

d(α ∧ β) = dα ∧ β + (−1)kα ∧ dβ
= ∂α ∧ β + ∂α ∧ β + (−1)kα ∧ ∂β + (−1)kα ∧ ∂β
= (∂α ∧ β + (−1)kα ∧ ∂β) + (∂α ∧ β + (−1)kα ∧ ∂β)

gives a decomposition in forms of type (p + p′, q + q′ + 1) and (p + p′ + 1, q + q′).
By definition ∂(α ∧ β) (resp. ∂(α ∧ β))is the component of type (p+ p′, q + q′ + 1)
(resp. (p+ p′ + 1, q + q′)). �

1.76. Lemma. Let X be a complex manifold, then we have the following relations:

∂
2 = 0, ∂∂ + ∂∂ = 0, ∂2 = 0.

Proof. Note again that by the additivity of the differential operators it is sufficient
to check the equality for forms α of type (p, q). By definition, we have d = ∂ + ∂,
so d2 = 0 implies

0 = d2α = ∂
2
α+ (∂∂ + ∂∂)α+ ∂2α.

Since ∂2
α (resp. (∂∂ + ∂∂)α, resp. ∂2α) have type (p, q + 2) (resp. (p+ 1, q + 1),

resp. (p, q + 2)), all three forms are zero. �

The preceding lemma shows that for each p ∈ {0, . . . , n} we can define a cohomo-
logical complex of C-vector spaces

0→ C∞(X,Ωp,0X ) ∂→ C∞(X,Ωp,1X ) ∂→ . . .
∂→ C∞(X,Ωp,nX )→ 0.

For every q ∈ {0, . . . , n}, we define the cocycles

Zp,q(X) := {α ∈ C∞(X,Ωp,qX ) | ∂α = 0}

and coboundaries

Bp,q(X) := {α ∈ C∞(X,Ωp,qX ) | ∃β ∈ C∞(X,Ωp,q−1
X ), ∂β = α}.

The Dolbeault cohomology groups of X are the cohomology associated to the com-
plexes above, i.e.

Hp,q(X) := Hq

∂
(C∞(X,Ωp,•X )) := Zp,q(X)/Bp,q(X).

If the vector spaces Hp,q(X) have finite dimension4, their dimensions

hp,q := dimHp,q(X)

are called the Hodge numbers of X.

One of the main objectives of these lectures is to get a better understanding of
these Dolbeault cohomology groups. We will see later that if X is a compact
complex manifold, then the Dolbeault cohomology groups are C-vector spaces of
finite dimension. Since any form of type (p, q) is also a complex-valued k-form, one

4This holds as soon as X is a compact complex manifold, cf. Corollary 3.28.
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should also ask for the relation with the de Rham cohomology groups Hk(X,C).
More precisely, we can ask if the decomposition of global sections

C∞(X,ΩkX,C) =
⊕
p+q=k

C∞(X,Ωp,qX )

translates into a decomposition of cohomology groups

(∗) Hk(X,C) =
⊕
p+q=k

Hp,q(X).

We will see very soon that in general this is not the case, but the Hodge decom-
position Theorem 3.36 will tell us that the decomposition (∗) holds on the rather
large class of Kähler manifolds that we will introduce in Section 3.

Before we start to examine these much more involved problems, let us take a look
at the cohomology groups Hp,0(X) for p ∈ {0, . . . , n}. Since there are no forms of
type (p,−1) we have Bp,0 = 0, so

Hp,0(X) = Zp,0(X) = {α ∈ C∞(X,Ωp,0X ) | ∂α = 0}.

Let α ∈ Hp,0(X), then we can identify it to a global section of Ωp,0X . Fix now a
point x ∈ X and holomorphic coordinates z1, . . . , zn then

α =
∑
|J|=p

αJdzJ ,

where the αJ are differentiable functions. By definition

0 = ∂α =
∑
|J|=p

n∑
k=1

∂αJ
∂zk

dzk ∧ dzJ .

Since the monomials dzk ∧dzJ define a local frame of Ωp,1X , it follows that for every
J and every k ∈ {1, . . . , n}

∂αJ
∂zk

= 0,

so the functions αJ are holomorphic. Recall now that we can identify Ωp,0X to
the holomorphic vector bundle ΩpX . Then we have just shown that α is a global
holomorphic section of ΩpX , so we get

1.77. Proposition.

Hp,0(X) = Γ(X,ΩpX) ∀ p ∈ {0, . . . , n}.

1.78. Exercise. Let f : X → Y be a holomorphic map between complex manifolds.
Show that the pull-back f∗ induces functorial linear maps

f∗ : Hp,q(Y )→ Hp,q(X).

Hint: cf. Exercise 1.72. �
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1.79. Exercise. Let X be a complex manifold, and let E be a holomorphic vec-
tor bundle of rank r over X. In this exercise, we will extend the definitions and
statements about Dolbeault cohomology to the case of (0, q)-forms with values in
E5.

Let α ∈ C∞(X,Ω0,q
X ⊗ E), and let U ⊂ X be a trivialising subset of E, i.e. let

e1, . . . , er be a local holomorphic frame for E on U . Then we can write in a
neighbourhood

α|U =
r∑
j=1

αj ⊗ ej ,

where αj ∈ C∞(U,Ω0,q
X ). We set

∂Eα|U :=
r∑
j=1

∂(αj)⊗ ej .

Show that if V ⊂ X is another trivialising subset of E and e′1, . . . , e
′
r a local

holomorphic frame for E on V , then

(∂Eα|U )|U∩V = (∂Eα|V )|U∩V .

Since the sections of a complex vector bundle form a sheaf (cf. Exercise 1.58), we
can use the local expressions to define

∂E : C∞(X,Ω0,q
X ⊗ E)→ C∞(X,Ω0,q+1

X ⊗ E).

Show that ∂E satisfies the Leibniz rule

∂E(α ∧ β) = ∂α ∧ β + (−1)qα ∧ ∂Eβ

for all α ∈ C∞(X,Ω0,q
X ) and β ∈ C∞(X,Ω0,q′

X ⊗ E).

Show furthermore that ∂E ◦ ∂E = 0, so we get a complex of C-vector spaces

0→ C∞(X,E) ∂E→ C∞(X,Ω0,1
X ⊗ E) ∂E→ . . .

∂E→ C∞(X,Ω0,n
X ⊗ E)→ 0

and we define the Dolbeault cohomology groups of E as the cohomology associated
to the complex above, i.e.

Hq(X,E) := Hq

∂E
(C∞(X,Ω0,•

X ⊗ E)).

Show that

H0(X,E) = Γ(X,E).

�

5Note that since ΩpX is a holomorphic vector bundle, we also get statements for (p, q)-forms
with values in E, we simply define Hp,q(X,E) := Hq(X,ΩpX ⊗ E).
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1.F. Dolbeault lemma and comparison theorems. The goal of this section
is to indicate how the isomorphism Hp,0(X) = Γ(X,ΩpX) can be generalised to
all the Dolbeault cohomoloy groups Hp,q(X). This can be done by the compari-
son theorems. The first step towards the comparison theorems is the Dolbeault-
Grothendieck lemma that computes the Dolbeault cohomology of polydiscs (cf.
Definition 1.3) and is the analogue of the Poincaré lemma for the de Rham coho-
mology.

1.80. Theorem. Let X := D(z0, R0) ⊂ Cn be a polydisc. Then we have

Hp,q(X) = 0 ∀ p > 0, q > 1,

i.e. for every differentiable form u of type (p, q) such that ∂u = 0, there exists a
differentiable form v of type (p, q − 1) such that ∂v = u.

The proof needs some auxiliary statements, starting with the following generalisa-
tion of Cauchy’s theorem in one variable.

1.81. Theorem. Let U ⊂ C be an open set, and let f : U → C be a differentiable
complex-valued function. Let D ⊂ U be the closure of a disc contained in U . Then
for every w ∈ D, we have

f(w) = 1
2πi

∫
∂D

f(z)
z − w

dz −
∫
D

i

2π(z − w)
∂f

∂z
dz ∧ dz.

Proof. For simplicity’s sake we suppose that w = 0 and D is the the unit disc D,
the general case being analogous. The function z 7→ 1

z is locally integrable at z = 0,
so ∫

D

i

2πz
∂f

∂z
dz ∧ dz = lim

ε→0

∫
D\D(0,ε)

i

2πz
∂f

∂z
dz ∧ dz

Since d = ∂ + ∂, we have

d[ 1
2πi

f(z)dz
z

] = i

2πz
∂f

∂z
dz ∧ dz.

Thus for 0 < ε < 1 by Stokes’ theorem∫
D\D(0,ε)

i

2πz
∂f

∂z
dz ∧ dz = 1

2πi

∫
S1

f(z)
z

dz − 1
2πi

∫
Sε

f(z)
z

dz,

where Sε is the circle of radius ε around 0. A path integration shows that the
second integral converges to f(0) for ε→ 0. �

As usual denote by D(C) the space of differentiable complex-valued function with
compact support in C, and by D ′(C) its dual, the distributions on C.

1.82. Corollary. Let δ0 be the Dirac measure at 0. Then in D ′(C) we have an
equality

∂

∂z

1
πz

= δ0.
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Proof. Let ϕ ∈ D(C) be a test function and denote by K ⊂ C its support. Let D
be a disc around 0 such that K ⊂ D, then ϕ(z) = 0 for every z ∈ ∂D. By definition

〈 ∂
∂z

1
πz
, ϕ〉 = 〈 1

πz
,−∂ϕ

∂z
〉 = −

∫
D

1
πz

∂ϕ

∂z

i

2
dz ∧ dz

By Theorem 1.81 this integral is equal to ϕ(0) = 〈δ0, ϕ〉. �

As a consequence we can locally resolve the ∂-equation in C:

1.83. Theorem. Let U ⊂ C be an open set and f : U → C a differentiable
complex-valued function. Then for every disc D ⊂ U there exists a differentiable
function g such that

∂g

∂z
= f |D.

If furthermore f depends holomorphically on some parameters z1, . . . , zn, then g

depends holomorphically on the parameters z1, . . . , zn.

Proof. By the preceding corollary 1
πz is a fundamental solution, so the convolution

g = 1
πz ? f works since

∂g

∂z
= ∂

∂z

1
πz

? f = δ0 ? f = f.

The second statement follows from inverting differentiation and the integration used
to define the convolution. �

Remark. For an essentially equivalent but more down to earth presentation of the
last proof cf. [Voi02, Thm.1.28].

Proof of Theorem 1.80. We suppose without loss of generality that z0 = 0 and
R0 = (1, . . . , 1), and denote by z1, . . . , zn the holomorphic coordinates on Cn. Since
we are in Cn, the vector bundle Ωp,qX is trivial, so we can write

u =
∑

|J|=p,|K|=q

uJ,KdzJ ∧ dzK =
∑
|J|=p

dzJ ∧

 ∑
|K|=q

uJ,KdzK

 .

Since ∂
(∑

|K|=q uJ,KdzK

)
has type (0, q + 1), the equality

0 = ∂u = (−1)p
∑
|J|=p

dzJ ∧ ∂

 ∑
|K|=q

uJ,KdzK


shows that

∂

 ∑
|K|=q

uJ,KdzK

 = 0 ∀ |J | = p.
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Hence it is sufficient to show for every J that there exists a vJ such that ∂vJ =(∑
|K|=q uJ,KdzK

)
. We are thus reduced to treat the case where p = 0 and will in

the following consider only this situation, i.e. we suppose that

u =
∑
|K|=q

uKdzK

with ∂u = 0.

We will now argue by induction on the integer 0 6 l 6 n such that the monomials
dzK appearing with non-zero coefficient in u involve only dz1, . . . , dzl. More for-
mally speaking if uK 6= 0, then K ⊂ {1, . . . , l}. If l < q, the (0, q)-form u is zero, so
the statement is trivially true. For the induction step, suppose that the statement
holds for l − 1 and write

u =
∑

|K|=q,k<l

uKdzK +
∑

|K|=q−1,k<l

wKdzK ∧ dzl.

Then we have

0 = ∂u =
∑

|K|=q,k<l

n∑
m=1

∂uK
∂zm

dzm ∧ dzK +
∑

|K|=q−1,k<l

n∑
m=1

∂wK
∂zm

dzm ∧ dzK ∧ dzl.

Since only the forms ∂wK∂zm
dzm∧dzK∧dzl for m > l have two factors dzl with m > l,

we get that
∂wK
∂zm

= 0 ∀ m > l, |K| = q − 1.

This shows that the differentiable functions wK(z1, . . . , zn) are in fact holomorphic
with respect to the variables zl+1, . . . , zn. For every multi-index |K| = q − 1, we
can resolve by Theorem 1.83 the equation

∂hK
∂zl

= wK

and a solution hK is holomorphic with respect to the variables zl+1, . . . , zn. Set
now

h :=
∑

|K|=q−1

hKdzK ,

then

∂h =
∑

|K|=q−1

n∑
m=1

∂hK
∂zm

dzm∧dzK =
∑

|K|=q−1

l−1∑
m=1

∂hK
∂zm

dzm∧dzK+
∑

|K|=q−1

wKdzl∧dzK

since ∂hK
∂zl

= wK and ∂hK
∂zm

= 0 for m > l. Therefore we get a (0, q)-form

u′ := u− (−1)q−1∂h =
∑

|K|=q,k<l

uKdzK − (−1)q−1
∑

|K|=q−1

l−1∑
m=1

∂hK
∂zm

dzm ∧ dzK ,

such that the monomials dzK appearing in u′ involve only dz1, . . . , dzl−1. Further-
more ∂u′ = ∂(u− (−1)q−1∂h) = 0, so u′ is ∂-closed. By the induction hypothesis,
there exists a (0, q − 1)-form v′ such that ∂v′ = u′. Therefore

v := v′ + (−1)q−1h
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satisfies ∂v = u. �

Let us recall briefly the basics of Čech cohomology (cf. [Har77, III, Ch. 4]): let X
be a topological space, and let U = (Ui)i∈I be an open (countable) covering of X.
We fix an ordering on the index set I. For any finite set of indices i0, . . . , ip ∈ I,
we denote the intersection Ui0 ∩ . . . ∩ Uip by Ui0,...,ip .

Let F be a sheaf of abelian groups on X. We define a complex of abelian groups
C•(U ,F ) as follows. For each p > 0, let

Cp(U ,F ) = Πi0<...<ipF (Ui0,...,ip).

Let now α ∈ Cp(U ,F ) be given by

αi0,...,ip ∈ F (Ui0,...,ip).

Then we define the coboundary map δ : Cp(U ,F )→ Cp+1(U ,F ) by

(δα)i0,...,ip,ip+1 =
p+1∑
k=0

(−1)kα
i0,...,îk,...,ip+1

|Ui0,...,ip+1

1.84. Exercise. Show that δ : C• → C•+1 defines a cohomological complex, i.e.
show that δ ◦ δ = 0. �

1.85. Definition. Let X be a topological space, and let U be an open covering of
X. Let F be a sheaf of abelian groups on X, then the q-th Čech cohomology group
of F with respect to the covering U is defined as the q-th cohomology associated
to the complex above, i.e.

Ȟ
q
(U ,F ) := Hq

δ (C
•(U ,F )).

We define the q-th Čech cohomology group of F by taking an inductive limit6

Ȟ
q
(X,F ) := lim

−→
U

Ȟ
q
(U ,F ),

where two classes α and α′ for some covering U and U ′ are identified if they map
to the same class in a common refinement of the coverings.

Let X now be a complex manifold, and let E be a holomorphic vector bundle over
X. We have seen in Exercise 1.58 that the sections of E form a sheaf of abelian
groups which we denote by OX(E). Let now U be an open covering of X, then we
can consider the Čech cohomology groups

Ȟ
q
(U ,OX(E))

and
Ȟ
q
(X,OX(E)) := lim

−→
U

Ȟ
q
(U ,OX(E)).

and ask about their relation with the Dolbeault cohomology groups Hq(X,E) de-
fined in Exercise 1.79.

6There are some technical facts that one has to check for the definition to make sense, cf.
[For91, Ch.12] for a precise and readable presentation.
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1.86. Exercise. Construct an example of a complex manifold X, an open covering
U and a holomorphic vector bundle E such that

Ȟ
q
(U ,OX(E)) 6' Hq(X,E)

�

We have seen in the preceding paragraph, that for every open set U ⊂ X

ΩX(U) = ker(∂ : Ωp,0X (U)→ Ωp,1X (U)).

Therefore the Dolbeault-Grothendieck Theorem 1.80 shows that for every p > 0,
the sequence of sheaves

(∗) 0→ ΩpX
i→ Ωp,0X

∂→ Ωp,1X
∂→ . . .

∂→ Ωp,nX → 0

is exact: indeed exactness can be checked locally and the Dolbeault-Grothendieck
lemma shows that on a polydisc U ⊂ X, we have

ker
(
∂ : C∞(U,Ωp,qX )→ C∞(U,Ωp,q+1

X )
)

= im
(
∂ : C∞(U,Ωp,q−1

X )→ C∞(U,Ωp,qX )
)
.

The de Rham-Weil isomorphism [Wel80, Ch.II,Thm.3.13] shows that the Čech co-
homology of ΩpX is the cohomology of the corresponding complex of global sections7:

0→ C∞(X,Ωp,0X ) ∂→ C∞(X,Ωp,1X ) ∂→ . . .
∂→ C∞(X,Ωp,nX )→ 0.

By definition the Dolbeault cohomology groups are exactly the cohomology of this
complex, thus we obtain the following comparison theorem.

1.87. Theorem. Let X be a complex manifold, then

Ȟ
q
(X,ΩpX) ' Hp,q(X).

Using the Dolbeault-Grothendieck lemma for forms with values in a holomorphic
vector bundle (Exercise 1.89), the result generalises to

Ȟ
q
(X,ΩpX ⊗ OX(E)) ' Hp,q(X,E).

One of the advantages of Čech cohomology is that it is more tractable, since we
have the following theorem of Leray.

7Advanced technical remark. On page 50 we will give an explicit description of the map between
the cohomology groups in the simplest case. Showing that this map is an isomorphism is a bit
more complicated, one strategy of proof is the following: in a first step one shows that the Čech
cohomology groups are isomorphic to the cohomology groups of the sheaf ΩpX in terms of the
right derived functor of the global section functor. Then the de Rham-Weil theorem shows that
the cohomology in terms of the right derived functor can be computed by taking a resolution by
acyclic sheaves. In our case, the de Rham-Weil theorem applies since the complex vector bundles
Ωp,qX can be seen as sheaves of modules over the sheaf of rings C∞X of differentiable functions on
X. Since C∞X is a fine sheaf, the sheaves Ωp,qX are fine [Wel80, Ch.II,Defn.3.3]. In particular they
are acylic, that is

Ȟs(X,Ωp,qX ) = 0 ∀ s > 0.

Therefore (∗) defines a resolution of the vector bundle ΩpX by acyclic sheaves.
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1.88. Theorem. Let X be a complex manifold, and let E be a holomorphic vector
bundle over X. Let now U be an open covering of X such that for any Ui0,...,ip we
have

Hk(Ui0,...,ip , E) = 0 ∀ k > 0.
Then the morphism

Ȟ
q
(U ,ΩpX ⊗ OX(E))→ Ȟ

q
(X,ΩpX ⊗ OX(E))

is an isomorphism.

Using the classical Poincaré lemma, one shows that

0→ C i→ C∞
d→ ΩX,C

d→ . . .
d→ Ω2n

X,C → 0

is exact, where C∞ is the sheaf of differentiable functions. Arguing as above we get
an isomorphism between the de Rham cohomology with complex coefficients and
the Čech cohomology of the sheaf of locally constant functions C:

(1.3) Hq(X,C) ' Ȟ
q
(X,C).

1.89. Exercise. Let X be a complex manifold, and let E be a holomorphic vector
bundle of rank r over X. Show that an analogue of the Dolbeault-Grothendieck
lemma holds for holomorphic q-forms with values in E: if α ∈ C∞(X,Ω0,q

X ⊗ E)
such that ∂Eα = 0, there exists for every point x ∈ X a neighbourhood U and
β ∈ C∞(U,Ω0,q−1

X ⊗ E) such that

∂Eβ = α|U .

�

1.90. Exercise. Let X be a compact complex manifold, and let f : X → C be a
differentiable function such that ∂∂f = 0. Show that f is constant.

Suppose that ω ∈ H1,0(X) such that there exists a differentiable function f such
that ω = ∂f . Show that ω = 0. �

1.91. Exercise. Let X be a complex manifold. Show that the Picard group Pic(X)
(cf. Exercise 1.52) is isomorphic to the Čech cohomology group Ȟ

1
(X,O∗X). �

1.92. Exercise. Use the comparison theorem to compute the cohomology of the
line bundle KP1 ' OP1(−2) on P1. �
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2. Connections, curvature and Hermitian metrics

In this slightly technical section we will introduce the tools we will need in order
to get a deeper understanding of complex manifolds. After a brief resume of the
general theory of Hermitian differential geometry, we will specify to the case of
holomorphic line and vector bundles.

2.A. Hermitian geometry of complex vector bundles. The concepts of con-
nections, curvature and Hermitian metrics for complex differentiable vector bundles
are essentially the same as for real differentiable vector bundles. We will therefore
only give a very short exposition and refer to [Biq08, Ch.3] for details and expla-
nations.

2.1. Definition. Let X be a differentiable manifold, and let π : E → X be a
complex vector bundle over X. A connection on E is a C-linear differential operator

D : C∞(X,E)→ C∞(X,ΩX,C ⊗ E)

that satisfies the Leibniz rule

D(fσ) = df · σ + f ·Dσ ∀ f ∈ C∞(X), σ ∈ C∞(X,E).

It is easy to see that a connection defines in fact a C-linear differential operator

D : C∞(X,
k∧

ΩX,C ⊗ E)→ C∞(X,
k+1∧

ΩX,C ⊗ E)

for every k ∈ N that satisfies the Leibniz rule

D(τ∧σ) = dτ∧σ+(−1)kτ∧Dσ ∀ τ ∈ C∞(X,
k∧

ΩX,C), σ ∈ C∞(X,
l∧

ΩX,C⊗E).

Indeed if we fix σ ∈ C∞(X,
∧k ΩX,C ⊗ E), a point x0 ∈ X, and a local frame

e1, . . . , er of the vector bundle E in a neighbourhood U of x0, then we can write

σ =
r∑
j=1

sj ⊗ ej ,

where the sj are k-forms defined on U . Since we want D to be a linear operator
that defines the Leibniz rule, the only possible definition for Dσ is

Dσ :=
r∑
j=1

[
dsj ⊗ ej + (−1)ksj ⊗Dej

]
.

2.2. Exercise. Check that the definition of Dσ does not depend on the choice of
the frame e1, . . . , er. Show that D satisfies the Leibniz rule for every k ∈ N. �

Suppose now that k = 0, then the preceding computation shows that in order to
compute

(∗) Dσ =
r∑
j=1

[dsj ⊗ ej + sj ⊗Dej ] ,
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we only have to know Dej for every j = 1, . . . , r. Since

Dej ∈ C∞(U,ΩX,C ⊗ E),

we can express Dej in the frame e1, . . . , er

Dej =
r∑
i=1

ai,j ⊗ ei,

where the ai,j are 1-forms defined on U . Thus the connection D is locally given by
a matrix

A := (ai,j)16i,j6r .

The frame e1, . . . , er defines a trivialisation π−1(U) θ' U × Cr, so we can identify
the section σ with a r-tuple

σ
θ= s = (s1, . . . , sr).

Thus we can rewrite (∗) in this trivialisation as

Dσ
θ= ds+As.

Vice versa it is clear that the choice of a matrix A of 1-forms on the open set U
defines locally an operator D that satisfies the Leibniz rule.

Let us now see what happens under a change of frame, i.e. let e′1, . . . , e′r be another
local frame of the vector bundle E defined in a neighbourhood U ′ of x0. On the
intersection U ∩ U ′ we have two different trivialisations

π−1(U ∩ U ′) θ' (U ∩ U ′)× Cr and π−1(U ∩ U ′) θ
′

' (U ∩ U ′)× Cr,

inducing two representations

Dσ
θ= ds+As and Dσ θ′= ds′ +A′s′.

Let g : (U ∩ U ′)× Cr → (U ∩ U ′)× Cr be the transition function from the second
to the first trivialisation, then

s = gs′ and D(s) = gD(s′).

Then we have

ds = d(gs′) = dgs′ + gds′ = g(g−1dg s′ + ds′),

thus

ds+As = g(g−1dg s′ + ds′) +Ags′ = g
(
ds′ + (g−1dg + g−1Ag)s′

)
.

This implies that we have the following transition relation for the matrices defining
the connection

(2.4) A′ = g−1dg + g−1Ag.

In particular the connection on E is certainly not a C∞-linear operator.
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Let us now see what happens if we apply the connection twice. Since Dσ θ= ds+As,
the Leibniz rule implies

D2σ
θ= D(ds+As) = d(ds+As) +A(ds+As)
= d2s+ dAs−Ads+Ads+A ∧As
= (dA+A ∧A)s.

Using the transition relation for the matrix A established above, one sees that
dA+ A ∧ A defines a globally defined 2-form with values in the bundle EndE. So
we have shown

2.3. Proposition. There exists a section ΘD ∈ C∞(X,
∧2 ΩX,C ⊗ EndE) such

that for every σ ∈ C∞(X,
∧k ΩX,C ⊗ E)

D2(σ) = ΘD ∧ σ

If the connection is locally given by a (r, r)-matrix of 1-forms A, then

ΘD = dA+A ∧A.

2.4. Remark. Since A is a matrix of 1-forms, the product A ∧A is in general not
zero. This will be the case if E is a line bundle, a case that we will study much
more in detail at the end of this section.

2.5. Definition. Let X be a differentiable manifold, and let π : E → X be a
complex vector bundle over X. A Hermitian metric h on E is an assignment of a
Hermitian inner product < •, • > to each fibre Ex of E such that for any open set
U ⊂ X and any ζ, η ∈ C∞(U,E) the function

< ζ, η >: U → C, x 7→< ζ(x), η(x) >

is differentiable. A complex vector bundle E equipped with a Hermitian metric h
is called a Hermitian vector bundle (E, h).

2.6. Remark. In these notes we follow the convention that a Hermitian product
is C-linear in the first and C-antilinear in the second variable.

Fix a point x0 ∈ X, and let e1, . . . , er be a local frame for E in a neighbourhood
U of x0 so that we get a trivialisation π−1(U) θ' U × Cr. The (r, r)-matrix of
differentiable functions H = (hλ,µ)16λ,µ6r defined by

(2.5) hλ,µ(x) :=< eλ(x), eµ(x) >

represents the Hermitian metric with respect to the chosen frame. More precisely
if we identify ζ, η ∈ C∞(U,E) to r-tuples (ζ1, . . . , ζr) and (η1, . . . , ηr) then

hx(ζ, η) = ζt H η =
∑

16λ,µ6r

ζλhλ,µ(x)ηµ.

If e′1, . . . , e′r is another local frame for E on a trivialising subset U ′ defining a
trivialisation π−1(U ′) θ

′

' U ′×Cr so that we get a transition function g : (U ∩U ′)×
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Cr → (U ∩U ′)×Cr from the second to the first trivialisation, it is not hard to see
that

(2.6) H ′ = gt ◦H ◦ g.

2.7. Proposition. Every complex vector bundle π : E → X admits a Hermitian
metric.

Proof. Let Uα be a locally finite covering of X with local frames eα1 , . . . , eαr for E.
We define a Hermitian metric on E|Uα by

< ζ, η >αx :=
∑
λ

ζληλ.

Let ρα be a differentiable partition of unity subordinate to the covering, then we
set

< ζ, η >:=
∑
α

ρα < ζ, η >αx .

It is clear that for every x ∈ X this defines a Hermitian inner product on Ex.
Furthermore if ζ, η ∈ C∞(U,E), the function

x 7→< ζ, η >=
∑
α

ρα < ζ, η >αx=
∑
α

ρα
∑
λ

ζληλ

is differentiable. �

A Hermitian metric on E defines bilinear mappings

(2.7) C∞(X,ΩpX,C ⊗ E)× C∞(X,ΩqX,C ⊗ E)→ C∞(X,Ωp+qX,C), (σ, τ) 7→ {σ, τ}

which are locally described as follows : fix a point x ∈ X and let e1, . . . , er be
a local frame for E in a neighbourhood x ∈ U so that we get a trivialisation
π−1(U) θ' U × Cr. Then locally σ =

∑r
j=1 σj ⊗ ej and τ =

∑r
j=1 τj ⊗ ej , where

the σλ (resp. τλ) are p-forms (resp. q-forms). We set

{σ, τ} = σt H τ,

where H is the matrix 2.5. Using the Gram-Schmidt procedure, we can replace the
local frame e1, . . . , er by an orthonormal local frame, i.e. a frame such that

< ej , ek >= δj,k.

We call the corresponding trivialisation isometric. Since in such a trivialisation,
the matrix H representing the Hermitian metric h is the identity, we have

{σ, τ} =
r∑
j=1

σj ∧ τj =: σt ∧ τ .

2.8. Definition. Let X be a differentiable manifold, and let (E, h) be a Hermitian
vector bundle overX. We say that a connectionD on E is Hermitian (or compatible
with h) if the Leibniz rule

d{σ, τ} = {Dσ, τ}+ (−1)p{σ,Dτ}

holds for every σ ∈ C∞(X,ΩpX,C ⊗ E), τ ∈ C∞(X,ΩqX,C ⊗ E).
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2.9. Lemma. Let x ∈ X be a point, and let e1, . . . , er be a local frame for E
in a neighbourhood U of x defining an isometric trivialisation π−1(U) θ' U × Cr.
Let A be the (r, r)-matrix of 1-forms defining the connection D with respect to the
trivialisation. Then D is Hermitian if and only if

A
t = −A,

that is the matrix A is anti-autodual.

Proof. By what preceeds, we have

{σ, τ} = σt ∧ τ ,

so

d{σ, τ} = (dσ)t ∧ τ + (−1)pσt ∧ dτ.

Since in the trivialisation D. = d.+A ∧ ., we have

{Dσ, τ} = (dσ +A ∧ σ)t ∧ τ = dσt ∧ τ + (−1)pσt ∧At ∧ τ

and

{σ,Dτ} = σt ∧ (dτ +A ∧ τ) = σt ∧ dτ + σt ∧A ∧ τ .

Therefore

{Dσ, τ}+ (−1)p{σ,Dτ} − d{σ, τ} = (−1)pσt ∧ (At +A) ∧ τ

is zero for arbitrary σ, τ if and only if At +A = 0. �

2.10. Remark. A similar computation shows that if e1, . . . , er is any local frame
for E in a neighbourhood x ∈ U , then

(2.8) dH = AtH +HA.

Given a connection D on a complex vector bundle, we can define the adjoint con-
nection Dadj to be the connection given locally by the matrix −At. With this
definition it follows from the computation above that

d{σ, τ} = {Dσ, τ}+ (−1)p{σ,Dadjτ}

and D is Hermitian if and only if D = Dadj . We can now produce a Hermitian
connection by taking 1

2 (D +Dadj) defined locally by 1
2 (A−At). This proves:

2.11. Proposition. Let X be a differentiable manifold, and let (E, h) be a Her-
mitian vector bundle over X. Then there exists a Hermitian connection D.
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2.B. Holomorphic vector bundles. Let now X be a complex manifold, and let
π : E → X be a complex vector bundle over X. Recall that by Formula (1.2) the
complex structure induces a decomposition

ΩX,C = Ω1,0
X ⊕ Ω0,1

X .

Let
D : C∞(X,E)→ C∞(X,ΩX,C ⊗ E)

be a connection on E, then we can define the (1, 0)-part (resp. (0, 1)-part) by
composing D with the projection

C∞(X,ΩX,C ⊗ E)→ C∞(X,Ω1,0
X ⊗ E)

resp. with
C∞(X,ΩX,C ⊗ E)→ C∞(X,Ω0,1

X ⊗ E).

Let e1, . . . , er be a local frame for E on some open set U ⊂ X defining a trivialisation
π−1(U) θ' U×Cr. Locally the connection D is given by a (r, r)-matrix A of 1-forms
such that if we identify a section σ ∈ C∞(U,E) to a r-tuple s = (s1, . . . , sr), we
have

Dσ
θ= ds+A ∧ s.

Since we are working on a complex manifold, we have ds = ∂s + ∂s, furthermore
the matrix A has a unique decomposition A = A1,0 +A0,1, where A1,0 (resp. A0,1)
is a (r, r)-matrix of (1, 0)-forms (resp. (0, 1)-forms). Thus the local presentation of
the (1, 0)-part (resp. (0, 1)-part) is given by

D1,0σ
θ= ∂s+A1,0 ∧ s

respectively by
D0,1σ

θ= ∂s+A0,1 ∧ s.
With these local descriptions, it is clear that the differential operators

D1,0 : C∞(X,E)→ C∞(X,Ω1,0
X ⊗ E)

and
D0,1 : C∞(X,E)→ C∞(X,Ω0,1

X ⊗ E)
satisfy the Leibniz rule

D1,0(f ∧ σ) = ∂f ∧ σ + f ∧D1,0σ ∀ f ∈ C∞(X), σ ∈ C∞(X,E).

and

D0,1(f ∧ σ) = ∂f ∧ σ + f ∧D0,1σ ∀ f ∈ C∞(X), σ ∈ C∞(X,E).

respectively.

Suppose now that E is a holomorphic vector bundle on X. We have defined in
Exercise 1.79 a differential operator

∂E : C∞(X,E)→ C∞(X,Ω0,1
X ⊗ E)

that satisfies ∂2
E = 0 and the Leibniz rule

∂E(f ∧ σ) = ∂f ∧ σ + f ∧ ∂Eσ ∀ f ∈ C∞(X), σ ∈ C∞(X,E).
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We will now see that ∂E is the (0, 1)-part of a unique connection that is compatible
with the metric.

2.12. Theorem. Let X be a complex manifold, and let (E, h) be a Hermitian
holomorphic vector bundle of rank r on X. Then there exists a unique Hermitian
connection DE on E such that

D0,1
E = ∂E .

We call DE the canonical connection or Chern connection of (E, h) and the corre-
sponding curvature tensor the Chern curvature of E (or (E, h)).

Proof. We will start by showing that if the connection DE exists, then it is unique.
This proof will also give us an idea on how to construct the Chern connection.

Let e1, . . . , er be a local holomorphic frame for E in some open subset U ⊂ X

defining a holomorphic trivialisation π−1(U) θ' U ×Cr. Locally the connection DE

is given by a (r, r)-matrix of 1-forms such that if a section σ ∈ C∞(U,E) identifies
to a r-tuple s = (s1, . . . , sr), we have

DEσ
θ= ds+A ∧ s

and
D0,1
E σ

θ= ∂s+A0,1 ∧ s.

If σ ∈ Γ(U,E), then we have D0,1
E σ = ∂Eσ = 0 by Exercise 1.79. Furthermore

∂s = 0, so we see that A0,1 = 0. Therefore A is a (r, r)-matrix of (1, 0)-forms.

Let now H = (hλ,µ)16λ,µ6r be the (r, r)-matrix of differentiable functions defined
by

hλ,µ(x) :=< eλ(x), eµ(x) > .

Since DE is compatible with h, we have by Formula (2.8)

dH = At H +H A.

Comparing the (1, 0)- and (0, 1)-parts, we get

∂H = H A.

Since e1, . . . , er is a local frame and the Hermitian metric is nondegenerate, the
matrix H is invertible, thus

(2.9) A = H
−1
∂H.

This shows that the Hermitian metric determines the connection matrix A, so the
Chern connection is unique.

Vice versa we can use Formula (2.9) to define the canonical connection, once we
have shown that the definition is compatible with a holomorphic change of frame.
Let e′1, . . . , e′r be another local holomorphic frame for E in an open subset U ′ ⊂ X
defining a holomorphic trivialisation π−1(U ′) θ' U ′×Cr so that we get a transition
function g : U ∩ U ′ → GL(C, r) from the second to the first trivialisation. Let H ′
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be the matrix representing h with respect to the new frame, then by Formula (2.6)
we have

H ′ = gt H g,

so
g (H ′)−1 = H

−1
gt
−1

and

g A′ = g (H ′)−1 ∂H ′

= H
−1

gt
−1

∂(gt H g)

= H
−1

gt
−1 (

∂gt H g + gt ∂H g + gt H ∂g
)
.

Yet g is a holomorphic change of frame, so

∂gt = ∂gt = 0 and ∂g = dg.

Thus the expression above simplifies to

g A′ = H
−1 (∂H) g + dg = dg +A g.

By Formula (2.4) this is a necessary and sufficient condition for the matrices to
define a connection. �

2.13. Corollary. Let X be a complex manifold, and let (E, h) be a Hermitian
holomorphic vector bundle on X. Let DE be the Chern connection on E and ΘE

its curvature tensor. Let A be a matrix representing the Chern connection with
respect to some local holomorphic frame. Then

(1) A is of type (1, 0) and ∂A = −A ∧A.
(2) Locally ΘE = ∂A, thus Θ is of type (1, 1).
(3) ∂ΘE = 0.

Proof. Let e1, . . . , er be a local holomorphic frame, and let H be the matrix repre-
senting h with respect to this local frame. Then we have by Formula (2.9)

A = H
−1
∂H.

Since ∂2H = 0 and ∂H−1 = −H−1
∂H H

−1, we have

∂A = ∂(H−1
∂H) = −(H−1

∂H) ∧ (H−1
∂H).

For the second statement recall that for any complex vector bundle and any con-
nection Θ = dA+A∧A, so by the first statement Θ = dA+A∧A = dA−∂A = ∂A.
Since A is of type (1, 0), it is clear that Θ = ∂A is of type (1, 1). The third item is
immediate from ∂

2
A = 0. �

Let X be a complex manifold, and let (E, h) be a Hermitian holomorphic vector
bundle on X. Let S ↪→ E be a holomorphic subbundle of E and we define hS to
be the Hermitian metric on S given by restricting h. Furthermore let

S⊥x := {e ∈ Ex | h(ex, sx) = 0} ∀ x ∈ X.
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Now S⊥ is a complex vector bundle such that E ' S ⊕ S⊥ as complex vector
bundles. For all k ∈ N, we denote by pS : C∞(X,ΩkX,C ⊗ E) → C∞(X,ΩkX,C ⊗ S)
the projection induced by the isomorphism

C∞(X,ΩkX,C ⊗ E) ' C∞(X,ΩkX,C ⊗ S)⊕ C∞(X,ΩkX,C ⊗ S⊥).

2.14. Corollary. Let DE and DS be the Chern connections on (E, h) and (S, hS).
Then we have

DS = pS ◦DE .

Proof. We will show that pS ◦DE satisfies the properties of the Chern connection
on (S, hS) and conclude by uniqueness. Let σ ∈ C∞(X,S), then

(pS ◦DE)0,1(σ) = pS(D0,1
E σ) = pS(∂Eσ) = ∂Sσ.

Furthermore for every σ, τ ∈ C∞(X,S) ⊂ C∞(X,E), we have

d{σ, τ}hS = d{σ, τ}h = {DEσ, τ}h + {σ,DEτ}h

Yet since τ and σ have values in S ⊂ E, we have

{DEσ, τ}h = {pS(DEσ), τ}hS , {σ,DEτ}h = {σ, pS(DEτ)}hS .

�

2.15. Exercise. Let X be a complex manifold, and let (E, h) and (E′, h′) be
Hermitian holomorphic vector bundles on X. Show that

D(E⊗E′,h⊗h′) = DE ⊗ IdE′ + IdE ⊗DE′ ,

cf. also [Dem96, Ch.V]. �

So far all the computations we made were for arbitrary local holomorphic frames.
It would of course be very helpful if we could choose a local holomorphic frame
that is isometric, i.e. the matrix representing locally the Hermitian metric is the
identity. In general this is not possible, since the computations in the Gram-Schmidt
orthonormalisation algorithm are not holomorphic. The following lemma shows
that nevertheless we can find a holomorphic frame that gives an approximation to
the first order of an isometric frame. A similar statement about normal coordinates
on Kähler manifolds (Theorem 3.15) will be the technical corner stone of the next
section.

2.16. Lemma. Let X be a complex manifold, and let (E, h) be a Hermitian
holomorphic vector bundle on X. Fix a point x ∈ X, then there exists a local
holomorphic frame such that

(1) H(z) = Id+O(|z|2).
(2) iΘE(0) = −i∂∂H(0).
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Proof. The second statement follows immediately from the first and Formula (2.9).

For the proof of the first statement, we will make two changes of frame. So start
by choosing any local holomorphic frame e1, . . . , er, and let H be the matrix resp-
resenting the metric h with respect to this frame. The matrix H(0) is a positive
definite Hermitian matrix, so by linear algebra there exists a matrix A such that

AtH(0)A = Id.

Since A is nonsingular, the vectors A(e1), . . . , A(er) form a local frame that is
orthonormal in the point 0. Therefore if H ′ is the matrix representing h with
respect to that frame, then

H ′ = Id+O(|z|).
We will now make a second change of frame, this one will be of the form Id+B where
B = B(z) is a matrix of holomorphic linear forms. The matrix H ′′ representing h
with respect to that frame will then be of the form

H ′′ = (Id+Bt)H ′(Id+B)

and by Taylor’s formula we will have H ′′ = Id+O(|z|2) if and only if dH ′′(0) = 0.
Since

dH ′′ = dH ′ + d(Id+Bt)H ′ +H ′d(Id+B) +O(|z|)
and H ′(0) = Id, we have

dH ′′(0) = dH ′(0) + dBt(0) + dB(0) = ∂H ′(0) + dBt(0) + ∂H ′(0) + dB(0).

Thus if we set

Bj,k := −
n∑
l=1

∂H ′k,j
∂zl

(0)zl,

then dBt(0) = ∂Bt(0) = −∂H(0) and −∂H ′(0) = ∂B(0) = dB(0). Therefore if H ′′
is the matrix representing h with respect to the frame (Id + B)(A(e1)), . . . , (Id +
B)(A(er)) the new frame satisfies dH ′′(0) = 0. �

2.C. The first Chern class and holomorphic line bundles. Let π : L → X

be a complex line bundle over a differentiable manifold, and let D be a connection
on L. By Proposition 2.3, the curvature of the connection D is given by

ΘD ∈ C∞(X,
2∧

ΩX,C ⊗ EndL).

Since for a line bundle EndL ' L∗ ⊗ L ' X × C, we see that ΘD is in fact a
two-form. Fix now a local frame e1 for L defining a trivialisation π−1(U) θ' U ×C,
then D is represented by a (1, 1)-matrix of 1-forms A, so again by Proposition 2.3

ΘD
θ= dA+A ∧A = dA,

since the product of a 1-form with itself is zero. This implies immediately

dΘD = 0,

that is the curvature tensor is a closed two-form, and we denote by [ΘD] ∈ H2(X,C)
the corresponding de Rham cohomology class. Let now D′ be another connection
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on L, that is given with respect to the frame e1 by a 1-form A′. For every σ ∈
C∞(X,

∧k ΩX ⊗ L) we have locally

D(σ)−D′(σ) θ= (ds+As)− (ds+A′s) = (A−A′)s,

where s represents σ with respect to the frame e1. Using the transition relation
(2.4) for the matrices A and A′, we see that A−A′ glues to a global form, i.e.

D(σ)−D′(σ) θ= B ∧ σ,

where B ∈ C∞(X,ΩX,C). Therefore

ΘD −ΘD′ = dB

is a coboundary, so we have an equality of cohomology classes in H2(X,C)

[ΘD] = [ΘD′ ].

We resume our considerations in the following

2.17. Proposition. Let π : L → X be a complex line bundle defined over a
differentiable manifold, and let D be a connection on L. Then the curvature ΘD

defines an element
c1(L) := [ i

2π
ΘD] ∈ H2(X,C)

that does not depend on the choice of D. We call c1(L) the first Chern class of L.

The following lemma gives some more precise information on the first Chern class.

2.18. Lemma. Let π : L→ X be a complex Hermitian line bundle defined over a
differentiable manifold. Let D be a Hermitian connection on L, and let be ΘD the
corresponding curvature form. Then

iΘD ∈ C∞(X,Ω2
X,R),

that is iΘD is a real differential form. In particular

c1(L) = [ i
2π

ΘD] ∈ H2(X,R).

2.19. Remark. The first Chern class is only the easiest case of a more general
theory of Chern classes for vector bundles, cf. [Biq08, Ch.3.6] or [Wel80, Ch.III,3].

Proof. Being real- or complex-valued is a local property, so fix a point x ∈ X,
and let e1 be a local isometric frame for L in a neighbourhood U of x defining a
trivialisation π−1(U) θ' U ×C. Locally the connection D is given by a 1-form such
that if a section σ ∈ C∞(U,E) identifies to a 1-tuple s, we have

Dσ
θ= ds+As.

Furthermore we have seen that the form representing ΘD is given by

ΘD
θ= dA.

Since the frame is isometric, the matrix A is anti-autodual A = −A, so

iΘD = −iΘD = −idA = −idA = iΘD.
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This shows that iΘD is invariant under complex conjugation, so it is a real form. �

The lemma explains why we add a constant factor i in the definition of the first
Chern class. The constant factor 1

2π improves the situation even further: the
inclusion Z ⊂ R induces a morphism8 of cohomology groups

H2(X,Z)→ H2(X,R)

and we have the following

2.20. Lemma. Let π : L→ X be a complex Hermitian line bundle defined over a
differentiable manifold. Let D be a Hermitian connection on L, and let be ΘD the
corresponding curvature form. Then

c1(L) = [ i
2π

ΘD] ∈ H2(X,Z).

We omit the proof (cf. [Dem96, V, 9.2]), but will prove a converse at the end of
this section.

2.21. Exercise. Let X be a differentiable manifold, and let V be a complex vector
bundle. We define the first Chern class of V by9

c1(V ) := c1(detV ).

Let now L be a complex line bundle, and let E be a complex vector bundle of rank
r. Show that

c1(E ⊗ L) = c1(E) + rc1(L).
�

Let now X be a complex manifold, and let (L, h) be a Hermitian holomorphic line
bundle over X. Let DL be the Chern connection, and denote by ΘL its curvature
tensor. Fix a point x ∈ X, and let e1 be a local holomorphic frame for L in
a neighbourhood U of x defining a holomorphic trivialisation π−1(U) θ' U × C.
Locally the Hermitian metric is given by a differentiable function

H(z) =< e1(z), e1(z) >=: ||e1(z)||2h.

The function H : U → C is real-valued and everywhere strictly positive, so we can
take the logarithm to obtain a differentiable function ϕ : U → R such that

H(z) = e−ϕ(z)

and we call ϕ the weight of the metric with respect to the frame e1. By Formula
(2.9) the Chern connection is given by the (1, 0)-form

A = H
−1
∂H = eϕ(z)∂e−ϕ(z) = −∂ϕ(z),

so by Corollary 2.13
ΘL = ∂A = −∂∂ϕ(z) = ∂∂ϕ(z).

8In general this morphism is not injective since H2(X,Z) may have torsion elements.
9This definition is compatible with the definition given by the general theory of Chern classes

of vector bundles, but you will not need this here.
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It follows that the first Chern class [ i2πΘL] is represented by a real-valued (1, 1)-form
given locally by

(2.10) i

2π
ΘL(z) = i

2π
∂∂ϕ(z).

Since ϕ(z) = − log ||e1(z)||2h and every holomorphic nonvanishing section s : U → L

defines a local holomorphic frame for L, we see that

(2.11) i

2π
ΘL(z) = 1

2πi
∂∂ log ||s(z)||2h.

We come to one of the fundamental definitions of these lectures.

2.22. Definition. Let X be a complex manifold of dimension n, and let L be a
holomorphic line bundle over X. We say that L is positive if it admits a Hermitian
metric h such that the curvature form ΘL defines a Hermitian product on TX . More
precisely, if the metric h is given locally by a weight function ϕ such that

ΘL(z) = ∂∂ϕ(z) =
∑

16j,k6n

∂2ϕ

∂zj∂zk
dzj ∧ dzk,

then the matrix
(

∂2ϕ
∂zj∂zk

)
16j,k6n

is positive definite.

A related notion that is of fundamental importance in contemporary algebraic ge-
ometry is the notion of plurisubharmonic or psh functions.

2.23. Definition. (Lelong, Oka 1942) A function φ : U → [−∞,∞[ defined on
some open set U ⊂ Cn is plurisubharmonic if

• it is upper semicontinuous;
• for every complex line L ⊂ Cn, the restriction φ|U∩L is subharmonic, that
is, for all a ∈ U and z ∈ Cn such that |z| < d(a,Cn \ U), the function
satisfies the mean value inequality

φ(a) 6 1
2π

∫ 2π

0
φ(a+ eiθz)dθ.

2.24. Exercise. Let φ : U → R be a C2-function. Show that φ is plurisubharmonic
if and only if the matrix

(
∂2φ

∂zj∂zk

)
16j,k6dimX

is positive semidefinite. �

2.25. Exercise. (Fubini-Study metric)

a) We set

f : Cn+1 \ 0→ R, f(z) = log(
n∑
j=0
|zj |2)

and
i∂∂f(z) = i

∑
16j,k6n

∂2f

∂zj∂zk
dzj ∧ dzk.

Show that f is plurisubharmonic, i.e. the matrix
(

∂2f
∂zj∂zk

)
16j,k6dimX

is positive
semidefinite.
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Show that i∂∂f induces a (1, 1)-form ω on Pn such that dω = 0.

Show that f can be seen as a weight function of a metric h on L := OPn(1) such
that ΘL,h is positive. �

2.26. Exercise.

a)) Let X be a complex manifold, and let L be a holomorphic line bundle on X.
Show that L is positive if and only if L⊗m is positive for some m ∈ N∗.

b) Let X be a complex manifold and let L be a holomorphic line bundle on X.
We suppose that L is globally generated, i.e. for every x ∈ X there exists a global
section σ ∈ Γ(X,L) such that σ(x) 6= 0. Show that L admits a hermitian metric
with weight function ϕ such that(

∂2ϕ

∂zj∂zk

)
16j,k6dimX

is positive semidefinite.

Bonus question (hard) : show that if we suppose only Γ(X,L) 6= 0, the line bundle
L admits a singular metric with plurisubharmonic weight. �

2.27. Exercise. Let X be a compact complex manifold, and let L be a positive
holomorphic line bundle on X. Let M be a holomorphic line bundle on X. Show
that there exists a N0 ∈ N such that

M ⊗ L⊗N

is positive for every N > N0. �

If one pushes the computations of Lemma 2.16 one step further, we get

2.28. Proposition. [Dem96, V.,12.10] Let X be a complex manifold, and let
(E, h) be a Hermitian holomorphic vector bundle on X. Fix a point x ∈ X, and
local coordinates z1, . . . , zn around x. Then there exists a local holomorphic frame
e1, . . . , er such that the matrix H representing h satisfies

hλ,µ(z) = δλ,µ −
∑
j,k

cj,k,λ,µzjzk +O(|z|3),

where the cj,k,λ,µ are constants. In particular we have

iΘE(x) = i
∑
j,k,λ,µ

cj,k,λ,µdzj ∧ dzk ⊗ e∗λ ⊗ eµ.

Using the notation from the proposition, we can write down the Hermitian form
on the vector space (TX ⊗ E)x associated to the curvature tensor Θ(E)(x). Let
η =

∑
j,λ ηj,λ

∂
∂zj
⊗ eλ ∈ (TX ⊗ E)x then we set

Θ̃E(x)(η, η) =
∑
j,k,λ,µ

cj,k,λ,µηj,ληk,µ.
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2.29. Definition. Let X be a complex manifold, and let (E, h) be a Hermitian
holomorphic vector bundle on X.

i) We say that (E, h) is positive in the sense of Nakano if for all x ∈ X, the
Hermitian form Θ̃E(x) is positive definite on (TX ⊗ E)x.

ii) We say that (E, h) is positive in the sense of Griffiths if for all x ∈ X, the
Hermitian form Θ̃E(x) is positive definite on all the decomposable vectors in (TX⊗
E)x, that is

Θ̃E(x)(ξ ⊗ v, ξ ⊗ v) > 0 ∀ ξ ∈ TX,x, v ∈ Ex.

If E is a line bundle, the definitions of Nakano and Griffiths positivity coincide and
are just the same as a positive line bundle. For vector bundles of higher rank, this is
no longer case: the definition of Nakano positivity is actually rather restrictive, but
has the advantage that we get vanishing theorems (cf. Theorem 4.13). In general
the less restrictive notion of Griffiths positivity is much more useful, since it has
better functorial properties as shows Exercise 2.54.

We close this section by showing a converse statement to Lemma 2.20.

2.30. Theorem. (Lefschetz theorem on (1, 1)-classes) Let X be a complex man-
ifold, and let ω ∈ C∞(X,Ω1,1

X ) be a d-closed real (1, 1)-form such that [ω] ∈
H2(X,Z). Then there exists a holomorphic Hermitian line bundle (L, h) on X

such that i
2πΘL,h = ω.

Before we can prove this theorem, we need the following explicit construction of
the isomorphism in the comparison theorem for the de Rham cohomology (1.3):

let X be a differentiable manifold and let Z1 ⊂ ΩX be the sheaf of d-closed 1-forms.
By the Poincaré lemma, we have an exact sequence

0→ R→ C∞
d→ Z1 → 0,

where R is the sheaf of locally constant real-valued functions. Analogously, let
Z2 ⊂ Ω2

X be the sheaf of d-closed 2-forms, then we have an exact sequence

0→ Z1 → ΩX
d→ Z2 → 0.

Now by definition of the de Rham cohomology

H2(X,R) = Z2(X)
dC∞(X,ΩX)

.

Let U = (Uα)α∈A be an open covering of X such that for all α ∈ A, the morphisms

d : C∞(Uα,ΩX)→ Z2(Uα)

and for all α, β ∈ A the morphisms

d : C∞(Uα ∩ Uβ)→ Z1(Uα ∩ Uβ)

are surjective.
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If ω is a d-closed 2-form, then choose for every α an Aα ∈ C∞(Uα,ΩX) such that
ω|Uα = dAα. On the intersection Uα ∩ Uβ , the 1-form Aβ −Aα is d-closed, and an
easy computation shows that

(Aβ −Aα)αβ
is a Čech 1-cocycle C1(U , Z1).

Choose for α, β ∈ A a function fαβ ∈ C∞(Uα ∩Uβ) such that Aβ −Aα = dfαβ . On
the intersection Uα∩Uβ∩Uγ , the differentiable function fβγ−fαγ+fαβ is d-closed,
hence it is a locally constant function. An easy computation shows that

(fβγ − fαγ + fαβ)αβγ

is a Čech 2-cocycle in C2(U ,R). The proof of the comparison theorem shows that
this cocycle represents the image of [ω] under the isomorphism

H2(X,R) ' Ȟ
2
(X,R).

2.31. Exercise. Let D ⊂ Cn be a polydisc and let ω ∈ C∞(D,Ω2
D,R) be a d-closed

two-form of type (1, 1). Show that there exists a ϕ ∈ C∞(D) such that

ω = ∂∂φ.

�

Proof of Theorem 2.30. Let U = Uα be an open covering by polydiscs such that
the intersections Uα ∩ Uβ are simply connected. The form ω is d-closed, so by
Exercise 2.31 there exist differentiable functions φα on Uα such that

i

2π
∂∂φα = ω|Uα .

Therefore for every α, β the function φβ − φα is pluriharmonic on the intersection
Uα ∩ Uβ . By Exercise 1.11 there exist holomorphic functions fαβ on Uα ∩ Uβ such
that

2 Re(fαβ) = φβ − φα.

We consider f = fαβ as a Čech 1-chain in C1(U ,OX) (cf. page 33 for the defini-
tion), then its Čech differential is

(δf)αβγ = fβγ − fαγ + fαβ

on Uα ∩ Uβ ∩ Uγ and
2 Re(δf)αβγ = 0.

Since the fαβ are holomorphic, this shows (δf)αβγ ∈ Γ(Uα ∩ Uβ ∩ Uγ , iR).

Consider now the real forms Aα = i
4π (∂φα − ∂φα). Since

∂(φβ − φα) = ∂(fαβ + fαβ) = ∂fαβ = dfαβ ,

and analogously ∂(φβ − φα) = dfαβ , we get

Aβ −Aα = i

4π
d(fαβ − fαβ) = 1

2π
d Im fαβ .
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Since ω|Uα = dAα, the explicit construction of the isomorphism H2(X,R) '
Ȟ

2
(X,R) shows that the Čech cohomology class of

( 1
2π

Im(fβγ − fαγ + fαβ))αβγ

equals the Čech cohomology class corresponding to [ω]. By hypothesis [ω] is the
image of a Čech cocycle (nαβγ) ∈ H2(X,Z), so

( 1
2π

Im(fβγ − fαγ + fαβ))αβγ = nαβγ + δ(cαβ)

for some 1-chain (cαβ) with values in R. Set now f ′αβ := fαβ − 2πicαβ , then the
preceding computations show that

(f ′βγ − f ′αγ + f ′αβ) ∈ Γ(Uαβγ , 2πiZ),

so gαβ := exp(−f ′αβ) defines a 1-cocycle in O∗X . Since

φβ − φα = 2Re f ′αβ = − log |gαβ |2,

the line bundle L corresponding to gαβ admits a global Hermitian metric defined
in every trivialisation by Hα = exp(−φα) and therefore by Formula (2.10)

i

2π
ΘL,h = i

2π
∂∂φα = ω

on Uα. �

2.D. Hypersurfaces and divisors.

2.32. Definition. Let X be a complex manifold. A hypersurface of X is a closed
subset D ⊂ X such that for all x ∈ D there exists an open neighbourhood x ∈ U ⊂
X and a non-zero holomorphic map f : U → D such that

D ∩ U = {x ∈ U | f(x) = 0}.

We say that x ∈ D is a smooth point if we can choose a f : U → D that is
a submersion. We denote by Dnons ⊂ D the union of smooth points and call
it smooth or nonsingular locus of D. We say that the hypersurface is smooth if
Dnons = D.

2.33. Remark. We do not suppose that a hypersurface is connected. In particular
a smooth hypersurface is a disjoint union of submanifolds of codimension one.

The next exercise shows that hypersurfaces and holomorphic line bundles are closely
related:

2.34. Exercise. Let X be a complex manifold, and let D ⊂ X be a smooth
hypersurface. We say that a holomorphic function fα : Uα → C is a local equation
for D on an open subset Uα ⊂ X if fα is submersive and

D ∩ Uα = {x ∈ Uα | fα(x) = 0}.

a) Let (Uα)α∈A be an open covering of X such that there exist local equations
fα ∈ OUα for D.
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We define meromorphic functions on Uα ∩ Uβ by

gαβ := fα
fβ
.

Show that gαβ extends to a holomorphic map on Uα∩Uβ that is non-zero for every
x ∈ Uα ∩ Uβ . Show that (gαβ)α,β∈A is a Čech 1-cocyle in O∗X . We set

OX(D) ∈ Pic(X)

for the corresponding holomorphic line bundle. Show that the isomorphism class of
the line bundle does not depend on the choice of the covering or the local equations.

b) Let ID ⊂ OX be the ideal sheaf of D in X, that is the sheaf defined for every
open set U ⊂ X by

ID(U) := {s ∈ OX(U) | s(x) = 0 ∀ x ∈ D ∩ U}.

Show that if Uα is a coordinate neighbourhood and fα a local equation, then
ID(Uα) = fαOX(Uα).

Thus ID is invertible (cf. Exercise 1.58) and we denote by the same letter the line
bundle associated to it. Show that

ID = OX(D)∗.

Thus we have an exact sequence

0→ OX(D)∗ → OX → OD → 0

c) Let L→ X be a holomorphic line bundle, and let σ ∈ Γ(X,L) be a section such
that

D := {x ∈ X | σ(x) = 0}
is smooth and dσ(x) 6= 0 for all x ∈ D (cf. Exercise 1.65). Show that

L ' OX(D).

�

We will now generalise these statements without the smoothness hypothesis. This
needs some extra effort:

2.35. Lemma. Let X be a complex manifold and D ⊂ D a hypersurface. Then
the nonsingular locus Dnons is an open, dense subset of D.

Proof. The nonsingular locus is clearly open, so all we have to show is that if
x ∈ D is a point, then Dnons is dense in some neighbourhood of x. Taking a local
coordinate neighbourhood we are reduced to consider the situation where X is a
polydisc Dn and x = 0. Set

ID := {g : Dn → D | g(z) = 0 ∀ z ∈ D},

then ID is an ideal in the ring of holomorphic function ODn which is principal (cf.
[GH78, p.18ff]), so there exists a holomorphic function f : Dn → D such that

ID = fODn .
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Let z1, . . . , zn be some linear coordinates on Dn. If f(z1, 0, . . . , 0) = 0 for all z1 ∈ D,
the line {z2 = . . . = zn = 0} is contained in D. Since D is a proper subset of Dn

we can suppose (up to changing our coordinates) that this is not the case.

Let l be the order of vanishing of f(z1, 0, . . . , 0) in z1 = 0, then by the Weierstrass
preparation theorem there exist (up to replacing Dn by a smaller disc and coordinate
change) holomorphic functions

fj : Dn → D ∀ j = 0, . . . , l − 1

such that
f = zl1 +

∑
06j<l

zj1fj(z2, . . . , zn).

If the restriction of ∂f
∂z1

to D is not zero we are done, since this implies that f is
submersive on the open, dense set

D ∩ {z ∈ D | ∂f
∂z1

(z) 6= 0}.

Suppose now that ∂f
∂z1

(z) = 0 for all z ∈ D, then ∂f
∂z1
∈ ID. Thus there exists a

holomorphic function h such that
∂f

∂z1
= hf.

Yet
degz1

∂f

∂z1
< degz1 f,

so we get ∂f
∂z1

= 0. We repeat this argument for the other variables, then the worst
case would be

∂f

∂zj
= 0 ∀ j = 1, . . . , n.

Yet this implies that f is constant, a contradiction to ∅ 6= D ( Dn. �

2.36. Proposition. Let X be a complex manifold and D ⊂ X a hypersurface.
Then there exists a holomorphic line bundle OX(D) on X that has a global section
σ ∈ Γ(X,OX(D)) such that

D = {x ∈ X | σ(x) = 0}.

Proof. Set Z := D \Dnons. Then Dnons ⊂ X \ Z is a smooth hypersurface, so by
Exercise 2.34 there exists an open covering Uα of X and holomorphic functions

gαβ : Uα ∩ Uβ \ Z → C∗

defining a line bundle OX\Z(Dnons) which has the stated property. By the preceding
lemma the nonsingular locus is dense in D, so Z does not contain any hypersurface.
Thus by Hartog’s Theorem 1.12 the holomorphic functions gαβ extend to holomor-
phic functions on Uα ∩ Uβ . The same holds for 1

gαβ
, so we obtain holomorphic

functions
gαβ : Uα ∩ Uβ → C∗.
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It is easy to check that this function still verify the cocycle relation and the corre-
sponding line bundle OX(D) satisfies

OX(D)|X\Z = OX\Z(Dnons).

�

2.37. Definition. Let X be a complex manifold and D ⊂ X a hypersurface. We
say that D is reducible if there exist hypersurfaces D1, D2 ⊂ X such that Di ( D

and
D = D1 ∪D2.

If this is not the case we say that D is irreducible.

Remark. A hypersurface is irreducible if and only if its nonsingular locus is con-
nected [GH78, Ch.1.1]).

2.38. Definition. Let X be a complex manifold. A divisor on X is a finite formal
sum ∑

i

aiDi ai ∈ Z,

where the Di are irreducible hypersurfaces in X. The holomorphic line bundle
associated to D is defined by

OX(D) := ⊗iOX(Di)⊗ai .

Furthermore we set
c1(D) := c1(OX(D)).

Now that we have seen that to every divisor we can associate a holomorphic line
bundle, it is natural to ask if the inverse holds. In general this is not the case : for
example there are complex tori that do not have any hypersurfaces (cf. Exercise
3.50). The following theorem will be an immediate consequence of the results of
Section 4:

2.39. Theorem. Let X be a projective manifold, and let L be a holomorphic line
bundle over X. Then there exist hypersurfaces D1, D2 ⊂ X such that

L ' OX(D1 −D2).

2.40. Remark. If we admit Bertini’s theorem [GH78, p.137] we can even suppose
that D1 and D2 are smooth and intersect transversally.

We can now prove a fundamental result relating the first Chern class with the
integration over a corresponding divisor: let X be a compact complex variety of
dimension n, and let M ⊂ X be a smooth hypersurface. If ω = dη is an exact form
of degree 2n− 2, then the integral

∫
M
ω equals zero by Stokes’ theorem. Thus the

map
C∞(X,Ω2n−2

X,R )→ R, ω 7→
∫
M

ω|M

induces a linear form
[M ] : H2n−2(X,R)→ R.
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Moreover by Poincaré duality H2(X,R) = H2n−2(X,R)∗, so [M ] can be seen as a
cohomology class in H2(X,R) which we call the Poincaré dual of M . By definition
of the de Rham cohomology, the class [M ] can be represented by some closed real
2-form. The following theorem shows that a curvature tensor of the corresponding
line bundle works.

2.41. Theorem. (Formula of Lelong-Poincaré) Let X be a compact complex vari-
ety of dimension n, and letM ⊂ X be a smooth hypersurface10. Denote by OX(M)
the holomorphic line bundle corresponding toM and by c1(M) the first Chern class
of OX(M). Then we have

c1(M) = [M ],
that is if i

2πΘ is some curvature form representing c1(L) and ψ ∈ C∞(X,Ω2n−2
X,R ) is

d-closed, then ∫
X

i

2π
Θ ∧ ψ =

∫
M

ψ|M .

Proof. We endow OX(M) with some hermitian metric h and denote by Θ the
corresponding Chern curvature tensor. Let s ∈ Γ(X,OX(M)) be a global section
vanishing exactly along M . For small ε > 0 the open set

M(ε) := {z ∈ X | ||s(z)||h < ε}.

is a tubular neighbourhood of M in X. By Formula (2.11) we have
i

2π
Θ(z) = 1

2πi
∂∂ log ||s(z)||2h ∀ z ∈ X \M(ε).

Thus ∫
X

i

2π
Θ ∧ ψ = lim

ε→0

∫
X\M(ε)

1
2πi

∂∂ log ||s(z)||2h ∧ ψ.

Since ∂∂ = d∂ and ψ is d-closed, Stokes’ theorem yields∫
X\M(ε)

1
2πi

∂∂ log ||s(z)||2h ∧ ψ =
∫
∂M(ε)

−1
2πi

∂ log ||s(z)||2h ∧ ψ.

We want to compute the integral on the right hand side. If we take a finite covering
of M by polydiscs Uα ⊂ X, then ∂M(ε) ⊂ ∪αUα for ε small enough. Taking a
partition of unity subordinate to Uα we are reduced to computing∫

∂M(ε)∩Uα

−1
2πi

∂ log ||s(z)||2h ∧ ψ

for every α. Up to replacing the covering by smaller polydiscs and choosing appro-
priate coordinates z1, . . . , zn we can suppose that

M ∩ Uα = {zn = 0}

and
(∗) ∂M(ε) ∩ Uα = {|zn| = ε} ' (M ∩ Uα)× Sε, .

10The statement is true without the smoothness hypothesis, but technically more difficult: the
first non-trivial issue is to show that the integral

∫
Mnons

ω|Mnons converges.
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where Sε is the circle of radius ε around 0 ∈ C. Now for every z ∈ M(ε) ∩ Uα we
have

||s(z)||2h = |zn|2hα,

where hα : M(ε) ∩ Uα → R+ is positive and bounded from below by some δ > 0.
Thus in the complement of M ∩ Uα

∂ log ||s(z)||2h = dzn
zn

+ ∂ log hα.

Since ∂ log hα is bounded one sees easily that

lim
ε→0

∫
∂M(ε)

−1
2πi

∂ log hα ∧ ψ = 0,

so we don’t have to worry about this term. Since dzn
zn

= dzn
zn

and ψ is real, we have∫
∂M(ε)∩Uα

−1
2πi

dzn
zn
∧ ψ =

∫
∂M(ε)∩Uα

1
2πi

dzn
zn
∧ ψ.

Set
dλ := dz1 ∧ . . . ∧ dzn−1 ∧ dz1 ∧ . . . dzn−1,

then we can write the 2n− 2-form in our local coordinates as

ψ|Uα = ψ̃(z) dλ+ η,

where each term of η contains dzn or dzn. Note that

(∗∗) ψ|Uα∩M = ψ̃(z1, . . . , zn−1, 0) dλ.

By (∗) we have dzn = − znzn dzn on ∂M(ε) ∩ Uα, so(
dzn
zn
∧ ψ
)
|∂M(ε)∩Uα =

(
dzn
zn
∧ ψ̃ dλ

)
|∂M(ε)∩Uα

Since ∂M(ε) ∩ Uα ' (M ∩ Uα)× Sε Fubini’s theorem gives∫
∂M(ε)∩Uα

1
2πi

dzn
zn
∧ ψ =

∫
M∩Uα

dλ

∫
Sε

1
2πi

ψ̃

zn
dzn.

By the generalised Cauchy formula 1.81∫
Sε

1
2πi

ψ̃

zn
dzn = ψ̃(z1, . . . , zn1 , 0) +

∫
Dε

i

2πzn
∂ψ̃

∂zn
dzn ∧ dzn.

Since 1
zn

is L1 around zn = 0, the second term converges to 0 for ε→ 0. Thus

lim
ε→0

∫
∂M(ε)∩Uα

1
2πi

dzn
zn
∧ ψ =

∫
M∩Uα

ψ̃(z1, . . . , zn−1, 0)dλ

Thus by (∗∗)

lim
ε→0

∫
∂M(ε)∩Uα

1
2πi

∂ log ||s(z)||2h ∧ ψ =
∫
M∩Uα

ψ.

�
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2.42. Remark. If we are willing to work with currents, that is differential forms
whose coefficients are not C∞-functions but merely distributions, we can give a
more conceptual proof of the theorem, at least for the local situation: let Dn be
the unit disc and consider the hypersurface M defined by zn = 0. As in the proof
of the theorem we want to understand the distribution

i

2π
∂∂ log |z2

n| =
−i
2π
∂

(
dzn
zn

)
= ∂

∂zn

(
1
πzn

)
i

2
dzn ∧ dzn.

Yet by Corollary 1.82 the distribution ∂
∂zn

(
1
πzn

)
equals the Dirac mass centered

on the hypersurface zn = 0.

2.43. Notation. If L is a holomorphic line bundle over a compact complex manifold
X of dimension n and ψ ∈ C∞(X,Ω2n−2

X,R ) is d-closed, we set∫
X

c1(L) ∧ ψ :=
∫
X

i

2π
Θ ∧ ψ

where Θ is some curvature tensor of L. Stokes’ theorem shows that this is well-
defined, i.e. does not depend on the choice of Θ.

The theorem has a number of important geometric consequences:

2.44. Corollary. Let X be a compact complex curve, and let D =
∑
i aiDi be a

divisor on X. Denote by c1(D) the first Chern class of the holomorphic line bundle
OX(D). Then ∑

i

ai =
∫
X

c1(D).

Proof. The statement is additive on both sides, so we reduce to the case where D
is a point. In this case let ψ = 1 be the constant function with value one on X,
then by Theorem 2.41 ∫

X

c1(D) ∧ 1 =
∫
D

1 = 1.

�

On surfaces the product of Chern classes counts the number of points in the inter-
section.

2.45. Corollary. Let X be a compact complex surface, and let M1,M2 ⊂ X be
two smooth curves meeting transversally, i.e.

TX,x = TM1,x ⊕ TM2,x ∀ x ∈M1 ∩M2.

Denote by c1(Mi) the first Chern class of the holomorphic line bundle OX(Mi).
Then

#(M1 ∩M2) =
∫
X

c1(M1) ∧ c1(M2).
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Proof. Let i
2πΘ2 be some Chern curvature tensor representing c1(D2). By Theorem

2.41 we have∫
X

c1(M1) ∧ c1(M2) =
∫
X

c1(M1) ∧
i

2π
Θ2 =

∫
M1

i

2π
Θ2|M1 .

Since the intersection is transversal, we can choose a covering Uα ⊂ X by open
sets, such that for every z ∈M1 ∩M2 ∈ Uα we have local holomorphic coordinates
z1, z2 such that

Mi ∩ Uα = {zi = 0}.

Thus the restriction of the local equation of M2 to M1 is z2 = 0, i.e. the equation
of a reduced point. By the construction in Exercise 2.34 this shows that

OX(M2)|M1 = OM1(M1 ∩M2),

so Θ2|M1 is a curvature form for the line bundle OM1(M1∩M2). Thus by Corollary
2.44 ∫

M1

i

2π
Θ2|M1 = #(M1 ∩M2).

�

The statement of the corollary holds for irreducible distinct curves not meeting
transversally if we count the number of points in the intersection with the ap-
propriate multiplicity. A first approximation to this more general situation is the
following.

2.46. Exercise. Let X be a compact complex surface, and let C ⊂ X be a smooth
irreducible curve. Let D be a curve such that C is not an irreducible component of
D. Show that

#(C ∩D) 6
∫
X

c1(C) ∧ c1(D).

�

2.47. Theorem. Let X be a projective surface and denote by Pic(X) its Picard
group. Then there is a unique pairing Pic(X)× Pic(X)→ Z denote by L1 · L2 for
any two holomorphic line bundles L1, L2, such that

(1) if C and D are nonsingular curves meeting transversally, then

OX(C) · OX(D) = #(C ∩D),

(2) it is symmetric: L1 · L2 = L2 · L1,
(3) is is additive: (L1 ⊗ L2) ·D = L1 ·D + L2 ·D.

This pairing is given by

L1 · L2 =
∫
X

c1(L1) ∧ c1(L2).

2.48. Remark. We will study this intersection product in more detail in Subsection
3.E.
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Proof. We leave it to the reader to check that if L1 and L′1 are isomorphic line
bundles, then c1(L1) = c1(L′1) in H2(X,R). Thus the integral∫

X

c1(L1) ∧ c1(L2)

depends only on the isomorphism class of L1 and we get a well-defined map

Pic(X)× Pic(X)→ R, (L1, L2) 7→
∫
X

c1(L1) ∧ c1(L2).

This map is clearly symmetric and additive and also satisfies the property 1) by
Corollary 2.45. In order to see that it is integer-valued we use Theorem 2.39 and
Remark 2.40: given two line bundles L1 and L2 we choose smooth hypersurfaces
D1, D2, D3, D4 meeting transversally such that

L1 ' OX(D1 −D2), L2 ' OX(D3 −D4).

Then the properties 1)− 3) imply that
∫
X
c1(L1) ∧ c1(L2) ∈ Z.

The uniqueness is shown in the same way, i.e. we use Theorem 2.39 and Remark 2.40
and the properties 2)+3) to reduce to the case where L1 ' OX(D1), L2 ' OX(D2)
with D1, D2 smooth and meeting transversally and conclude by property 1). �

The theorem above also holds forX an arbitrary compact complex surface. However
in this case we must use that the first Chern class c1(Li) is an element of H2(X,Z).
The intersection product

∫
X
c1(L1) ∧ c1(L2) then identifies to the cup product in

cohomology, in particular it takes values in H4(X,Z) ' Z.

If C and D are curves in X, we set

C ·D := OX(C) · OX(D)

Note that this definition also makes sense when C = D, i.e. we can define the
self-intersection number of a curve C ⊂ X by

C2 := OX(C) · OX(C).

The next exercise gives a (very important) example where this number is strictly
negative !

2.49. Exercise. Let 0 ∈ U ⊂ Cn be an open neighbourhood of 0. The blow-up of
U in 0 is the set

U ′ := {((x1, . . . , xn), (y1 : . . . : yn)) ∈ U × Pn−1 | xiyj = xjyi ∀ i, j ∈ {1, . . . , n}}.

a) Show that U ′ is a submanifold of dimension n of U × Pn−1.

b) Let π : U ′ → U be the map induced by the projection on the first factor. Show
that π−1(0) ' Pn−1 and that π|U ′\π−1(0) is a biholomorphism.

c) Let now X be a complex manifold of dimension n and x0 ∈ X a point. Let Ui be
an open covering of X such that x0 ∈ U1 is a coordinate neighbourhood and such
that x0 6∈ Ui for i 6= 1. Let U ′1 be the blow-up of U1 in x0. Show that U ′1 ∪ ∪i>2Ui
glues to a complex manifold X ′ that admits a holomorphic map π : X ′ → X such
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that π−1(x0) ' Pn−1 and π|X′\π−1(0) is a biholomorphism. We call X ′ the blow-up
of X in x0 and E := π−1(x0) ' Pn−1 the exceptional divisor.

d) Show that
KX′ ' µ∗KX ⊗ OX′(E)⊗n−1.

Deduce that
OX′(E)|E ' OPn−1(−1).

e) Suppose now that X is a compact complex surface. Show that∫
X′
c1(OX′(E))2 = −1.

Hint: use Theorem 2.41 �

The intersection product on a surface is an extremely useful tool. Let us mention
the following statements which we will be able to prove at the end of Section 4.

2.50. Theorem. (Criterion of Nakai-Moishezon on surfaces) Let X be a projective
surface, and let L be a holomorphic line bundle on X. Then L is positive if and
only if L2 > 0 and

L · C > 0

for all curves C ⊂ X.

Let X be a projective surface and let M be a holomorphic line bundle on X. We
define the holomorphic Euler characteristic

χ(X,M) = h0(X,M)− h1(X,M) + h2(X,M).

2.51. Theorem. (Riemann-Roch on surfaces) Let X be a projective surface, and
let L be a holomorphic line bundle on X. Then we have

χ(X,L) = 1
2
L2 − 1

2
KX · L+ χ(X,OX).

2.E. Extension of vector bundles. Let X be a complex manifold of dimension
n, and let

0→ S
φ→ E

ψ→ Q→ 0

be an exact sequence of holomorphic vector bundles (cf. Exercise 1.65). A holo-
morphic (resp. C∞)-splitting of the exact sequence is a morphism of holomorphic
(resp. complex) vector bundles τ : Q → E such that ψ ◦ τ = IdQ. We say that E
is an extension of Q by S and the extension is trivial if there exists a holomorphic
splitting.

While a C∞-splitting always exists, an extension of holomorphic vector bundles is
in general not trivial: for example the Euler sequence (Exercise 1.1) on P1

0→ OP1 → OP1(1)⊕2 → TP1 → 0
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is not trivial, since this would imply OP1(1)⊕2 ' OP1 ⊕ TP1 . Yet this would imply
that Hom(OP1(1),OP1) ' OP1(−1) has a global holomorphic section, a contradic-
tion to Exercise 1.60. The following exercise shows how to measure the possible
extensions of Q by S.

Let X be a complex manifold of dimension n, and let

0→ S
φ→ E

ψ→ Q→ 0

be an exact sequence of holomorphic vector bundles. Let h be a Hermitian metric
on E, then we define hS to be the Hermitian metric on S given by restricting h.
Furthermore for x ∈ X, set

S⊥x := {e ∈ Ex | h(e, s) = 0 ∀ s ∈ Sx}.

It is easily seen that S⊥ is a complex vector bundle that is a subbundle of E such
that ψ|S⊥ : S⊥ → Q is a C∞-isomorphism. We define the quotient metric hQ on
Q to be the metric given by restricting h to S⊥. Thus we get a C∞-isomorphism
of hermitian complex vector bundles

(∗) (E, h) = (S, hS)⊕ (S⊥, hS⊥) ' (S, hS)⊕ (Q, hQ).

Note that in general this isomorphism is very far from inducing an isomorphism
E ' S ⊕Q of holomorphic vector bundles.

Let DE , DS , DQ the Chern connections corresponding to the metrics h, hS , hQ.
Using the isomorphism (∗), we define a hermitian connection on (E, h) by

∇E := DS ⊕DQ.

The difference DE −∇E is given by a 1-form

Γ ∈ C∞(X,ΩX,C ⊗ End(E)).

Let e1, . . . , er be an isometric frame of (E, h) such that e1, . . . , es is a frame for S.
Since DE and ∇E are hermitian connections we see by Lemma 2.9 that Γt = −Γ.
Therefore we can write

Γ =

(
α −βt

β δ

)
,

where α ∈ C∞(X,ΩX,C ⊗ End(Q)), δ ∈ C∞(X,ΩX,C ⊗ End(Q)) such that αt =
−α, δt = −δ and β ∈ C∞(X,ΩX,C ⊗Hom(S,Q)). With this notation we have

DE =

(
DS + α −βt

β DQ + δ

)
.

Yet by Corollary 2.14 we have

DS = pS ◦DE |S = DS + α,

so α = 0. Using the dual exact sequence one shows analogously that δ = 0. Note
furthermore that since β represents the linear map

DE |S −DS : C∞(X,S)→ C∞(X,ΩX,C ⊗Q)
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and the matrices of DE and DS are of type (1, 0) by Corollary 2.13 we have

β ∈ C∞(X,Ω1,0 ⊗Hom(S,Q)).

We call β the second fundamental form of S in E.

2.52. Exercise. Let X be a complex manifold of dimension n, and let

0→ S
φ→ E

ψ→ Q→ 0

be an exact sequence of holomorphic vector bundles. We say that two extensions
are equivalent if there exists a commutative diagram

0 S

IdS

E Q

IdQ

0

0 S F Q 0

The goal of this exercise is to show that the elements of the cohomology group
Ȟ

1
(X,Hom(Q,S)) have a natural bĳection with the isomorphism classes of exten-

sions of Q by S.

Note first that the exact sequence of sheaves

0→Hom(Q,S)
IdQ∗ ⊗φ→ Hom(Q,E)

IdQ∗ ⊗ψ→ Hom(Q,Q)→ 0

induces a long exact sequence of Čech cohomology groups

. . .→ Ȟ
0
(X,Hom(Q,E))→ Ȟ

0
(X,Hom(Q,Q)) δ→ Ȟ

1
(X,Hom(Q,S))→ . . .

We denote [E] := δ(IdQ) ∈ Ȟ
1
(X,Hom(Q,S)).

a) Show that [E] = 0 if and only if the exact sequence splits.

b) Let e ∈ Ȟ
1
(X,Hom(Q,S)). Show that there exists an exact sequence

0→ S
φ→ E

ψ→ Q→ 0

such that [E] = e.

Hint: in order to define the vector bundle E, let (Uα)α∈A be a Leray covering
of X and let (eαβ)α,β∈A be a Čech 1-cocycle that represents e. We set E|Uα :=
S|Uα ⊕Q|Uα and define the transition functions by

gαβ(sβ , qβ) = (sβ + eαβ(qβ), qβ).

c) Conclude.

We will now do the analogue construction from the analytic point of view: fix h a
Hermitian metric on E, and let

β ∈ C∞(X,Ω1,0 ⊗Hom(S,Q)).

be the second fundamental form of S in E. Let β∗ be its adjoint (i.e. the element
of C∞(X,Ω0,1 ⊗Hom(Q,S)) given in an isometric frame by βt).
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d) Show that ∂β∗ = 0 and the Chern curvature of E is

Θ(E) =

(
Θ(S)− β∗ ∧ β −D1,0

Hom(Q,S)β
∗

∂β Θ(Q)− β ∧ β∗

)
.

Since ∂β∗ = 0, the form gives a cohomology class [β∗] in H1(X,Hom(Q,S)).

e) Show that the class does not depend on the choice of the Hermitian metric on
E.

f) Show that [β∗] corresponds to [E] under the de Rham-Weil isomorphism

Ȟ
1
(X,Hom(Q,S)) ' H1(X,Hom(Q,S)).

Hint: cf. page 50 for an explicit description of the isomorphism. �

2.53. Exercise. Let X be a complex manifold of dimension n, and let

0→ S
φ→ E

ψ→ Q→ 0

be exact. Show that there exists a long exact sequence of C-vector spaces (the long
exact cohomology sequence)

0 → H0(X,S)→ H0(X,E)→ H0(X,Q)
δ→ H1(X,S)→ H1(X,E)→ H1(X,Q)
δ→ H2(X,S)→ H2(X,E) . . .
δ→ Hn(X,S)→ Hn(X,E)→ Hn(X,Q)→ 0.

Describe in particular the morphisms δ. �

2.54. Exercise.

a) Let X be a complex manifold and let (E1, h1) and (E2, h2) be Hermitian holo-
morphic vector bundles that are Griffiths positive. Show that (E1⊕E2, h1⊕ h2) is
Griffiths positive.

b) Let X be a complex manifold and let (E, h) be a Hermitian vector bundle that
is Griffiths positive. Let

0→ S
φ→ E

ψ→ Q→ 0

be an exact sequence of holomorphic vector bundles. Show that the Hermitian
bundle (Q, hQ) where hQ is the induced quotient metric (cf. Exercise 2.52) is
Griffiths positive.

Note that a subbundle of a Griffiths positive line bundle may be negative: the
vector bundle OP1(1)⊕2 is Griffiths positive since it is a direct sum of positive line
bundles. Since

Hom(OP1(−1),OP1(1)) ' OP1(2),

we have
Γ(P1,Hom(OP1(−1),OP1(1))) ' Γ(P1,OP1(2)).
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We have seen in Exercise 1.60 that the global sections of OP1(2) can be identified to
the homogeneous polynomials of degree two. Choose two such polynomials s1, s2
that have no common zero, then

OP1(−1) (s1,s2)−→ OP1(1)⊕2

has rank one in every point, so OP1(−1) is a subbundle of OP1(1)⊕2. �

2.55. Exercise. Let X be a complex manifold of dimension n. A Pr-bundle over X
is a complex manifold M together with a surjective holomorphic submersion map
π : M → X such that

(1) for every x ∈ X, the fibre Mx := π−1(x) is isomorphic to Pr

(2) for every x ∈ X, there exists an open neighbourhood U of x and a biholo-
morphism h : π−1(U)→ U × Pr such that

π|π−1(U) = p1 ◦ h

and for all x ∈ U ,
p2 ◦ h : Ex → Pr

is an element of PGL(C, r).

Let (Uα, hα) and (Uβ , hβ) be two local trivialisations of M , then the map

hα ◦ h−1
β : (Uα ∩ Uβ)× Pr → (Uα ∩ Uβ)× Pr

induces a holomorphic map

gαβ : Uα ∩ Uβ → PGL(C, r)

where gαβ(x) = hxα ◦ (hxβ)−1 : Pr → Pr.

Let E be a holomorphic vector bundle of rank r + 1 over X given by a collection
of transition functions gαβ : Uα ∩ Uβ → GL(C, r + 1). Using the natural map
GL(C, r+1)→ PGL(C, r), show that we can associate a Pr-bundle φ : P(E)→ X,
the projectivised bundle of E.

We define the tautological bundle on P(E) as

OP(E)(−1) := {(x, y) ∈ P(E)× φ∗E | y ∈ Cx}.

Show that OP(E)(−1) is a holomorphic subbundle of φ∗E.

Show that a Hermitian metric on E induces a Hermitian metric h on OP(E)(1) such
that (OP(E)(1)|φ−1(x), h|φ−1(x)) is a positive line bundle for every x ∈ X. �

2.56. Exercise. Let X be a compact complex manifold and let E be a Griffiths
positive vector bundle over X. Let P(E∗) be the projectivised vector bundle of E∗,
and let OP(E∗)(−1) be its tautological bundle. Show that the dual bundle OP(E∗)(1)
is positive.

A famous conjecture of Griffiths claims that if OP(E)(1) is positive, then E is Grif-
fiths positive. Note that this conjecture is only known to be true if X is a curve!
�
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3. Kähler manifolds and Hodge theory

In this section we introduce a special class of complex manifolds, the Kähler mani-
folds. We will see that every complex curve is Kähler but this is not true in higher
dimension: the Hopf varieties are examples of non-Kähler manifolds. Roughly
speaking, the Kähler condition assures a certain compatibility of the differentiable
and the complex structure of the manifold. One consequence of this compatibility
is the Hodge decomposition Theorem 3.36 that establishes a strong link between
the de Rham and the Dolbeault cohomology groups of a compact Kähler manifold.

3.A. Kähler manifolds. In order to introduce Kähler manifolds, we proceed as
in Subsection 1.D: we illustrate the basic concept in the case of a complex vector
space, then globalise to the setting of a complex manifold.

Let V be a complex vector space of dimension n, and let VR be the underlying real
vector space of dimension 2n. Recall that the multiplication by i induces a complex
structure on VR. Furthermore this complex structure induces a decomposition of
the complexified vector space VC = VR ⊗R C in

VC = V 1,0 ⊕ V 0,1.

In the same way, let WR := Hom(VR,R) be the dual space and WC := WR ⊗R C its
complexification, then we get a decomposition

WC = W 1,0 ⊕W 0,1.

Let now W 1,1 = W 1,0 ∧W 0,1 ⊂
∧2

WC be the 2-forms of type (1, 1), and set

W 1,1
R := W 1,1 ∩

2∧
WR,

where
∧2

WR ⊂
∧2

WC are the real 2-forms.

Recall that a Hermitian form on V is a map

h : V × V → C

that is C-linear in the first and C-antilinear in the second variable and satisfies

h(u, v) = h(v, u).

The next lemma establishes the link between the real (1, 1)-forms and Hermitian
forms on V .

3.1. Lemma. Let V be a complex vector space of dimension n, and let J be
the induced complex structure on the underlying real vector space VR. There is a
natural isomorphism between the Hermitian forms on V and W 1,1

R given by

h 7→ ω = − Im h.

and
ω 7→ h : V × V → C, (u, v) 7→ ω(u, J(v))− iω(u, v).
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Proof. Write
h = Reh+ i Im h,

then for all u, v in V

Reh(u, v) + i Im h(u, v) = h(u, v) = h(v, u) = Reh(v, u)− i Im h(v, u),

so ω = − Im h is an alternating real form. In order to see that it is of type (1, 1),
note first that by construction W 1,1 = (V 1,1)∗ where

2∧
VC = V 2,0 ⊕ V 1,1 ⊕ V 0,2,

so ω ∈W 1,1 if and only if it vanishes on every couple of vectors (u, v) of type V 1,0

or V 0,1. Since ω = ω and V 1,0 = V 0,1, it is sufficient to check the first case. A
generating family of V 1,0 is given by v− iJ(v) for v ∈ V . For such vectors we have

ω(u− iJ(u), v − iJ(v)) = ω(u, v)− ω(J(u), J(v))− i (ω(u, J(v)) + ω(J(u), v)) .

Since
h(J(u), J(v)) = ih(u, J(v)) = −i2h(u, v) = h(u, v)

and h(u, J(v)) = −h(J(u), v), we have

ω(u, v) = ω(J(u), J(v)) and ω(u, J(v)) = −ω(J(u), v)

This shows one inclusion, we leave the inverse construction as an exercise to the
reader. �

It is crucial for our purposes that the isomorphism does not depend on the choice
of a basis of the complex vector space V . Nevertheless it is enlightening to see the
correspondence for a basis z1, . . . , zn of V . Then any Hermitian form on V can be
written as

h =
∑

16j,k6n

hj,kz
∗
j ⊗ z∗k.

The corresponding (1,1)-form is then

ω = i

2
∑

16j,k6n

hj,kz
∗
j ∧ z∗k.

3.2. Definition. We say that a real form of type (1, 1) is positive if the corre-
sponding Hermitian form is positive definite.

3.3. Definition. Let X be a complex manifold. A Hermitian metric on X is a
Hermitian metric on the tangent bundle TX , and we denote by ω the corresponding
differentiable (1, 1)-form. We say that ω is a Kähler form if it is closed, that is

dω = 0.

We say that a complex manifold is Kähler if it admits a Kähler form.
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3.4. Example. The real (1, 1)-form

ω = i

2

n∑
j=1

dzj ∧ dzj

induced by the standard Hermitian product on Cn certainly defines a Kähler metric.

In the same spirit, let Λ ⊂ Cn be a lattice. Then the complex torus Cn/Λ admits
a Kähler form: let

ω′ = i

2
∑

16j,k6n

hj,kdzj ∧ dzk,

be any Kähler form on Cn with constant coefficients hj,k ∈ C. Then ω′ is invariant
by the translations λ : Cn → Cn, z 7→ z + λ for all λ ∈ Λ, so ω′ induces a Kähler
form ω on Cn/Λ such that ω′ = π∗ω where π : Cn → Cn/Λ is the quotient map.

3.5. Exercise. Let X be a complex manifold. Let ω be a (1, 1)-form corresponding
to a Hermitian metric on X. Prove that we have an equivalence

dω = 0 ⇔ ∂ω = 0 ⇔ ∂ω = 0.

�

3.6. Exercise. Let X be a complex curve. Show that X is Kähler. �

3.7. Exercise. Let X be a complex manifold endowed with a Hermitian metric h.
Let ω be the corresponding (1, 1)-form. Then ωn

n! is a volume form on X. �

3.8. Exercise. Let X be a complex manifold, and let L be a positive holomorphic
line bundle over X. Show that the first Chern class [ i2πΘL] is represented by a
Kähler form. �

3.9. Example. Exercise 2.25 shows that the curvature form associated to the
Fubini-Study metric on the line bundle OPn(1) is a Kähler form. Thus the projective
space is Kähler.

3.10. Exercise. Let X be a Kähler manifold/ Show that the blow-up of X in a
point (cf. Exercise 2.49) is a Kähler manifold. �

3.11. Exercise. Let X be a compact Kähler manifold, and let π : P(E) → X be
a projectivised bundle over X (cf. Exercise 2.55). Show that P(E) is a compact
Kähler manifold. �

Let (X,ω) be a complex manifold of dimension n endowed with a Hermitian form.
We have seen in Exercise 1.73 that the underlying real differentiable manifold is
endowed with a canonical orientation. Furthermore if ω is the (1, 1)-form associated
to a Hermitian metric on TX , then ωn

n! is the volume form (Exercise 3.7). In
particular we see that if (X,ω) is a compact Kähler manifold, then∫

X

ωn

n!
> 0.

Since dωk = 0 for all k ∈ {1, . . . , n}, we can consider the corresponding de Rham
cohomology class.



KÄHLER GEOMETRY AND HODGE THEORY 69

3.12. Proposition. Let X be a compact complex manifold of dimension n, and
let ω be a Kähler form on X. Then for all k ∈ {1, . . . , n}, the cohomology class

[ωk] ∈ H2k(X,R)

is non-zero.

Proof. If ωk = dη, we have ωn = d(η ∧ ωn−k), so by Stokes’s theorem∫
X

ωn =
∫
X

d(η ∧ ωn−k) =
∫
∂X

η ∧ ωn−k = 0,

a contradiction. �

3.13. Exercise. Show that a Hopf variety (cf. Exercise 1.20) is not a Kähler
manifold. (Hint: Künneth formula) �

3.14. Exercise. Let X be a compact complex manifold of dimension n, and let ω
be a Kähler form on X. Show that for all k ∈ {1, . . . , n}, the cohomology class

[ωk] ∈ Hk,k(X)

is non-zero. �

The following property of Kähler manifolds will turn out to be very useful in the
proof of the Kähler identities (Proposition 3.30).

Let (X,ω) be a Kähler manifold, and fix a point x ∈ X. Let z1, . . . , zn be local
holomorphic coordinates around x, then we have

ω = i

2
∑

16j,k6n

hj,kdzj ∧ dzk,

where the hj,k are differentiable functions. In these coordinates, the condition
∂ω = 0 is equivalent to

(3.12) ∂hj,k
∂zl

= ∂hl,k
∂zj

∀ 1 6 j, k, l 6 n.

3.15. Theorem. Let (X,ω) be a Kähler manifold. Then locally we can choose
holomorphic coordinates ζ1, . . . ζn such that hj,k = δj,k +O(|ζ|2). We call ζ1, . . . ζn
normal coordinates for the Kähler form ω.

Proof. Starting with any choice of local coordinates z1, . . . , zn around x, it is clear
that we can make a linear change of coordinates such that dz1, . . . , dzn induce a
basis of ΩX,x that is orthonormal with respect to ω. Thus we can write

ω = i
∑

16j,k6n

hj,kdzj ∧ dzk,

where hj,k = δj,k +O(|z|). The Taylor expansion to the first order is then

(3.13) hj,k = δj,k +
∑

16l6n

(ajklzl + a′jklzl) +O(|z|2).
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Since ω = ω, we have hk,j = hj,k. In particular

(∗) akjl = a′jkl.

Furthermore we have by Formula (3.12),

(∗∗) ajkl = alkj .

Set now
ζk = zk + 1

2
∑

16j,l6n

ajklzjzl ∀ k = 1, . . . , n.

By the theorem of invertible functions ζk defines a local holomorphic system of
coordinates and

dζk = dzk + 1
2
∑

16j,l6n

ajkl(zjdzl + zldzj) = dzk + 1
2
∑

16j,l6n

(ajkl + alkj)zldzj ,

which by (∗∗) equals
dζk = dzk +

∑
16j,l6n

ajklzldzj .

Therefore

i
∑

16k6n

dζk∧dζk = i
∑

16k6n

dzk∧dzk+i
∑

16j,k,l6n

ajkl zldzk∧dzj+ajklzldzj∧dzk+O(|z|2).

Now (∗) implies∑
16j,k,l6n

ajkl zldzk ∧ dzj =
∑

16j,k,l6n

akjl zldzj ∧ dzk =
∑

16j,k,l6n

a′jklzldzj ∧ dzk,

thus

i
∑

16k6n

dζk ∧ dζk = i
∑

16j,k6n

δj,k +
∑

16l6n

ajklzl + a′jklzl

 dzj ∧ dzk +O(|z|2).

Comparing with Formula (3.13), we see that i
∑

16k6n dζk ∧dζk = ω+O(|z|2). �

3.16. Exercise. Let i : Y ↪→ X be a submanifold of a Kähler manifold. Show that
Y is a Kähler manifold. More precisely show that if ω is a Kähler form on X, then
i∗ω is a Kähler form on Y . In particular∫

Y

i∗ωdimY > 0.

Deduce that a projective manifold is Kähler. �

3.17. Exercise. (hard) A difficult and important question is to figure out how the
Kähler property behaves under holomorphic maps. Show that if f : X → Y is
a holomorphic submersion between complex manifolds such that (X,ω) is Kähler,
then any fibre Xy and Y is Kähler. (Hint: in order to show that Y is Kähler, one
should look at the direct image of ωdimX−dimY+1 as a current, cf. [Dem96, III].)

Give an example of a holomorphic submersion between complex manifolds f : X →
Y such that Y is a Kähler manifold, the fibre Xy is a Kähler manifold for every
y ∈ Y , but X is not Kähler. �
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3.18. Exercise. Let X be a compact Kähler manifold.

a) Let D ⊂ X be a smooth hypersurface. Show that

[D] ∈ H1,1(X)

and this class is zero if and only if D = ∅ (cf. Theorem 2.41 for the definition of
the Poincaré dual [D]).

b) Let L be a holomorphic line bundle over X. Suppose that c1(L) = 0 ∈ H2(X,R)
and that Γ(X,L) 6= 0. Show that L is trivial11. �

3.19. Exercise. Let (X,ω) be a compact Kähler manifold, and let L be a holo-
morphic line bundle over X. We say that L is nef if for every ε > 0 there exists a
Hermitian metric hε on L such that

Θhε(L) > −εω,

i.e. Θhε(L) + εω is positive definite.

Show that if Y ⊂ X is a submanifold of dimension d and L is nef, we have∫
Y

c1(L)d > 0.

Show that if M is a positive line bundle over X, then L⊗n⊗M is positive for every
n ∈ N. �

3.B. Differential operators. We recall some of the basic definitions from Appen-
dix A. Let X be a differentiable oriented manifold of dimension n. Let (E, h) be a
euclidean vector bundle over X, and let

C∞(X,E)× C∞(X,E)→ C∞(X), (σ, τ) 7→ {σ, τ}

be the bilinear mapping 2.7.

Suppose now that X is endowed with an euclidean metric, and denote by vol the
associated volume form. We define the L2 scalar product and the corresponding
L2-norm on C∞c (X,E) by

(3.14) (α, β)E := (α, β)L2 :=
∫
X

{α, β}vol, ||α||2 =
∫
X

{α, α}vol.

If E and F are euclidean bundles over X and P : C∞c (X,E) → C∞c (X,F ) is a
linear operator, the formal adjoint P ∗ : C∞c (X,F )→ C∞c (X,E) is defined by

(Pα, β)F = (α, P ∗β)E ∀ α ∈ C∞c (X,E), β ∈ C∞c (X,F ).

11In order to answer this question in full generality, you’ll have to admit/prove the statement
of Theorem 2.41 for singular hypersurfaces.
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The case in which we will be most interested is when E is some exterior power
of the cotangent bundle ΩpX . In this case12 we have the Hodge ∗-operator: if
β ∈ C∞(X,ΩpX) is a p-form, then ∗β ∈ C∞(X,ΩdimX−p

X ) is such that

α ∧ ∗β = {α, β}vol

for every p-form α (cf. Appendix A for an explicit description in terms of isometric
frames).

For every k ∈ N, the exterior differential gives a linear operator

d : C∞c (X,ΩkX)→ C∞c (X,Ωk+1
X )

and we denote by d∗ : C∞c (X,Ωk+1
X ) → C∞c (X,ΩkX) the adjoint operator. By

Lemma A.6 we have
d∗ = (−1)nk+1 ∗ d ∗ .

Another linear operator on C∞c (X,Ωk) is given by the contraction of a vector field:
let θ ∈ C∞(X,TX) be a vector field and let u ∈ C∞(X,ΩkX) be a k-form. The
contraction (θyu) ∈ C∞(X,Ωk−1

X ) is the (k − 1)-form defined by

(θyu)(η1, . . . , ηk−1) := u(θ, η1, . . . , ηk−1) ∀ η1, . . . , ηk−1 ∈ TX,x.

If ∂
∂x1

, . . . , ∂
∂xn

is a local frame for TX and dx1, . . . , dxn the dual local frame for
ΩX , we have

∂

∂xm
y(dxj1∧. . .∧dxjk) =

{
0 if m 6∈ {j1, . . . , jk}
(−1)l−1dxj1 ∧ . . . d̂xjl . . . ∧ dxjk if m = jl.

Using this formula it is not hard to see that if u, v are differentiable forms, then

(3.15) θy(u ∧ v) = (θyu) ∧ v + (−1)deguu ∧ (θyv).

3.20. Exercise. Let U ⊂ Rn be an open set and endow TU with the standard flat
metric. Let u =

∑
|J|=k uJdxJ be a k-form. Use Lemma A.6 to show that

d∗u = −
n∑
l=1

∑
|J|=k

duJ
dxl

∂

∂xl
ydxJ .

�

12Note that the choice of a metric h on TX induces metrics on ΩX and its exterior powers
ΩpX : if e1, . . . , en is an isometric frame for TX on some open set U ⊂ X, let e∗1, . . . , e

∗
n be the

corresponding dual frame for ΩX . On U the metric h∗ is then defined by imposing that e∗1, . . . , e
∗
n

is an isometric frame, i.e. for arbitrary sections σ, η ∈ C∞(X,ΩX)

h∗(σ, η)(x) =
n∑
j=1

σj(x)ηj(x)

where σ =
∑n

j=1 σje
∗
j and η =

∑n

j=1 ηjej . It is not hard to see that these local definitions
glue to a global metric on X. In a similar way we define the induced metric on ΩpX by imposing
that the induced frame e∗j1

∧ . . . ∧ e∗jp is isometric. Throughout the whole chapter we will always
consider these induced metrics on ΩpX .
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Suppose now that X is a complex manifold of dimension n endowed with a Her-
mitian metric h. Denote by vol the volume form associated to h, then we extend
the definition of the Hodge ∗-operator: if β ∈ C∞(X,ΩkX,C) is a k-form, then
∗β ∈ C∞(X,Ω2n−k

X,C ) is such that

α ∧ ∗β = {α, β}vol

for every k-form α ∈ C∞(X,ΩkX,C).

With this definition the L2-scalar product on C∞c (X,ΩkX,C) is given by

(α, β)L2 :=
∫
X

α ∧ ∗β =
∫
X

{α, β}vol.

Let us now see how the Hodge operator acts on complex vector bundles Ωp,qX : fix a
point x ∈ X and choose holomorphic coordinates around x such that dz1, . . . , dzn
is a local frame that is isometric in the point x13. Let

u =
∑

|J|=p,|K|=q

uJ,KdzJ ∧ dzK

and
v =

∑
|J|=p,|K|=q

vJ,KdzJ ∧ dzK

be forms of type (p, q), then {u, v} is given at the point x by

{u, v}x =
∑

|J|=p,|K|=q

uJ,K(x)vJ,K(x).

Since by definition u∧∗v = {u, v}vol, this shows that the Hodge star operator gives
a C-linear isometry

∗ : Ωp,qX → Ωn−q,n−pX ,

since ∗v is of type (n− p, n− q). This implies that the decomposition

C∞(X,ΩkX,C) =
⊕
p+q=k

C∞(X,Ωp,qX )

is orthogonal with respect to the L2-product. Indeed if v is of type (p′, q′) with
p′ + q′ = p+ q then

u ∧ ∗v
is of type (n − p′ + p, n − q′ + q), so it is zero unless p = p′, q = q′. In order to
get an explicit formula for ∗v one has to take into account that we are working

13This can always be achieved by a linear change of coordinates, cf. the proof of Theorem
3.15. The tricky point is to understand the behaviour of the metric in a small neighbourhood.
If you don’t like the idea of arguing pointwise, just fix a not necessarily holomorphic isometric
frame ξ1, . . . , ξn for the holomorphic tangent bundle TX in a neighbourhood U of x. Then a form
of type (p, q) can be written as

u =
∑

|J|=p,|K|=q

uJ,Kξ
∗
J ∧ ξ

∗
K

and we get the same computations as before, but on the open set U .
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with alternate forms. An elementary but somewhat tedious computation [Wel80,
Ch.V,Prop.1.1] shows that

∗v(x) =
∑

|J|=p,|K|=q

εJ,KvJ,KdzCJ ∧ dzCK

where εJ,K := (−1)q(n−p)sign(J,CJ)sign(K,CK) and sign(•, •) is the sign of the
permutation.

As in the real case, we can consider the exterior differential d and its formal adjoint
d∗. Since the real dimension of X is even we have by Lemma A.6 that d∗ = −∗ d∗.
Consider now the differential operators

∂ : C∞c (X,Ωp,qX )→ C∞c (X,Ωp+1,q
X )

and
∂ : C∞c (X,Ωp,qX )→ C∞c (X,Ωp,q+1

X ).
Then we define the operators

∂∗ : C∞c (X,Ωp+1,q)→ C∞c (X,Ωp,q)

and
∂
∗ : C∞c (X,Ωp,q)→ C∞c (X,Ωp,q−1)

in analogy with the preceding formula by

∂∗ := − ∗ ∂ ∗(3.16)
∂
∗ := − ∗ ∂ ∗ .(3.17)

The following lemma shows that the notation ∂∗ and ∂∗ is justified, i.e. the oper-
ators are the formal adjoints of ∂ and ∂.

3.21. Lemma. Let X be a complex manifold of dimension n. For all α ∈
C∞c (X,Ωp,q) and β ∈ C∞c (X,Ωp,q+1), we have

(∂α, β)L2 = (α, ∂∗β)L2 .

For all α ∈ C∞c (X,Ωp,q) and β ∈ C∞c (X,Ωp+1,q), we have

(∂α, β)L2 = (α, ∂∗β)L2 .

Proof. We show the first statement, the proof of the second is analogous. By
definition

(∂α, β)L2 =
∫
X

∂α ∧ ∗β.

Since α ∧ ∗β ∈ C∞c (X,Ωn,n−1), we have

d(α ∧ ∗β) = ∂(α ∧ ∗β) = ∂α ∧ ∗β + (−1)p+qα ∧ ∂ ∗ β.

Hence by Stokes’ theorem∫
X

∂α ∧ ∗β = −
∫
X

(−1)p+qα ∧ ∂ ∗ β.

Since ∗ is a real operator, we have

∂ ∗ β = ∂ ∗ β = ∗∗−1∂ ∗ β.



KÄHLER GEOMETRY AND HODGE THEORY 75

By Exercise A.2 we have ∗−1γ = (−1)(2n−k)k ∗ γ for any k-form γ, so ∗−1∂ ∗ β =
(−1)p+q ∗ ∂ ∗ β. Therefore

−
∫
X

(−1)p+qα ∧ ∂ ∗ β = −
∫
X

α ∧ ∗∗∂ ∗ β = (α,− ∗ ∂ ∗ β)L2 .

This implies the claim. �

As in Exercise 3.20, one can use this description to give a local expression of the
formal adjoint in terms of contraction by vector fields. Let U ⊂ Cn be an open set
and endow TU with the standard hermitian metric

∑n
j=1 2dzj⊗dzj where z1, . . . , zn

are the linear coordinates on Cn. Thus ∂
∂z1

, . . . , ∂
∂zn

is an isometric holomorphic
frame for TU . Let u be a form with compact support of type (p, q) given in these
local coordinates by u =

∑
|J|=p,|K|=q uJ,KdzJ ∧ dzK , then

(3.18) ∂∗u = −
n∑
l=1

∑
|J|=p,|K|=q

∂uJ,K
∂zl

∂

∂zl
ydzJ ∧ dzK = −

n∑
l=1

∂

∂zl
y
∂u

∂zl
,

where
∂u

∂zl
:=

∑
|J|=p,|K|=q

∂uJ,K
∂zl

dzJ ∧ dzK

and the contraction by a vector field is defined analogously to the real case.

Now that we have defined the adjoint operators, we define the corresponding Lapla-
cians by

∆d := dd∗ + d∗d

∆∂ := ∂∂∗ + ∂∗∂

∆∂ := ∂∂
∗ + ∂

∗
∂.

3.22. Lemma. Let X be a compact complex manifold, then we have

(α,∆dβ)L2 = (dα, dβ)L2 + (d∗α, d∗β)L2

(α,∆∂β)L2 = (∂α, ∂β)L2 + (∂∗α, ∂∗β)L2

(α,∆∂β)L2 = (∂α, ∂β)L2 + (∂∗α, ∂∗β)L2 .

Proof. Immediate from the formal adjoint property, i.e. Lemma 3.21. �

3.23. Definition. Let X be a complex manifold. We say that a form α is harmonic
(resp. ∆∂-harmonic, resp. ∆∂-harmonic) if ∆dα = 0 (resp. ∆∂α = 0, resp.
∆∂α = 0).

3.24. Lemma. Let X be a complex compact manifold. A form α is harmonic
(resp. ∆∂-harmonic, resp. ∆∂-harmonic) if and only if it is d- and d∗-closed (resp.
∂- and ∂∗-closed, resp. ∂- and ∂∗-closed).

Proof. The proof is the same as the one for Lemma A.19, just apply Lemma 3.22.
�
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3.25. Lemma. The symbol of the differential operator ∆∂ and ∆∂ is

ξ 7→ −1
2
||ξ||2Id.

In particular the operators ∆∂ and ∆∂ are elliptic operators.

Proof. The proof is exactly the same as for ∆d (cf. Examples A.36 or [Voi02,
Lemma 5.18]). �

This lemma shows that we can apply the theory of elliptic operators to ∆∂ .

3.26. Theorem. Let X be a compact complex manifold endowed with a Hermitian
metric h. Let H p,q(X) be the space of ∆∂-harmonic forms of type (p, q). Then:

(1) H p,q(X) is finite dimensional; and
(2) we have a decomposition

C∞(X,Ωp,q) = H p,q(X)⊕∆∂(C
∞(X,Ωp,q)),

which is orthogonal for the L2 scalar product.

Proof. Apply Theorem A.42. �

As in the case of the de Rham cohomology, we obtain immediately a series of
corollaries.

3.27. Corollary. Let X be a compact complex manifold endowed with a Hermitian
metric h. Then we have an orthogonal decomposition

C∞(X,Ωp,q) = H p,q(X)⊕ ∂(C∞(X,Ωp,q−1))⊕ ∂∗(C∞(X,Ωp,q+1))

and im ∂
∗ ∩ ker ∂ = {0} = im ∂ ∩ ker ∂∗. In particular

ker ∂ = H p,q(X)⊕ ∂(C∞(X,Ωp,q−1))(3.19)
ker ∂∗ = H p,q(X)⊕ ∂∗(C∞(X,Ωp,q+1)).(3.20)

Proof. By Theorem 3.26, we have

C∞(X,Ωp,q−1) = H p,q−1(X)⊕∆∂(C
∞(X,Ωp,q−1)),

so Lemma 3.24 and ∂2 = 0 imply that

∂(C∞(X,Ωp,q−1)) = ∂∂
∗(C∞(X,Ωp,q)).

Analogously we get

∂
∗(C∞(X,Ωp,q+1)) = ∂

∗
∂(C∞(X,Ωp,q)).

So Theorem 3.26 and ∆∂ = ∂∂
∗ + ∂

∗
∂ imply that

C∞(X,Ωp,q) = H p,q(X)⊕ ∂(C∞(X,Ωp,q−1)) + ∂
∗(C∞(X,Ωp,q+1)),

and
(∂∗β, ∂α)L2 = (β, ∂∂α)L2 = 0

shows that the last two spaces are orthogonal.
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The second statement is now immediate: if α ∈ ker ∂ ∩ im ∂
∗, then ∂α = 0 and

∂
∗
α = 0, so α is ∆∂-harmonic by Lemma 3.24. Yet the intersection H p,q(X) ∩

∂
∗(C∞(X,Ωp,q+1)) is zero by the first statement. The proof of the third statement

is analogous. �

Since a ∆∂-harmonic form is ∂-closed by Lemma 3.24, we have a linear map
H p,q(X)→ Hp,q(X). Formula (3.19) shows that this map is fact an isomorphism,
i.e. every Dolbeault cohomology class is represented by a unique ∆∂-harmonic
form:

3.28. Corollary. Let X be a compact complex manifold endowed with a Hermitian
metric h. Then we have

Hp,q(X) 'H p,q(X).
In particular the Dolbeault cohomology groups have finite dimension.

3.C. Differential operators on Kähler manifolds. Let now (X,ω) be a Kähler
manifold, and denote by volω = ωn

n! the volume form (cf. Exercise 3.7) of the
corresponding Hermitian metric. The exterior product with the Kähler form defines
a differential operator

L : C∞c (X,ΩkX,C)→ C∞c (X,Ωk+2
X,C), α 7→ ω ∧ α

of degree zero. We denote by

Λ : C∞c (X,Ωk+2
X,C)→ C∞c (X,ΩkX,C)

its formal adjoint. We claim that

Λβ = (−1)k(∗L∗)β

for every k-form β.

Proof. Note that since ω is a real differential form, it is sufficient to show the claim
for β ∈ C∞(X,Ωk+2

X,R). Then we have

{Lα, β}volω = Lα ∧ ∗β = (ω ∧ α) ∧ ∗β
= α ∧ ω ∧ ∗β = α ∧ ∗

(
(−1)k ∗ (ω ∧ ∗β)

)
= {α,

(
(−1)k ∗ L∗

)
β}volω,

where we used Exercise A.2. �

If A,B are two differential operators of degree a and b respectively, their Lie bracket
is a differential operator of degree a+ b defined by

[A,B] := AB − (−1)abBA.

Note that if C is another differential operator of degree c, then for purely formal
reasons, the Jacobi identity

(3.21) (−1)ac[A, [B,C]] + (−1)ab[B, [C,A]] + (−1)bc[C, [A,B]] = 0

holds.
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3.29. Lemma. Let U ⊂ Cn be an open set endowed with the constant Kähler
metric

ω = i
∑

16j6n

dzj ∧ dzj .

Then we have
[∂∗, L] = i∂.

Proof. Let u ∈ C∞c (U,ΩlU,C) be a l-form, then by Formula (3.18)

∂
∗
u = −

∑
16k6n

∂

∂zk
y
∂u

∂zk
.

Therefore we have

[∂∗, L]u = −
∑

16k6n

∂

∂zk
y
∂

∂zk
(ω ∧ u) + ω ∧

∑
16k6n

∂

∂zk
y
∂u

∂zk
.

Since the coefficients of ω are constant, we have ∂
∂zk

(ω∧u) = ω∧ ∂u
∂zk

. Furthermore
by Formula (3.15)

∂

∂zk
y(ω ∧ ∂u

∂zk
) =

(
∂

∂zk
yω

)
∧ ∂u

∂zk
+ ω ∧

(
∂

∂zk
y
∂u

∂zk

)
thus we get

[∂∗, L]u = −
∑

16k6n

(
∂

∂zk
yω

)
∧ ∂u

∂zk
.

Yet it is clear that ∂
∂zk
y(ω) = −idzk, so

[∂∗, L]u = i
∑

16k6n

dzk ∧
∂u

∂zk
= i∂u.

�

The preceding lemma is a ’local’ version of the following Kähler identities that will
be the corner stones of the proof of the Hodge decomposition Theorem 3.36.

3.30. Proposition. Let (X,ω) be a Kähler manifold. Then we have

[∂∗, L] = i∂(3.22)
[∂∗, L] = −i∂.(3.23)
[Λ, ∂] = −i∂∗(3.24)
[Λ, ∂] = i∂

∗
.(3.25)

Proof. Since L = L and Λ = Λ, it is clear that the first (resp. third) identity implies
the second (resp. fourth) one by conjugation. Furthermore the third relation follows
from the first by the formal adjoint property: let u, v be (p, q) forms, then

([Λ, ∂]u, v)L2 = (u, [∂∗, L]v)L2 = (u, i∂v)L2 = (−i∂∗u, v)L2 .

Thus we are left to show the first relation. Note now that the local expressions of
the differential operators only use the coefficients of the metric up to first order:
indeed the operator L uses the metric only up to order zero and ∂

∗ = − ∗ ∂∗
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(cf. Formula 3.16) shows that we only use the metric and its first derivatives. By
Theorem 3.15, we can choose holomorphic coordinates such that

h = Id+O(|z|2),

thus it is sufficient to consider the situation of an open set in Cn endowed with the
standard Kähler metric. Conclude with Lemma 3.29. �

3.31. Theorem. Let (X,ω) be a Kähler manifold, and let ∆d, ∆∂ and ∆∂ be the
Laplacians associated to the operators d, ∂ and ∂. Then we have

∆d = 2∆∂ = 2∆∂ .

In particular a k-form is harmonic if and only if it is ∆∂-harmonic if and only if it
is ∆∂-harmonic.

Proof. We will show the first equality, the proof of the second one is analogous. We
have d = ∂ + ∂, so

∆d = (∂ + ∂)(∂∗ + ∂
∗) + (∂∗ + ∂

∗)(∂ + ∂).

Since ∂∗ = −i[Λ, ∂] = −iΛ∂ + i∂Λ by Formula (3.25)and ∂2 = 0, we have

(∂ + ∂)(∂∗ + ∂
∗) = ∂∂∗ − i∂Λ∂ + ∂∂∗ − i∂Λ∂ + i∂∂Λ

and
(∂∗ + ∂

∗)(∂ + ∂) = ∂∗∂ + i∂Λ∂ + ∂∗∂ + i∂Λ∂ − iΛ∂∂.
By Formula (3.24) we have ∂∗ = i[Λ, ∂] = iΛ∂ − i∂Λ, which implies

(3.26) ∂∗∂ = −i∂Λ∂ = −∂∂∗.

Thus we get

∆d = ∂∂∗− i∂Λ∂+ i∂∂Λ+∂∗∂+ i∂Λ∂− iΛ∂∂ = ∆∂− iΛ∂∂− i∂Λ∂+ i∂Λ∂+ i∂∂Λ.

Since ∂∂ = −∂∂, we have

−iΛ∂∂ − i∂Λ∂ + i∂Λ∂ + i∂∂Λ = i(Λ∂ − ∂Λ)∂ + i∂(Λ∂ − ∂Λ),

so another application of the Kähler identity (3.24) gives

i(Λ∂ − ∂Λ)∂ + i∂(Λ∂ − ∂Λ) = ∆∂ .

�

3.32. Exercise. Show that
[∆d, L] = 0.

and
[L,Λ]α = (k − n)α

for every α ∈ C∞(X,ΩkX,C). �

The comparison Theorem 3.31 has numerous important consequences.

3.33. Corollary. Let (X,ω) be a Kähler manifold, and let α be a form of type
(p, q). Then ∆dα has type (p, q).
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Proof. Obvious, since ∆dα = 2∆∂α has type (p, q). �

3.34. Theorem. Let (X,ω) be a Kähler manifold, and let α =
∑
k=p+q α

p,q be the
decomposition of a k-form in its components of type (p, q). Then α is harmonic if
and only if αp,q is harmonic for all p, q. In particular we have

H k(X) =
⊕
p+q=k

H p,q(X)

where H p,q(X) is the space of harmonic forms of type (p, q). Furthermore we have

H p,q(X) = H q,p(X) ∀ p, q ∈ N.

3.35. Remark. Note that by the comparison theorem we are entitled to speak
simply of harmonic forms without specifying the Laplacian.

Proof. By the preceding corollary,

∆dα =
∑
k=p+q

∆dα
p,q

is the decomposition of ∆dα in forms of type (p, q). It is is zero if and only if all
components are zero.

Let β be a harmonic form of type (p, q), then β has type (q, p). By hypothesis
∆∂β = 0, so by the comparison theorem

∆∂β = ∆∂β = ∆∂β = ∆∂β = 0,

hence ∆∂β = 0. �

IfX is a compact Kähler manifold, we can combine Theorem 3.34 with the Corollar-
ies A.23 and 3.28 on the representability of cohomology classes by harmonic forms.
So we get the famous

3.36. Theorem. (Hodge decomposition theorem) Let X be a compact Kähler
manifold. Then we have the Hodge decomposition

Hk(X,C) =
⊕
k=p+q

Hp,q(X)

and the Hodge duality
Hq,p(X) = Hp,q(X).

Note that the isomorphisms Hp,q(X) 'H p,q(X) depend on the choice of the Käh-
ler metric, so a priori we only have an isomorphism Hk(X,C) '

⊕
k=p+qH

p,q(X).
We will see in Subsection 3.D that the isomorphism is canonical which justifies the
stronger statement Hk(X,C) =

⊕
k=p+qH

p,q(X).

3.37. Corollary. Let X be a compact Kähler manifold. Then we have

(1) bk =
∑
k=p+q h

p,q ∀ k ∈ N.
(2) hp,q = hq,p ∀ p, q ∈ N.
(3) Hk,k(X) 6= 0 ∀ k ∈ 1, . . . , n.
(4) bk is even if k is odd.
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Proof. The first and second statement are trivial by the Hodge decomposition and
Hodge duality. The third follows from the Hodge decomposition and Proposition
3.12. The fourth is a consequence of the first and the second one. �

3.38. Corollary. The Dolbeault cohomology groups of Pn are

Hp,p(Pn) ' C ∀ 0 6 p 6 n

and
Hp,q(Pn) = 0 ∀ p 6= q.

Proof. It is a well-known exercise in differential geometry (use induction and the
Mayer-Vietoris sequence !) that

H2p(X,C) ' C ∀ 0 6 p 6 n.

Since Pn is Kähler, we have Hp,p(Pn) 6= 0 by Corollary 3.37. We conclude with the
Hodge decomposition theorem. �

3.39. Exercise. Consider the Kähler manifold (C, ω) where ω is the standard
Kähler form on C. Show that

H 1(C,C) = H 1,0(C)⊕H 0,1(C),

but
H1(C,C) 6= H1,0(C)⊕H0,1(C).

�

3.40. Exercise. Let X be a compact Kähler variety, and let ω ∈ H0(X,Ωp) be a
a holomorphic p-form. Then dω = 0. �

3.41. Exercise. (Iwasawa manifold) Let G ⊂ GL3(C) be the subgroup of matrix 1 x z

0 1 y

0 0 1

 ,

where x, y, z ∈ C. Let Γ ⊂ G be the subgroup of matrices such that x, y, z ∈ Z[i].
Show that G/Γ is a compact complex manifold.

Show that dx, dy, dz − xdy ∈ H0(G,ΩG) induce holomorphic 1-forms on G/Γ.
Deduce that G/Γ is not Kähler. �

3.42. Exercise. Let X be a compact complex surface, that is a compact complex
variety of dimension two.

a) Let ω be a global 2-form of type (2, 0). Show that∫
X

ω ∧ ω > 0.

When do we have equality ?

b) Show that if ω ∈ Γ(X,Ωk) is a holomorphic k-form, then dω = 0 (we do not
assume that X is Kähler).
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c) Let f : X → C be a differentiable function such that ∂∂f = 0. Show that f is
constant.

Hint: show that in a coordinate neighborhood, the function f is pluriharmonic.

Deduce that if ω ∈ H1,0(X) such that there exists a differentiable function f such
that ω = ∂f , then ω = 0. Show that we have an inclusion

H1,0(X) ↪→ H0,1(X), ω 7→ [ω].

d) Show that if ω ∈ H2,0(X) such that there exists η ∈ C∞(X,Ω1,0
X ) such that

ω = ∂η, then ω = 0. Deduce that we have an inclusion

H2,0(X) ↪→ H0,2(X), ω 7→ [ω]

e) Show that we have inclusions

H1,0(X) ↪→ H1(X,C), ω 7→ [ω]

and
H2,0(X) ↪→ H2(X,C), ω 7→ [ω].

For k = 1, 2, we can thus identify Hk,0(X) to a subspace of Hk(X,C) = Hk(X,R)⊗
C. Show that

Hk,0(X) ∩Hk,0(X) = 0.

Deduce that for every compact surface

2h1,0 6 b1 6 2h0,1.

Give an example where the inequalities are strict.

Hint: for the second inequality, you can consider the exact sequence

0→ C→ OX
d→ Z1 → 0,

where Z1 is the sheaf of holomorphic 1-forms that are d-closed. �

3.43. Exercise. Let X = Cn/Λ be a complex torus. Show that TX ' O⊕nX .
Compute the Hodge numbers hp,q for every p, q ∈ {0, . . . , n}. �

3.D. Bott-Chern cohomology and ∂∂-Lemma. Since the definition of the Lapla-
cian operations ∆,∆∂ ,∆∂ depends on the Hodge ∗-operator and thus on the Her-
mitian metric on TX , it is a priori not clear if the isomorphism in the Hodge
decomposition Theorem 3.36 depends on the choice of a Kähler metric. In this
paragraph, we show that this is not the case.

3.44. Definition. Let X be a complex manifold. We define the Bott-Chern coho-
mology groups of X to be

Hp,q
BC(X) =

{α ∈ C∞(X,Ωp,qX ) | dα = 0}
∂∂C∞(X,Ωp−1,q−1

X )
.
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Since ∂∂β = d∂β for any β ∈ C∞(X,Ωp−1,q−1
X ), the natural morphism

{α ∈ C∞(X,Ωp,q) | dα = 0} → Hp+q(X,C)

passes to the quotient, so we have a canonical map

Hp,q
BC(X)→ Hp+q(X,C).

Since a (p, q)-form that is d-closed is also ∂-closed, we have a natural morphism

{α ∈ C∞(X,Ωp,q) | dα = 0} → Hp,q(X).

Since ∂∂β = ∂(−∂β) for any β ∈ C∞(X,Ωp−1,q−1), the morphism passes to the
quotient, so we have again a canonical map

Hp,q
BC(X)→ Hp,q(X).

The following, ∂∂-Lemma allows to compare the Bott-Chern cohomology with the
Dolbeault and the de Rham cohomology.

3.45. Lemma. Let X be a compact Kähler manifold and let ω be a (p, q)-form
that is d-closed. If ω is ∂- or ∂-exact, there exists a (p− 1, q − 1)-form ϕ such that
ω = ∂∂ϕ.

Proof. We will prove the case where ω is ∂-exact, the other case is analogous.

Since ω has type (p, q) and is d-closed, it is ∂- and ∂-closed. By hypothesis ω = ∂η

for some η ∈ C∞(X,Ωp,q−1
X ) and the analogue of Corollary 3.27 for ∂ shows that

we have a decomposition
η = α+ ∂β + ∂∗γ

with α ∈ H p,q
∂ , β ∈ C∞(X,Ωp−1,q−1

X ) and γ ∈ C∞(X,Ωp+1,q−1
X ). Since X is

Kähler H p,q
∂ = H p,q

∂
, so we get

ω = ∂∂β + ∂∂∗γ.

Since ∂∂∗ = −∂∗∂ by Formula (3.26), this implies

ω = −∂∂β − ∂∗∂γ.

Since ∂ω = 0 and ∂∂∂β = 0, we have ∂∂∗∂γ = 0. Thus we have ∂∗∂γ ∈ (Im∂∗ ∩
ker ∂), so Corollary 3.27 shows that ∂∗∂γ = 0. �

3.46. Corollary. Let X be a compact Kähler manifold. Then the canonical mor-
phisms

Hp,q
BC(X)→ Hp,q(X)

and ⊕
p+q=k

Hp,q
BC(X)→ Hk(X,C)

are isomorphisms.

In particular the isomorphisms in the Hodge decomposition Theorem 3.36 are
canonical.
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Proof. We have Hp,q(X) ' H p,q(X) by Corollary 3.28, so every Dolbeault class
can be represented by a unique ∆∂-harmonic form. By the comparison Theorem
3.31 a form is ∆∂-harmonic if and only if it is ∆-harmonic, in particular it is
d-closed. This shows that the morphism Hp,q

BC(X)→ Hp,q(X) is surjective.

Let now γ ∈ Hp,q
BC(X) such that its image in Hp,q(X) is zero. Let α ∈ C∞(X,Ωp,q)

be d-closed such that [α] = γ in Hp,q
BC(X). Furthermore [α] = 0 in Hp,q(X), so α is

∂-exact. Therefore the ∂∂-lemma 3.45 applies and we see that [α] = 0 in Hp,q
BC(X).

This shows that the morphism Hp,q
BC(X)→ Hp,q(X) is injective.

The proof of the second statement is left to the reader, it follows from the first
statement and

Hk(X,C) 'H k(X) =
⊕
p+q=k

H p,q(X).

�

3.E. Applications of Hodge theory.

Picard and Albanese variety

Let X be a compact Kähler manifold. We consider the long exact cohomology
sequence associated to the exponential sequence

0→ Z→ OX
exp(2πi•)→ O∗X → 0.

Since C ' H0(X,OX) exp→ H0(X,O∗X) ' C∗ is surjective, we have an injection

i : H1(X,Z) ↪→ H1(X,OX),

so H1(X,Z) is a free Z-module of finite type and we want to understand its image14.
The inclusion Z ⊂ R gives an inclusion H1(X,Z) ⊂ H1(X,R) and by the universal
coefficient theorem [Hat02, Cor.3.A.6] we see that H1(X,Z) ⊗ R = H1(X,R), so
it is a lattice of rank b1 in H1(X,R). The inclusions Z ⊂ R ⊂ C thus gives an
inclusion

H1(X,Z) ↪→ H1(X,C) = H1,0(X)⊕H0,1(X)
such that H1(X,Z) is invariant under conjugation. Since H1,0(X) = H0,1(X) by
the Hodge theorem 3.36, we see that H1(X,Z) ∩ H1,0(X) = 0. Thus the pro-
jection on H0,1(X) maps H1(X,Z) isomorphically onto a lattice of rank b1 =
dimR H

0,1(X). Using the de Rham and the Dolbeault complex, one sees that this
map identifies to i, so we have shown

3.47. Lemma. Let X be a compact Kähler manifold. The quotient

H1(X,OX)/H1(X,Z)

is a complex torus called the Picard variety Pic0(X).

14Throughout the whole paragraph we will denote by Hk(X,Z) the singular cohomology of X
with values in Z. If you prefer, you can replace this by the Čech cohomology groups Ȟk(X,Z) of
the sheaf of locally constant functions with values in Z.
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We claim that the Picard variety parametrises the holomorphic line bundles L
on X such that c1(L) = 0 ∈ H2(X,Z). Indeed we have seen in Exercise 1.91
that H1(X,O∗X) parametrises the holomorphic line bundles on X. Moreover the
cohomology sequence associated to the exponential sequence yields

0→ Pic0(X) = H1(X,OX)/H1(X,Z)→ Pic(X) = H1(X,O∗X)→ H2(X,Z)

and the edge operator δ : H1(X,O∗X) → H2(X,Z) composed with the natural
morphism H2(X,Z) → H2(X,R) is given by the first Chern class. So Pic0(X) is
the kernel of this map. Denote by

NS(X) := im δ

the Neron-Severi group15. Then we get an exact sequence

0→ Pic0(X)→ Pic(X)→ NS(X)→ 0

and by the Lefschetz theorem on (1, 1)-classes we have

im
(
NS(X)→ H2(X,C)

)
= im

(
H2(X,Z)→ H2(X,C)

)
∩H1,1(X).

Thus the Neron-Severi group is (modulo torsion) the intersection of the lattice
H2(X,Z) with the subspace H1,1(X). The rank of this intersection, the Picard
number ρ(X) depends on the complex structure of X and can vary between 0 and
h1,1.

3.48. Example. If X is a compact complex curve, then

Ȟ
2
(X,Z) ' Z

and h2,0 = h0,2 = 0, so we get NS(X) ' Z. Since Ȟ
2
(X,Z) is torsion-free, we have

an inclusion Ȟ
2
(X,Z) ⊂ Ȟ

2
(X,R) ' H2(X,R). Since the top de Rham cohomology

group is canonically isomorphic to R via the integration morphism, we get an exact
sequence

0→ Pic0(X)→ Pic(X)→ Z→ 0,
where the last arrow is given by [L] 7→

∫
X
c1(L).

3.49. Example. Let X be the projective space Pn, then H2(Pn,Z) ' Z. Moreover
by Corollary 3.38 we have H1(X,OX) = 0, so the Picard torus is trivial. Hence

Pic(Pn) ' Z

and it is not very hard to see that the tautological bundle OPn(−1) is a generator.

3.50. Exercise. a) Show that the Néron-Severi group of a complex torusX = Cn/Λ
identifies to the set of Hermitian forms H = (hj,k)j,k=1,...,n on Cn such that

ImH(γ, γ′) ∈ Z ∀ γ, γ′ ∈ Λ.

Hint : [BL04, Sect.2].

15Note that in the literature, the Neron-Severi group is also often defined as the image of the
composed morphism H1(X,O∗X) → H2(X,Z) → H2(X,R). This amounts to killing the torsion
part, so that one is left with a free abelian group of finite type.
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b) Let a, b, c, d ∈ R\Q that are linearly independent over Q and such that ad−bc ∈
R \Q. Let Λ ⊂ C2 be the lattice generated by the vectors(

1
0

)
,

(
0
1

)
,

(
ia

ib

)
,

(
ic

id

)
,

and let X be the torus C2/Λ. Show that Pic(X) = Pic0(X), i.e. the Néron-Severi
group of X is zero. Deduce that X is not projective.

c) Show that a complex torus X = Cn/Λ admits a positive line bundle if and only
if there exists a definite positive Hermitian form H = (hj,k)j,k=1,...,n on Cn such
that

ImH(γ, γ′) ∈ Z ∀ γ, γ′ ∈ Λ.
Such a torus is called an abelian variety.

Hint: let dµ be a mesure of volume 1 on X that is invariant under the group action.
Let ω be a Kähler form on X, then ω is cohomologous to a Kähler form with
constant coefficients

ω̃(z) =
∫
a∈X

τ∗aω(z)dµ(a) =
∫
a∈X

ω(z + a)dµ(a)

where τa : X → X, z 7→ z + a is the translation map by a ∈ X, �

A second torus attached to a compact Kähler manifold X is the Albanese variety:
the inclusions Z ⊂ R ⊂ C induce maps

H2n−1(X,Z)→ H2n−1(X,R)→ H2n−1(X,C) = Hn,n−1(X)⊕Hn−1,n(X)

and we see as before that

Alb(X) := Hn−1,n(X)/ImH2n−1(X,Z)

is a complex torus. Since by Poincaré duality the first homology group H1(X,Z) is
naturally isomorphic to H2n−1(X,Z), and by Serre duality 4.3 and the comparison
theorem Hn−1,n(X) = H1,0(X)∗ = H0(X,ΩX)∗, we have

AlbX = H0(X,ΩX)∗/ImH1(X,Z)

where the map H1(X,Z)→ H0(X,ΩX) is defined as follows: let [γ] ∈ H1(X,Z) be
a class represented by 1-cycle γ on X then we can associate a linear map

Iγ : H0(X,ΩX)→ C, ω 7→
∫
γ

ω.

3.51. Exercise. Show that Iγ depends only on the homology class [γ]. (This is
not true on a compact complex manifold that is not Kähler!) �

Actually the difference between the Picard and the Albanese variety is not that
big: they are dual tori (cf. [BL04, Ch.2.4]). The advantage of the Albanese variety
is that we can define a holomorphic map α : X → Alb(X) as follows: fix a point
x0 ∈ X. Then we set

α : X → Alb(X), x 7→ (ω 7→
∫ x

x0

ω),
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where
∫ x
x0
ω is the integration over some path from x0 to x. Let us show that this

expression actually makes sense: let γ : [0, 1] → X be a path connecting x0 to x.
The linear map given by integration over the path

Iγ : H0(X,ΩX)→ C, ω 7→
∫
γ

ω.

is of course not independent of the choice of the path, but if γ′ is a second path
connecting x0 to x, then the composition of the paths γ−1γ′ defines an element of
H1(X,Z), so Iγ−1γ′ ∈ ImH1(X,Z). Thus Iγ gives a point in Alb(X) that does not
depend on the choice of the path.

3.52. Exercise. Show that α is holomorphic. �

The Albanese torus has the following universal property:

3.53. Proposition. Let X be a compact Kähler manifold. Let ϕ : X → T be
a holomorphic map to a compact complex torus T . Then there exists a unique
holomorphic map ψ : Alb(X)→ T such that ψ ◦ α = ϕ.

Proof. Omitted. Follows from Exercise 3.56 and functorial properties of the coho-
mology groups. �

3.54. Exercise. Let X be a compact Kähler manifold such that b1 = 0. Then any
holomorphic map to a torus is constant. �

3.55. Exercise. Let X = Cn/Λ be a complex torus. Show that the Albanese map
α : X → Alb(X) is an isomorphism. �

3.56. Exercise. (Hodge structures of weight one) A Hodge structure of weight one
is a free Z-module V of finite type such that the complexification VC = V ⊗Z C
admits a decomposition

VC = V 1,0 ⊕ V 0,1

such that V 1,0 = V 0,1. A morphism of abstract Hodge structures is a Z-linear
map φ : V → V ′ such that the complexified morphism φC respects the Hodge
decomposition.

Show that we have an equivalence of categories between Hodge structures of weight
one and compact complex tori. �

The Lefschetz decomposition

Let (X,ω) be a Kähler manifold of dimension n. The Kähler form ω is real16, so it
defines a linear map

L : ΩkX,R → Ωk+2
X,R , α 7→ ω ∧ α.

We claim that for k 6 n, the map

Ln−k : ΩkX,R → Ω2n−k
X,R .

16Note that the whole theory developed in this paragraph also works for the de Rham coho-
mology with complex coefficients.
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is an isomorphism. Since the two vector bundles have the same rank, it is sufficient
to show that for every U ⊂ X, the morphism

Ln−k : C∞(U,ΩkX,R)→ C∞(U,Ω2n−k
X,R ), α 7→ ω ∧ α

is injective: by Exercise 3.32, we have

[L,Λ]α = (k − n)α

for every α ∈ C∞(X,ΩkX,R). By definition

[Lr,Λ] = L[Lr−1,Λ] + [L,Λ]Lr−1,

so we get inductively for every k-form α

(∗) [Lr,Λ]α = (r(k − n) + r(r − 1))Lr−1α.

We will prove by induction over k ∈ {0, . . . , n} and r ∈ {0, . . . , n − k} that Lr
is injective. For k = 0 and r = 0 this is clear, thus let α be a k-form such that
Lrα = 0. By (∗) this implies that

Lr−1(LΛα− (r(k − n) + r(r − 1))α) = 0,

so by the induction hypothesis on r

LΛα− (r(k − n) + r(r − 1))α = 0.

Therefore we get (r(k − n) + r(r − 1))α = Lβ with β = Λα of degree k − 2.
Furthermore Lr+1β = 0, so by the induction hypothesis on k, we have β = 0.

3.57. Definition. Let (X,ω) be a Kähler manifold of dimension n. We say that
α ∈ C∞(X,ΩkX,R), k 6 n is primitive if Ln−k+1α = 0.

3.58. Exercise.

a) Show that α ∈ C∞(X,ΩkX,R), k 6 n is primitive if and only if Λα = 0.

b) Show that every element α ∈ C∞(X,ΩkX,R), admits a unique decomposition of
the form

α =
∑
r

Lrαr

such that αr is primitive of degree k−2r 6 inf(2n−k, k). We call this the Lefschetz
decomposition of α. �

Note now that since ω is d-closed, the linear map L induces a linear map on the de
Rham cohomology groups

L : Hk(X,R)→ Hk+2(X,R), [α] 7→ [ω ∧ α].

3.59. Theorem. (Hard Lefschetz theorem) Let (X,ω) be a compact Kähler man-
ifold of dimension n. Then for every k 6 n, the map

Ln−k : Hk(X,R)→ H2n−k(X,R)

is an isomorphism.
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Proof. Since [∆d, L] = 0 by Exercise 3.32, the image L(α) of a harmonic form α is
harmonic. Since X is compact, Corollary A.23 shows that it is equivalent to show
that the induced morphism

Ln−k : H k(X,R)→H 2n−k(X,R)

is an isomorphism. By Poincaré duality (Corollary A.24) both vector spaces have
the same dimension furthermore by the claim above, the morphism

Ln−k : C∞(X,ΩkX,R)→ C∞(X,Ω2n−k
X,R )

is injective. In particular it is injective on the harmonic forms, so the statement
follows. �

3.60. Definition. Let (X,ω) be a compact Kähler manifold of dimension n. We
say that [α] ∈ Hk(X,R), k 6 n is primitive if Ln−k+1[α] = 0. We denote by
Hk(X,R)prim ⊂ Hk(X,R) the subspace of primitive classes.

As a consequence of Exercise 3.58, we obtain

3.61. Corollary. . Let (X,ω) be a compact Kähler manifold. Then every element
[α] ∈ Hk(X,R) admits a unique decomposition of the form

[α] =
∑
r

Lr[αr]

such that αr ∈ Hk−2r(X,R)prim with k − 2r 6 inf(2n − k, k). In particular we
have

Hk(X,R) =
⊕
r

LrHk−2r(X,R)prim.

This Lefschetz decomposition plays an important role in the Hodge index theorem
(cf. Theorem 3.67 below).

The Hard Lefschetz theorem also holds for the de Rham cohomology with complex
coefficients. Since the Kähler form ω is ∂-closed, the Hodge decomposition shows
immediately that for all p+ q 6 n, we have an isomorphism

Ln−p−q : Hp,q(X)→ Hn−q,n−p(X).

3.62. Exercise. Let X be a compact Kähler manifold of dimension n.

hp−1,q−1 6 hp,q, bk 6 bk+2 ∀ k = p+ q 6 n

and
hp,q > hp+1,q+1, bk > bk+2 ∀ k = p+ q > n.

Hint: note that if α is a harmonic k-form, the Lefschetz decomposition commutes
with the decomposition into forms of type (p, q). �

The Hodge Index Theorem
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We will now consider the Hodge index theorem for the intersection form onH2(X,C).
For the sake of simplicity of notation, we will restrict ourselves to the case of a com-
pact Kähler surface (cf. [Voi02, Ch.6.3] for a full account).

We start with a technical lemma.

3.63. Lemma. Let U ⊂ C2 be an open subset and endow TU with the standard
metric h = 2(dz1⊗ dz1 + dz2⊗ dz2). Let α ∈ C∞(U,Ωp,qU ) be a primitive two-form.
Then we have

∗α = (−1)qα.

Proof. We will prove the claim where α is of type (1, 1), the other cases are analo-
gous. Let ω = i(dz1 ∧ dz1 + dz2 ∧ dz2) be the Kähler form, and set

α = α1,2dz1 ∧ dz2 + α2,1dz2 ∧ dz1 + α1,1dz1 ∧ dz1 + α2,2dz2 ∧ dz2

where the αj,k are differentiable functions. The volume form is

ω2

2!
= i2dz1 ∧ dz1 ∧ dz2 ∧ dz2,

so • ∧ ∗α = {•, α}vol implies

∗α = −α1,2dz1 ∧ dz2 − α2,1dz2 ∧ dz1 + α1,1dz2 ∧ dz2 + α2,2dz1 ∧ dz1.

Furthermore

Lα = ω ∧ α = i(α1,1 + α2,2)dz1 ∧ dz1 ∧ dz2 ∧ dz2

equals zero if and only if α1,1 = −α2,2. This implies the claim. �

Arguing as in the proof of Proposition 3.30, we deduce:

3.64. Lemma. Let (X,ω) be a Kähler manifold of dimension two, and let α ∈
C∞(X,Ωp,qX ) be a primitive 2-form. Then we have

∗α = (−1)qα.

Let now X be a compact Kähler variety of dimension two. Then the Poincaré
duality Theorem A.24 shows that we have a non-degenerate symmetric bilinear
pairing

Q : H2(X,R)×H2(X,R)→ R, ([α], [β]) 7→
∫
X

α ∧ β.

Therefore
H(α, β) := Q(α, β)

defines a non-degenerate hermitian form on H2(X,C).

3.65. Lemma. Let (X,ω) be a compact Kähler variety of dimension two. The
Lefschetz decomposition

H2(X,C) = H2(X,C)prim ⊕ LH
0(X,C)prim = H2(X,C)prim ⊕ C[ω]

is orthogonal.
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Proof. As before we reduce the statement on cohomology to a statement on har-
monic forms. By definition a two-form α is primitive if ω ∧ α = 0. Therefore

H(α, ω) =
∫
X

α ∧ ω =
∫
X

α ∧ ω = 0.

�

3.66. Proposition. The subspaces Hp,q ⊂ H2(X,C) are orthogonal with respect
to H. Furthermore (−1)qH is definite positive on the subspace

Hp,q

prim := H2(X,C)prim ∩H
p,q(X).

Proof. The orthogonality is obvious for reasons of type (cf. page 73). Note that
for reasons of type H2,0

prim = H2,0(X) and H0,2
prim = H0,2(X). Let γ ∈ Hp,q

prim be
a non-zero class. Note also that H p,q(X) ' Hp,q(X) and the Lefschetz operator
commutes with ∆∂ . Thus if α is the harmonic representative of γ, then the form α

(hence α) is primitive, i.e. ω ∧ α is zero. Then we have by Lemma 3.64

∗α = (−1)qα,

so
(−1)qH(α, α) = (−1)q

∫
X

α ∧ α = (−1)2q
∫
X

α ∧ ∗α = ||α||L2 > 0.

�

As a corollary, we obtain

3.67. Theorem. (Hodge Index Theorem) Let X be a compact Kähler surface.
Then the signature of the intersection form

Q([α], [β]) =
∫
X

α ∧ β

on H2(X,R) ∩H1,1(X) is (1, h1,1 − 1).

Proof. By Lemma 3.65 we have an orthogonal decomposition

H2(X,C) = H2(X,C)prim ⊕ C[ω].

Since ω is a real form, this implies

H2(X,R) ∩H1,1(X) = H2(X,R) ∩H1,1(X)prim ⊕ C[ω].

By the preceeding proposition, the intersection form Q is negative definite on
H1,1(X)prim. But we have already seen (cf. Proposition 3.12) that∫

X

ω ∧ ω =
∫
X

ω ∧ ω > 0.

�

3.68. Exercise. Let (X,ω) be a compact Kähler surface, and let γ be a real 2-form
such that [γ] ∈ H1,1(X). Show that

Q([γ], [γ]) ·Q([ω], [ω]) 6 Q([γ], [ω])2.

�
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3.69. Exercise. (not so easy)

a) Let X be a projective surface, and let H be a positive line bundle on X. Fix
d ∈ Z. Show that the set of classes γ ∈ NS(X) such that

Q(c1(H), γ) = d

and such that there exists a curve C ⊂ X such that γ = [C] is finite.

b) Let C be a compact curve of genus g > 2. Show that the group of biholomorphic
automorphisms of C is finite as follows: given an automorphism σ, let Γ ⊂ C × C
be its graph, and let ∆ be the diagonal.

Show first that OC×C(∆)|∆ ' K∗C . Deduce that Q([∆], [∆]) < 0.

Show that if [Γ] = [∆], then Γ = ∆, i.e. σ is the identity map.

Conclude with a). �
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4. Kodaira’s projectivity criterion

We have seen in Section 3 that every projective manifold is a Kähler manifold,
but in general the converse is not true: a complex torus Cn/Γ is always a Kähler
manifold, but if we choose the lattice Γ general enough, it is not projective (Exercise
3.50). The aim of this section is to give an outline of the proof of Kodaira’s famous
projectivity criterion for compact Kähler manifolds (Theorem 4.15). A main step
in the proof of this theorem is the equally famous Kodaira vanishing Theorem 4.8.

4.A. Serre duality and Kodaira’s vanishing theorem. Let X be a compact
complex manifold, and let E be a holomorphic vector bundle over X. We endow E

with a Hermitian metric h and define the L2 scalar product C∞(X,E) by Formula
(3.14). We define a C-antilinear Hodge operator

∗E : Ωp,qX ⊗ E → Ωn−p,n−qX ⊗ E∗

as follows: the Hermitian metric induces a C-antilinear isomorphism of complex
vector bundles

τ : E → E∗, s ∈ Ex 7→ hx(sx, •).
For any open set U ⊂ X and any decomposable ϕ⊗ e ∈ C∞(U,Ωp,qX ⊗ E), we set

∗E(ϕ⊗ e) := ∗ϕ⊗ τ(e),

and extend the definition by linearity to all elements of C∞(U,Ωp,qX ⊗E). It is then
clear that

α ∧ ∗Eβ = {α, β}vol.
Let DE be the Chern connection of E. Recall that the (0, 1)-part of the Chern
connection equals ∂E and we set ∂E := D1,0

E . Since the Chern curvature tensor ΘE

is of type (1, 1), the equality

ΘE = D2
E = ∂2

E + ∂E∂E + ∂E∂E + ∂
2
E

implies ∂2
E = 0 and ΘE = ∂E∂E + ∂E∂E = [∂E , ∂E ].

We define ∂∗E (resp. ∂
∗
E) to be the formal adjoints of ∂E (resp. ∂E) and the

corresponding Laplacians by

∆∂E := ∂E∂
∗
E + ∂∗E∂E

and
∆∂E

:= ∂E∂
∗
E + ∂

∗
E∂E .

As in the case where E is the trivial line bundle OX , one shows that these Laplacians
are elliptic operators. Thus we can apply Theorem A.42. and argue as in the proof
of Corollary 3.27 to show that we have an orthogonal decomposition

C∞(X,Ωp,q⊗E) = H p,q(X,E)⊕∂E(C∞(X,Ωp,q−1⊗E))⊕∂∗E(C∞(X,Ωp,q+1⊗E))

and
ker ∂E = H p,q(X,E)⊕ ∂E(C∞(X,Ωp,q−1 ⊗ E))

In particular we have the
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4.1. Corollary. Let X be a compact complex manifold, and let (E, h) be a her-
mitian holomorphic vector bundle over X. Then we have

Hp,q(X,E) 'H p,q(X,E).

In particular the Dolbeault cohomology groups have finite dimension.

4.2. Exercise. In analogy to Formulas 3.16 and 3.17, establish formulas for the
adjoint operators ∂∗E and ∂∗E . �

We come to one of the fundamental statements in complex geometry.

4.3. Theorem. (Serre duality) Let X be a compact complex manifold, and let E
be a holomorphic vector bundle over X. Then the bilinear pairing

Hp,q(X,E)×Hn−p,n−q(X,E∗)→ C, ([s], [t]) 7→
∫
X

s ∧ t

is a nondegenerate bilinear pairing.

4.4. Remark. The symbol s ∧ t should be understood as follows: let e1, . . . , er be
a local holomorphic frame on U ⊂ X, then

s|U =
r∑
j=1

sjej , t|U =
r∑
j=1

tje
∗
j ,

where sj ∈ C∞(U,Ωp,qX ) and tj ∈ C∞(U,Ωn−p,n−qX ). Then

(s ∧ t)|U =
r∑
j=1

sj ∧ tj

and one checks easily that these local definitions glue to a global (n, n)-form.

Sketch of the proof. We note first that the map

C∞(X,Ωp,qX ⊗ E)× C∞(X,Ωn−p,n−qX ⊗ E∗)→ C, (s, t) 7→
∫
X

s ∧ t

induces indeed a map on the cohomology groups: if for example s = ∂Eη, then

∂Eη ∧ t = ∂(η ∧ t) = d(η ∧ t),

since η ∧ t is of type (n, n− 1). Thus Stokes’ theorem shows that
∫
X
s ∧ t = 0.

Then one shows that (cf. [Wel80, Ch. V.,2] for the details)

∗E∆∂E
= ∆∂E∗

∗E ,

so we get a commutative diagram

C∞(X,Ωp,qX ⊗ E) ∗E
C∞(X,Ωn−p,n−qX ⊗ E∗)

H p,q(X,E) ∗E
H n−p,n−q(X,E∗).
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Since ∗E is an isomorphism of complex vector bundles, we get an isomorphism
between the spaces of harmonic forms

H p,q(X,E) ∗E→H n−p,n−q(X,E∗).

By Corollary 4.1, this implies that the vector spacesHp,q(X,E) andHn−p,n−q(X,E∗)
have the same dimension. Moreover the bilinear pairing is non-degenerate since for
every 0 6= u ∈H p,q(X,E), we have ∗Eu ∈H n−p,n−q(X,E∗) and∫

X

u ∧ ∗Eu = ||u||2L2 > 0.

�

Let (X,ω) be a Kähler variety, and let (E, h) be a holomorphic Hermitian vector
bundle over X. Set

L : C∞c (X,Ωp,q ⊗ E)→ C∞c (X,Ωp+1,q+1 ⊗ E), u 7→ ω ∧ u

for the Lefschetz operator with values in E, and denote by Λ = L∗ its formal
adjoint. The following lemma adapts the Kähler identities (Proposition 3.30) to
this setting, we omit the proof which is analogous to the one given in Subsection
3.C.

4.5. Lemma. Let (X,ω) be a Kähler manifold, and let (E, h) be a holomorphic
Hermitian vector bundle over X. Then we have

[∂∗E , L] = i∂E(4.27)
[∂∗E , L] = −i∂E .(4.28)
[Λ, ∂E ] = −i∂∗E(4.29)
[Λ, ∂E ] = i∂

∗
E(4.30)

A consequence of these commutation relations is the next theorem that should be
seen as a generalisation of the second statement in the comparison Theorem 3.31.

4.6. Theorem. (Bochner-Kodaira-Nakano identity) Let (X,ω) be a Kähler man-
ifold, and let (E, h) be a holomorphic Hermitian vector bundle over X. Then we
have

∆∂E
= [iΘE ,Λ] + ∆∂E .

Proof. By definition ∆∂E
= ∂E∂

∗
E + ∂

∗
E∂E , so by Formula (4.30)

∆∂E
= [∂E , ∂

∗
E ] = −i[∂E , [Λ, ∂E ]].

By the Jacobi identity (3.21)

−i[∂E , [Λ, ∂E ]] = −i[Λ, [∂E , ∂E ]]− i[∂E , [∂E ,Λ]],

so Formula (4.29) and [∂E , ∂E ] = ΘE imply that

∆∂E
= −i[Λ,ΘE ] +−i[∂E , i∂∗E ] = [iΘE ,Λ] + ∆∂E .

�



96 ANDREAS HÖRING

4.7. Corollary. (Bochner-Kodaira-Nakano inequality) Let (X,ω) be a compact
Kähler manifold, and let (E, h) be a holomorphic Hermitian vector bundle over X.
Let u ∈ C∞(X,Ωp,qX ⊗ E) be a (p, q)-form with values in E. Then we have∫

X

{[iΘE ,Λ]u, u}vol 6 (∆∂E
u, u)L2 .

In particular if u is ∆∂E
-harmonic, we have∫

X

{[iΘE ,Λ]u, u}vol 6 0.

Proof. By the definition of the Laplacian and the adjoint property, we immediately
get

(∆∂Eu, u)L2 = ||∂Eu||2 + ||∂∗Eu||2 > 0.

Therefore by the Bochner-Kodaira-Nakano identity

(∆∂E
u, u)L2 = (∆∂Eu, u)L2 +

∫
X

{[iΘE ,Λ]u, u}vol >
∫
X

{[iΘE ,Λ]u, u}vol.

�

4.8. Theorem. (Kodaira-Akizuki-Nakano vanishing theorem) Let (X,ω) be a com-
pact Kähler manifold of dimension n, and let (L, h) be a positive line bundle on X.
Then

Hp,q(X,L) = 0 ∀ p+ q > n+ 1.

4.9. Remark. The most important case is when p = n. Then the statement
simplifies to Kodaira’s original statement

Hq(X,KX ⊗ L) = 0 ∀ q > 0.

Proof. By Corollary 4.1 we have

Hp,q(X,L) 'H p,q(X,L),

where H p,q(X,L) are the ∆∂L
-harmonic forms. So it sufficient that the ∆∂L

-
harmonic forms are identically to zero. Let now u ∈ C∞(X,Ωp,qX ⊗ L) be a (p, q)-
form with values in L that is ∆∂L

-harmonic. By Corollary 4.7 we have

0 >
∫
X

{[iΘL,Λ]u, u}vol,

so we are done if we show∫
X

{[iΘL,Λ]u, u}vol > (p+ q − n)||u||2.

Technical remark: This inequality will be an immediate consequence of the a-priori
estimate (4.31) which we will prove now. Note that the proof of Formula (4.31)
does not use the hypothesis on the positivity of L and can also be adapted to the
case of vector bundles.



KÄHLER GEOMETRY AND HODGE THEORY 97

It is certainly sufficient to establish this inequality pointwise, so fix a point x ∈ X.
By Theorem 3.15 we can choose local holomorphic coordinates such that

ω = i
∑

16j6n

dzj ∧ dzj +O(|z|2).

As in the proof of Proposition 3.30 we see that in order to compute Λu in the point
x, we can assume that

ω = i
∑

16j6n

dzj ∧ dzj ,

hence

Λu = i
∑

16j6n

∂

∂zj
c ∂
∂zj
cu.

On the other hand we can simultaneously diagonalise ΘL in x, so we get

iΘL(x) = i
∑

16k6n

λkdzk ∧ dzk.

Then λ1(x), . . . , λn(x) are the eigenvalues of the curvature tensor iΘL in x and
without loss of generality we can suppose λ1(x) 6 . . . 6 λn(x).

We clearly have

iΘLΛu = −
∑

16j,k6n

λkdzk ∧ dzk ∧
∂

∂zj
c ∂
∂zj
cu.

Furthermore by Formula (3.15)

Λ(iΘLu) =
∑

16j,k6n

i
∂

∂zj
c ∂
∂zj
c (iλkdzk ∧ dzk ∧ u)

= −
∑

16j,k6n

λk
∂

∂zj
c
[
∂

∂zj
c (dzk ∧ dzk) ∧ u+ dzk ∧ dzk ∧

∂

∂zj
cu
]

= −
∑

16j,k6n

λk
∂

∂zj
c
[
−δj,kdzk ∧ u+ dzk ∧ dzk ∧

∂

∂zj
cu
]

=
∑

16j6n

λju−
∑

16j6n

λjdzj ∧
∂

∂zj
cu−

∑
16j6n

λjdzj ∧
∂

∂zj
cu

+
∑

16j,k6n

λkdzk ∧ dzk ∧
∂

∂zj
c ∂
∂zj
cu.

Thus we obtain

[iΘL,Λ]u(x) = −
∑

16j6n

λju+
∑

16j6n

λjdzj ∧
∂

∂zj
cu+

∑
16k6n

λkdzk ∧
∂

∂zk
cu.

Let now e1 be a local orthonormal frame for L, then locally

u =
∑

|J|=p,|K|=q

uJ,KdzJ ∧ dzK ⊗ e1,
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and we claim that

{[iΘL,Λ]u, u}x =
∑

|J|=p,|K|=q

(λK − λCJ)|uJ,K |2

where λK :=
∑
k∈K λk and λCJ :=

∑
j 6∈J λj . Indeed∑

16j6n

λjdzj ∧
∂

∂zj
cu =

∑
|J|=p,|K|=q

∑
j∈J

λjuJ,KdzJ ∧ dzK ⊗ e1

and ∑
16k6n

λkdzk ∧
∂

∂zk
cu =

∑
|J|=p,|K|=q

∑
k∈K

λkuJ,KdzJ ∧ dzK ⊗ e1,

thus we get finally that

{[iΘL,Λ]u, u}x =
∑

|J|=p,|K|=q

− ∑
16j6n

λj +
∑
j∈J

λj +
∑
k∈K

λk

 |uJ,K |2,
which implies the claim. Since λ1 6 . . . 6 λn, we have

λK − λCJ >
∑

16k6q

λk −
∑

16j6n−p

λp+j .

So we see that

(4.31) {[iΘL,Λ]u, u}x > (
∑

16k6q

λk −
∑

16j6n−p

λp+j)|u|2x.

Since L is a positive line bundle, the curvature tensor iΘL gives a Kähler form on
X. Thus we could have supposed from the beginning that ω = iΘ and λ1 = . . . =
λn = 1. Therefore Formula (4.31) simplifies to

{[iΘL,Λ]u, u}x > (p+ q − n)|u|2x.

The statement is now an immediate consequence. �

4.10. Exercise. We want to compute the cohomology of the line bundles OPn(k)
on Pn for arbitary k ∈ Z.

a) Show that for k > −n,

Hq(Pn,OPn(k)) = 0 ∀ q > 1.

b) Use the Serre duality Theorem 4.3 to discuss the case k 6 −(n+ 1). �

4.11. Exercise. A Fano manifold is a compact Kähler manifold such that the
anticanonical bundle K∗X := detTX is a positive line bundle. Show that if X is a
Fano manifold

Hi(X,OX) = 0 ∀ i > 0.

�
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4.12. Exercise. Let X be a complex projective variety, L → X a holomorphic
positive line bundle, and let σ ∈ Γ(X,E) be a global section. We suppose that the
zero set Y = {x ∈ X | σ(x) = 0} is smooth.

a) Show that if dimX > 2, then Y is connected.

b) Give an example where X is a curve and Y is not connected. �

The Kodaira vanishing theorem generalises to Nakano positive vector bundles:

4.13. Theorem. (Nakano vanishing theorem) Let (X,ω) be a compact Kähler
manifold of dimension n, and let E be a Nakano positive vector bundle on X.
Then

Hq(X,KX ⊗ E) = 0 ∀ q > 1.

4.14. Example. The Kodaira vanishing theorem does not generalise to Griffiths
positive vector bundles: by Exercise 2.54 and the Euler sequence 1.1, the tangent
bundle TPn of the projective space is Griffiths positive. Yet the long exact sequence
associated to the Euler sequence tensored with KPn and Exercise 4.10 show that

Hn−1(Pn,KPn ⊗ TPn) 6= 0.

Since OPn(1)n+1 is Nakano positive, this shows that the quotient of a Nakano
positive vector bundle is not necessarily Nakano positive.

4.B. Kodaira’s embedding theorem. We come to the last main result of these
lectures.

4.15. Theorem. (Kodaira’s embedding theorem) Let X be a compact complex
manifold. The following statements are equivalent:

(1) X is projective, that is there exists a holomorphic embedding ϕ : X → PN .
(2) There exists a Kähler form ω on X that is an integer class, i.e. is in the

image of the morphism H2(X,Z)→ H2(X,R).
(3) There exists a holomorphic line bundle L→ X that is positive.

Sketch of the proof of Theorem 4.15, Part I. 1) ⇒ 2) is clear since the restriction
of the Fubini-Study form ωFS (Exercise 2.25) is an integer Kähler form.

2) ⇒ 3) is an immediate consequence of the Lefschetz Theorem on (1, 1)-classes
2.30.

3)⇒ 1) is the difficult second part, see page 100. �

Let us give an immediate application.

4.16. Corollary. Let X be a compact Kähler manifold such that H2(X,OX) = 0.
Then X is projective.

4.17. Exercise. Let (X,ω) be a compact Kähler manifold. Show that ω is har-
monic. �
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Proof. By hypothesis and Hodge duality H2,0(X) = H0,2(X) = 0, so by the
Hodge decomposition theorem H1,1(X) = H2(X,C) ' H2(X,Q) ⊗ C. Since
H2(X,C) ' H 2(X), we can choose a basis α1, . . . , αm of H2(X,Q) such that
the αi are harmonic and of type (1, 1). Since the Kähler form ω is harmonic and
real, we have

ω =
m∑
j=1

λjαj

with λj ∈ R. If we take µj ∈ Q sufficiently close to λj , the Hermitian form
corresponding to

∑m
j=1 µjαj is still positive definite, so

∑m
j=1 µjαj is a Kähler

form. Up to multiplying with N sufficiently big and divisible, we have
∑m
j=1 µjαj ∈

H2(X,Z). Conclude with Kodaira’s Theorem 4.15. �

4.18. Exercise. A ruled surface is a compact Kähler manifold S that admits a
submersion f : S → C onto a smooth curve such that all the fibres Sc := f−1(c)
are isomorphic to P1. Show that a ruled surface is projective.

Hint: show that we have an exact sequence

0→ TSc → TS |Sc → OP1 → 0.

Thus we have KS |Sc ' OP1(−2). �

4.19. Exercise. (Push-forward of sheaves) Let X and Y be complex manifolds,
and let f : X → Y be a holomorphic map. Let F be a sheaf of abelian groups on
X, then we set

f∗F (U) := F (f−1(U))
for every open subset U ⊂ Y . Show that f∗F is a sheaf of abelian groups on Y . �

Sketch of the proof of Theorem 4.15, Part II. Let L be a positive line bundle on X.
The goal of the proof is to show the following three claims.

Claim 1. For sufficiently high N ∈ N, the line bundle L⊗N is globally generated,
i.e. for every point x ∈ X there exists a global section s ∈ Γ(X,L⊗N ) such that
s(x) 6= 0.

Claim 2. For sufficiently high N ∈ N, the line bundle L⊗N separates point, i.e. for
every couple of points x, y ∈ X there exists a global section s ∈ Γ(X,L⊗N ) such
that s(x) 6= 0 and s(y) = 0.

Claim 3. For sufficiently high N ∈ N, the line bundle L⊗N separates tangent
vectors, i.e. for every point x ∈ X and u ∈ TX,x there exists a global section
s ∈ Γ(X,L⊗N ) such that s(x) = 0 and ds(u) 6= 0.

Assuming these claims for the time being, let us show show how they imply the
theorem. Choose N ∈ N such that all three claims hold. By the first claim, for
x ∈ X there exists s ∈ Γ(X,L⊗N ) such that s(x) 6= 0. Therefore

Hx = {s ∈ Γ(X,L⊗N ) | s(x) = 0}
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is a hyperplane in Γ(X,L⊗N ). Thus we can define a morphism

ϕ : X → P(Γ(X,L⊗N )∗), x 7→ Hx.

We can write this morphism locally around a point x0 ∈ X more explicitly if we
choose a basis s0, . . . , sd of Γ(X,L⊗N ). Up to renumerating we can suppose that
s0(x0) 6= 0, so by continuity there exists an open neighbourhood U of x0 such that
s0(x) 6= 0 for every x ∈ U . Thus

s1
s0
, . . . ,

sd
s0
∈ Γ(U,OU )

and one checks that

ϕ|U : U → P(Γ(X,L⊗N )∗), x 7→ (1 : s1
s0

(x) : . . . : sd
s0

(x)).

We leave it as an exercise to the reader to show that Claim 2 implies that ϕ is
injective, and Claim 3 implies that ϕ is an immersion (cf. also [Har77, II, Prop.7.3]).
Since X is compact, it is then clear that ϕ defines an embedding of X in Pn.

We come to the proof of the claims. We will show Claim 1, and leave the other
claims as an exercise to the reader. Fix a point x ∈ X and denote by Ix its ideal
sheaf. Consider the exact sequence

0→ Ix ⊗ L⊗N → L⊗N → L⊗N |x → 0.

Taking the long exact sequence in cohomology we get

0→ Γ(X,Ix ⊗ L⊗N )→ Γ(X,L⊗N )→ C→ Ȟ
1
(X,Ix ⊗ L⊗N )→ . . .

where we used that the restriction of the line bundle L⊗N to the point x is the
trivial bundle. Thus in order to see that L⊗N is generated by global sections in x,
it would be sufficient to show that for N sufficient high

(∗) Ȟ
1
(X,Ix ⊗ L⊗N ) = 0,

Since this implies that L⊗N is generated by global sections in an open neighbour-
hood of x, the compactness of X implies that we can choose N ∈ N that works for
every x ∈ X.

The vanishing property (∗) is indeed true, it is a special case of the Serre vanishing
theorem and implicitly this it what the proof of Lemma 4.20 will show. Nevertheless
we feel that it is a bit easier to show only that the inclusion

Γ(X,Ix ⊗ L⊗N ) ↪→ Γ(X,L⊗N )

is strict. The argument goes as follows: let µ : X ′ → X be the blow-up of X
in the point x, then X ′ is a compact Kähler manifold (Exercise 2.49). Let E be
the exceptional divisor, then OX′(−E) ' IE and it is not hard to see that its
push-forward (cf. Exercise 4.19) is the ideal sheaf of x. Therefore we get

µ∗(OX′(−E)⊗ µ∗L⊗N ) ' Ix ⊗ L⊗N .

Analogously one sees that

Γ(X ′,OX′(−E)⊗ µ∗L⊗N ) = Γ(X,Ix ⊗ L⊗N ), Γ(X ′, µ∗L⊗N ) = Γ(X,L⊗N ).
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Therefore it is sufficient to show that the inclusion

Γ(X ′,OX′(−E)⊗ µ∗L⊗N ) ↪→ Γ(X ′, µ∗L⊗N )

is strict. Consider the exact sequence

0→ IE ⊗ µ∗L⊗N → µ∗L⊗N → µ∗L⊗N |E → 0.

The restriction of the pull-back µ∗L⊗N to the fibre E = µ−1(x) is trival, so we get

0→ Γ(X,IE ⊗ µ∗L⊗N )→ Γ(X,µ∗L⊗N )→ C→ Ȟ
1
(X,IE ⊗ L⊗N )→ . . .

By Lemma 4.20 below, we have Ȟ
1
(X,IE ⊗ L⊗N ) = 0 for N sufficiently high. �

4.20. Lemma. Let µ : X ′ → X be the blow-up of a compact Kähler manifold of
dimension n in a point x ∈ X, and denote by E the exceptional divisor. Let L be
a positive line bundle on X, then

(4.32) Ȟ
1
(X,IE ⊗ µ∗L⊗N ) = 0

for N sufficiently high.

Proof. We want to apply the Kodaira vanishing Theorem 4.8, so let us change
slightly the formulation of the problem. We have IE ' OX′(−E) and KX′ =
µ∗KX + (n− 1)E by Exercise 2.49, so

IE ⊗ µ∗L⊗N ' KX′ ⊗ OX′(−nE)⊗ µ∗(K∗X ⊗ L⊗N )

and we will show that for N sufficiently high, the line bundle

OX′(−nE)⊗ µ∗(K∗X ⊗ L⊗N )

is positive. Fix a metric h on L such that (L, h) is positive, and let hX be any metric
on K∗X . We know by Exercise 2.27 that for N1 sufficiently high, the curvature form

i(ΘK∗
X
,hX + ΘL⊗N1 ,h⊗N1 ) = i(ΘK∗

X
,hX +N1ΘL,h)

is positive definite. In particular the pull-back µ∗(KX ⊗ L⊗N1) admits a metric
with semi-positive curvature.

Consider now the restriction of the line bundle OX′(−E) to E. By Exercise 2.49

OX′(−E)|E ' OPn−1(1),

so we can endow OX′(−E)|E with the Fubini-Study metric. Fix now any metric hE
on OX′(−E) that extends the Fubini-Study metric. For any N2 ∈ N, the curvature
form Θ associated to the metric h⊗nE ⊗ µ∗h⊗N2 on OX′(−nE)⊗ µ∗L⊗N2 satisfies

Θ(t, t) = nΘOX′ (−E),hE (t, t) +N2ΘL,h(Tµ(t), Tµ(t)) ∀ t ∈ TX′,x.

Fix now a point x ∈ X. Since hE |E is the Fubini-Study metric, it is clear that

Θ(t, t) = nΘOX′ (−E),hE (t, t) > 0 ∀ t ∈ TE,x.

If t 6∈ TE,x, we have Tµ(t) 6= 0, so ΘL,h(Tµ(t), Tµ(t)) > 0. Hence for sufficiently
high N2, we get Θ(t, t) > 0. This shows that Θ is positive definite on TX′,x,
thus by continuity on TX′,x′ for x′ in a small neighbourhood. Conclude with the
compactness of X. �
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4.21. Remark. Note that if X is a curve, then the blow-up in a point x is just the
curve X itself. So Lemma 4.20 shows that if X compact complex curve, x ∈ X a
point, and L a positive line bundle on X, then

H1(X,OX(x)∗ ⊗ LN ) = 0

for N sufficiently high.

4.C. Sketch of proofs of results in Section 2.D.

Proof of Theorem 2.39. Let A be a positive holomorphic line bundle on X. As in
the proof of Kodaira’s embedding theorem we see that for N � 0 we have

h0(X,A⊗N ) 6= 0, h0(X,L⊗A⊗N ) 6= 0.

Thus there exists an effective divisor D1 such that A⊗N ' OX(D1) and an effective
divisor D2 such that L⊗A⊗N ' OX(D2). Thus we have L ' OX(D1 −D2). �

Let us recall the Riemann-Roch theorem on curves.

4.22. Theorem. Let C be a compact curves, and let L be a holomorphic line
bundle on C. Then we have

χ(C,L) = 1− g(C) +
∫
C

c1(L).

Proof of Theorem 2.51. By Theorem 2.39 and Remark 2.40 we can write L '
OX(C − E) with C and E smooth curves in X. We consider the exact sequences

0→ OX(−E)→ OX → OE → 0

and
0→ OX(−C)→ OX → OC → 0.

Tensoring both sequences with OX(C) we obtain

0→ OX(C)⊗ OX(−E) ' L→ OX(C)→ OX(C)|E → 0

and
0→ OX → OX(C)→ OX(C)|C → 0.

By the additivity of the Euler characteristic for exact sequences this implies

χ(X,L) + χ(E,OE(C)) = χ(X,OX) + χ(C,OC(C)).

Yet by the Riemann-Roch theorem for curves 4.22 we have

χ(E,OE(C)) = 1− g(E) +
∫
E

c1(OE(C))

and
χ(C,OC(C)) = 1− g(C) +

∫
C

c1(OC(C)).

By Theorem 2.41 we have∫
E

c1(OE(C)) =
∫
X

c1(OX(E)) ∧ c1(OX(C)) = C · E
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and analogously
∫
C
c1(OC(C)) = C2. Using the adjunction formula we see that

g(C) = 1
2
(KX + C) · C + 1

and
g(E) = 1

2
(KX + E) · E + 1.

Conclude with an elementary computation. �

4.23. Exercise. Let X be a complex torus of dimension two. Let A be a positive
line bundle on X. Show that H0(X,A) 6= 0. �

4.24. Exercise. Using the arguments from the Kodaira embedding theorem prove
that a holomorphic line bundle L on a compact curve C is positive if and only if∫

C

c1(L) > 0.

�

Proof of Theorem 2.50. By Theorem 2.39 and Remark 2.40 we can write L '
OX(C − E) with C and E smooth curves in X. We consider the exact sequence

0→ OX(−C)→ OX → OC → 0.

Tensoring with L⊗m we obtain an exact sequence

(∗) 0→ L⊗m ⊗ OX(−C) ' L⊗m−1 ⊗ OX(−E)→ L⊗m → L|⊗mC → 0.

We consider the exact sequence

0→ OX(−E)→ OX → OE → 0.

Tensoring with L⊗m−1 we obtain an exact sequence

(∗∗) 0→ L⊗m−1 ⊗ OX(−E)→ L⊗m−1 → L|⊗m−1
E → 0.

By hypothesis we have L ·C > 0 and L ·E > 0 so by Exercise 4.24 the line bundles
L|E and L|C are positive. Arguing as in the proof of Lemma 4.20 we obtain that

H1(C,L|⊗mC ) = 0, H1(E,L|⊗m−1
E ) = 0

for all m� 0. By the long exact sequences in cohomology associated to the exact
sequences (∗) and (∗∗) we obtain that

H2(X,L⊗m) ' H2(X,L⊗m−1 ⊗ OX(−E)) ' H2(X,L⊗m−1)

for all m� 0. In particular we see that h2(X,L⊗m) is a constant c for m� 0. In
particular we have

χ(X,L⊗m) = h0(X,L⊗m)− h1(X,L⊗m) + c.

By the Riemann-Roch theorem 2.51 we have

χ(X,L⊗m) = m2

2
L2 − m

2
KX · L+ χ(X,OX),
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so the hypothesis L2 > 0 implies that χ(X,L⊗m) goes to infinity for m→∞. Thus
we see that for some m� 0 we have

h0(X,L⊗m) 6= 0.

In order to simplify the notation in the rest of the proof we will suppose (without
loss of generality) that H0(X,L) 6= 0 and there exists a global section σ such that
dσ(x) 6= 0 for every x ∈ X such that σ(x) = 0. In particular

D := {x ∈ X | σ(x) = 0}

is a smooth curve. We have an exact sequence

0→ OX(−D)→ OX → OD → 0.

Tensoring with L⊗m we obtain an exact sequence

(∗ ∗ ∗) 0→ L⊗m−1 → L⊗m → L|⊗mD → 0.

Since L ·D > 0 by hypothesis we see that L|D is positive, so

H1(D,L|⊗mD ) = 0

for all m� 0. By the long exact sequences in cohomology associated to the exact
sequence (∗ ∗ ∗) we obtain that the map

H1(X,L⊗m−1)→ H1(X,L⊗m)

is surjective for all m � 0. In particular we see that h1(X,L⊗m) is a constant d
for m � 0. Yet this implies that H1(X,L⊗m−1) → H1(X,L⊗m) is actually an
isomorphism, so the restriction arrow

H0(X,L⊗m)→ H0(D,L|⊗mD )

is surjective for m � 0. Since L|D is positive, the line bundle L|⊗mD is globally
generated for m � 0. Thus we obtain that L⊗m is globally generated for m � 0.
In particular we have a holomorphic map

ϕ : X → PN

such that L⊗m ' ϕ∗OPN (1). We claim that ϕ is finite onto its image: arguing by
contradiction we suppose that there exists a curve A ⊂ X such that ϕ(A) is a point.
Then we have

L⊗m ·A = ϕ∗OPN (1) ·A = 0,
a contradiction to our hypothesis. Yet once we know that ϕ is finite we can use
the general machinery of algebraic geometry to show that for m′ > m� 0 the line
bundle L⊗m′ defines an embedding ofX into the projective space. The isomorphism
L⊗m

′ ' ϕ∗OPN (1) then implies that L is a positive line bundle. �
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Appendix A. Hodge theory

by Olivier Biquard

This chapter is an introduction to Hodge theory, and more generally to the analysis
on elliptic operators on compact manifolds. Hodge theory represents De Rham co-
homology classes (that is topological objects) on a compact manifold by harmonic
forms (solutions of partial differential equations depending on a Riemannian met-
ric on the manifold). It is a powerful tool to understand the topology from the
geometric point of view.

In this chapter we mostly follow reference [Dem96], which contains a complete
concise proof of Hodge theory, as well as applications in Kähler geometry.

A.A. The Hodge operator. Let V be a n-dimensional oriented euclidean vector
space (it will be later the tangent space of an oriented Riemannian n-manifold).
Therefore there is a canonical volume element vol ∈ ΩnV . The exterior product
ΩpV ∧Ωn−pV → ΩnV is a non degenerate pairing. Therefore, for a form β ∈ ΩpV ,
one can define ∗β ∈ Ωn−pV by its wedge product with p-forms:

(1.33) α ∧ ∗β = 〈α, β〉 vol

for all α ∈ ΩpV . The operator ∗ : Ωp → Ωn−p is called the Hodge ∗ operator.

In more concrete terms, if (ei)i=1...n is a direct orthonormal basis of V , then
(eI)I⊂{1,...,n} is an orthonormal basis of ΩV . One checks easily that

∗1 = vol, ∗e1 = e2 ∧ e3 ∧ · · · ∧ en,

∗ vol = 1, ∗ei = (−1)i−1e1 ∧ · · · ∧ êi · · · en.

More generally,

(1.34) ∗eI = ε(I, {I)e{I ,

where ε(I, {I) is the signature of the permutation (1, . . . , n)→ (I, {I).

A.1. Exercise. Suppose that in the basis (ei) the quadratic form is given by the
matrix g = (gij), and write the inverse matrix g−1 = (gij). Prove that for a 1-form
α = αie

i one has

(1.35) ∗α = (−1)i−1gijαje
1 ∧ · · · ∧ êi ∧ · · · ∧ en.

�

A.2. Exercise. Prove that ∗2 = (−1)p(n−p) on Ωp. �

If n is even, then ∗ : Ωn/2 → Ωn/2 satisfies ∗2 = (−1)n/2. Therefore, if n/2 is even,
the eigenvalues of ∗ on Ωn/2 are ±1, and Ωn/2 decomposes accordingly as

(1.36) Ωn/2 = Ω+ ⊕ Ω−.



KÄHLER GEOMETRY AND HODGE THEORY 107

The elements of Ω+ are called selfdual forms, and the elements of Ω− antiselfdual
forms. For example, if n = 4, then Ω± is generated by the forms

(1.37) e1 ∧ e2 ± e3 ∧ e4, e1 ∧ e3 ∓ e2 ∧ e4, e1 ∧ e4 ± e2 ∧ e3.

A.3. Exercise. If n/2 is even, prove that the decomposition (1.36) is orthogonal
for the quadratic form Ωn/2 ∧ Ωn/2 → Ωn ' R, and

(1.38) α ∧ α = ±|α|2 vol if α ∈ Ω±.

�

A.4. Exercise. If u is an orientation-preserving isometry of V , that is u ∈ SO(V ),
prove that u preserves the Hodge operator. This means the following: u induces an
isometry of V ∗ = Ω1, and an isometry Ωpu of ΩpV defined by (Ωpu)(x1∧· · ·∧xp) =
u(x1) ∧ · · · ∧ u(xp). Then for any p-form α ∈ ΩpV one has

∗(Ωpu)α = (Ωn−pu) ∗ α.

This illustrates the fact that an orientation-preserving isometry preserves every
object canonically attached to a metric and an orientation. �

A.B. Adjoint operator. Suppose (Mn, g) is an oriented Riemannian manifold,
and E → M a unitary bundle. Then on sections of E with compact support, one
can define the L2 scalar product and the L2 norm:

(1.39) (s, t) =
∫
M

〈s, t〉E volg, ‖s‖2 =
∫
M

〈s, s〉E volg .

If E and F are unitary bundles and P : Γ(E) → Γ(F ) is a linear operator, then a
formal adjoint of P is an operator P ∗ : Γ(F )→ Γ(E) satisfying

(1.40) (Ps, t)E = (s, P ∗t)F
for all sections s ∈ C∞c (E) and t ∈ C∞c (F ).

A.5. Example. Consider the differential of functions,

d : C∞(M)→ C∞(Ω1).

Choose local coordinates (xi) in an open set U ⊂M and suppose that the function
f and the 1-form α = αidx

i have compact support in U ; write volg = γ(x)dx1 ∧
· · · ∧ dxn, then by integration by parts:∫

M

〈df, α〉 volg =
∫
gij∂ifαjγdx

1 · · · dxn

= −
∫
f∂i(gijαjγ)dx1 · · · dxn

= −
∫
fγ−1∂i(gijαjγ) volg .

It follows that

(1.41) d∗α = −γ−1∂i(γgijαj).

More generally, one has the following formula.
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A.6. Lemma. The formal adjoint of the exterior derivative d : Γ(ΩpM) →
Γ(Ωp+1M) is

d∗ = (−1)np+1 ∗ d ∗ .

Proof. For α ∈ C∞c (Ωp) and β ∈ C∞c (Ωp+1) one has the equalities:∫
M

〈dα, β〉 volg =
∫
M

du ∧ ∗v

=
∫
M

d(u ∧ ∗v)− (−1)pu ∧ d ∗ v

by Stokes theorem, and using exercice A.2:

= (−1)p+1+p(n−p)
∫
M

u ∧ ∗ ∗ d ∗ v

= (−1)pn+1
∫
M

〈u, ∗d ∗ v〉 volg .

�

A.7. Remarks. 1) If n is even then the formula simplifies to d∗ = − ∗ d∗.

2) The same formula gives an adjoint for the exterior derivative d∇ : Γ(Ωp ⊗E)→
Γ(Ωp+1 ⊗ E) associated to a unitary connection ∇ on a bundle E.

3) As a consequence, for a 1-form α with compact support one has

(1.42)
∫
M

(d∗α) volg = 0

since this equals (α, d(1)) = 0.

A.8. Exercise. Suppose that (Mn, g) is a manifold with boundary. Note ~n is the
normal vector to the boundary. Prove that (1.42) becomes:

(1.43)
∫
M

(d∗α) vol = −
∫
∂M

∗α = −
∫
∂M

α~n vol∂M .

�

For 1-forms we have the following alternative formula for d∗.

A.9. Lemma. Let E be a vector bundle with unitary connection ∇, then the
formal adjoint of ∇ : Γ(M,E)→ Γ(M,Ω1 ⊗ E) is

∇∗α = −Trg(∇u) = −
n∑
1

(∇eiα)(ei).

Proof. Take a local orthonormal basis (ei) of TM , and consider an E-valued 1-form
α = αie

i. We have ∗α = (−1)i−1αie
1 ∧ · · · ∧ êi ∧ · · · ∧ en. One can suppose that

just at the point p one has ∇ei(p) = 0, therefore dei(p) = 0 and, still at the point
p,

d∇ ∗ α =
n∑
1

(∇iαi)e1 ∧ · · · ∧ en.

Finally ∇∗α(p) = −
∑n

1 (∇iαi)(p). �
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A.10. Remark. Actually the same formula is also valid for p-forms. Indeed,
d∇ : Γ(M,Ωp) → Γ(M,Ωp+1) can be deduced from the covariant derivative ∇ :
Γ(M,Ωp)→ Γ(M,Ω1 ⊗ Ωp) by the formula17

d∇ = (p+ 1)a ◦ ∇,

where a is the antisymmetrization of a (p + 1)-tensor. Also observe that if α ∈
Ωp ⊂ ⊗pΩ1, its norm as a p-form differs from its norm as a p-tensor by

|α|2Ωp = p!|α|2⊗pΩ1 .

Putting together this two facts, one can calculate that d∗ is the restriction of ∇∗
to antisymmetric tensors in Ω1 ⊗ Ωp. We get the formula

(1.44) d∗α = −
n∑
1
eiy∇iα.

Of course the formula remains valid for E-valued p-forms, if E has a unitary con-
nection ∇.

A.11. Exercise. Consider the symmetric part of the covariant derivative,

δ∗ : Γ(Ω1)→ Γ(S2Ω1).

Prove that its formal adjoint is the divergence δ, defined for a symmetric 2-tensor
h by

(δh)X = −
n∑
1

(∇eih)(ei, X).

�

A.C. Hodge-de Rham Laplacian.

A.12. Definition. Let (Mn, g) be an oriented Riemannian manifold. The Hodge-
De Rham Laplacian on p-forms is defined by

∆α = (dd∗ + d∗d)α.

Clearly, ∆ is a formally selfadjoint operator. The definition is also valid for E-
valued p-forms, using the exterior derivative d∇, where E has a metric connection
∇.

A.13. Example. On functions ∆ = d∗d; using (1.41), we obtain the formula in
local coordinates:

(1.45) ∆f = − 1√
det(gij)

∂i
(
gij
√

det(gij)∂jf
)
.

In particular, for the flat metric g =
∑n

1 (dxi)2 of Rn, one has

∆f = −
n∑
1
∂2
i f.

17This formula is true as soon as ∇ is a torsion free connection on M .
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In polar coordinates on R2, one has g = dr2 + r2dθ2 and therefore

∆f = −1
r
∂r(r∂rf)− 1

r2
∂2
θf.

More generally on Rn with polar coordinates g = dr2 + r2gSn−1 , one has

∆f = − 1
rn−1 ∂r(r

n−1∂rf) + 1
r2

∆Sn−1f.

Similarly, on the real hyperbolic space Hn with geodesic coordinates, g = dr2 +
sinh2(r)gSn−1 and the formula reads

∆f = − 1
sinh(r)n−1 ∂r(sinh(r)n−1∂rf) + 1

r2
∆Sn−1f.

A.14. Exercise. On p-forms in Rn prove that ∆(αIdxI) = (∆αI)dxI . �

A.15. Exercise. Prove that ∗ commutes with ∆. �

A.16. Exercise. If (Mn, g) has a boundary, prove that for two functions f and g
one has ∫

M

(∆f)g vol =
∫
M

〈df, dg〉 vol−
∫
∂M

∂f

∂~n
g vol∂M .

Deduce ∫
M

(∆f)g vol =
∫
M

f∆g vol +
∫
∂M

(
f
∂g

∂~n
− ∂f

∂~n
g
)
vol∂M .

�

A.17. Exercise. Prove that the radial function defined on Rn by (Vn being the
volume of the sphere Sn)

G(r) =

{
1

(n−2)Vn−1rn−2 if n > 2
1
2π log r if n = 2

satisfies ∆G = δ0 (Dirac function at 0). Deduce the explicit solution of ∆f = g for
g ∈ C∞c (Rn) given by the integral formula

f(x) =
∫

Rn
G(|x− y|)g(y)|dy|n.

The function G is called Green’s function.

Similarly, find the Green’s function for the real hyperbolic space. �

A.D. Statement of Hodge theory. Let (Mn, g) be a closed Riemannian oriented
manifold. Consider the De Rham complex

0→ Γ(Ω0) d→ Γ(Ω1) d→ · · · d→ Γ(Ωn)→ 0.

Remind that the De Rham cohomology in degree p is defined by Hp = {α ∈
C∞(M,Ωp), dα = 0}/dC∞(M,Ωp−1).

Other situation: (E,∇) is a flat bundle, we have the associated complex

0→ Γ(Ω0 ⊗ E) d
∇

→ Γ(Ω1 ⊗ E) d
∇

→ · · · d
∇

→ Γ(Ωn ⊗ E)→ 0

and we can define the De Rham cohomology with values in E in the same way.

In both cases, we have the Hodge-De Rham Laplacian ∆ = dd∗ + d∗d.
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A.18. Definition. A harmonic form is a C∞ form such that ∆α = 0.

A.19. Lemma. If α ∈ C∞c (M,Ωp), then α is harmonic if and only if dα = 0 and
d∗α = 0. In particular, on a compact connected manifold, any harmonic function
is constant.

Proof. It is clear that if dα = 0 and d∗α = 0, then ∆α = d∗dα + dd∗α = 0.
Conversely, if ∆α = 0, because

(∆α, α) = (d∗dα, α) + (dd∗α, α) = ‖dα‖2 + ‖d∗α‖2,

we deduce that dα = 0 and d∗α = 0. �

A.20. Remark. The lemma remains valid on complete manifolds, for L2 forms
α such that dα and d∗α are also L2. This is proved by taking cut-off functions
χj , such that χ−1

j (1) are compact domains which exhaust M , and |dχj | remains
bounded by a fixed constant C. Then∫

M

〈∆α, χjα〉 vol =
∫
M

(
〈dα, d(χjα)〉+ 〈d∗α, d∗(χjα)〉

)
vol

=
∫
M

(
χj(|dα|2 + |d∗α|2) + 〈dα, dχj ∧ α〉 − 〈d∗α,∇χjyα〉

)
vol

Using |dχj | 6 C and taking j to infinity, one obtains (∆α, α) = ‖dα‖2 + ‖d∗α‖2.

Note Hp the space of harmonic p-forms on M . The main theorem of this section
is:

A.21. Theorem. Let (Mn, g) be a compact closed oriented Riemannian manifold.
Then:

(1) Hp is finite dimensional;
(2) one has a decomposition C∞(M,Ωp) = Hp ⊕ ∆(C∞(M,Ωp)), which is

orthogonal for the L2 scalar product.

This is the main theorem of Hodge theory, and we will prove it later, as a conse-
quence of theorem A.42. Just remark now that it is obvious that ker ∆ ⊥ im ∆,
because ∆ is formally selfadjoint. Also, general theory of unbounded operators
gives almost immediately that L2(M,Ωp) = Hp ⊕ im ∆. What is non trivial is:
finite dimensionality of Hp, closedness of im ∆, and the fact that smooth forms in
the L2 image of ∆ are images of smooth forms.

Now we will derive some immediate consequences.

A.22. Corollary. Same hypothesis. One has the orthogonal decomposition

C∞(M,Ωp) = Hp ⊕ d
(
C∞(M,Ωp−1)

)
⊕ d∗

(
C∞(M,Ωp+1)

)
,

where

ker d = Hp ⊕ d
(
C∞(M,Ωp−1)

)
,(1.46)

ker d∗ = Hp ⊕ d∗
(
C∞(M,Ωp+1)

)
.(1.47)
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Note that since harmonic forms are closed, there is a natural map Hp → Hp. The
equality (1.46) implies immediately:

A.23. Corollary. Same hypothesis. The map Hp → Hp is an isomorphism.

Using exercice A.15, we obtain:

A.24. Corollary.[Poincaré duality] Same hypothesis. The Hodge ∗ operator in-
duces an isomorphism ∗ : Hp → Hn−p. In particular the corresponding Betti
numbers are equal, bp = bn−p.

A.25. Remark. As an immediate consequence, if M is connected then Hn = R
since H0 = R. Since ∗1 = volg and

∫
M

volg > 0, an identification with R is just
given by integration of n-forms on M .

A.26. Remark. In Kähler geometry there is a decomposition of harmonic forms
using the (p, q) type of forms, Hk⊗C = ⊕k0Hp,k−p, and corollary A.24 can then be
refined as an isomorphism ∗ : Hp,q → Hm−q,m−p, where n = 2m.

A.27. Remark. Suppose that n is a multiple of 4. Then by exercises A.3 and
A.15, one has an orthogonal decomposition

(1.48) Hn/2 = H+ ⊕H−.

Under the wedge product, the decomposition is orthogonal, H+ is positive and H−
is negative, therefore the signature of the manifold is (p, q) with p = dim H+ and
q = dim H−.

A.28. Exercise. Suppose again that n is a multiple of 4. Note d± : Γ(Ωn/2−1)→
Γ(Ω±) the projection of d on selfdual or antiselfdual forms. Prove that on (n/2−1)-
forms, one has d∗+d+ = d∗−d−. Deduce that the cohomology of the complex

(1.49) 0→ Γ(Ω0) d→ Γ(Ω1) d→ · · · d→ Γ(Ωn/2−1) d+→ Γ(Ω+)→ 0

is H0, H1, . . . , Hn/2−1, H+. �

A.29. Exercise. Using exercise A.14, calculate the harmonic forms and the coho-
mology of a flat torus Rn/Zn. �

A.30. Exercise. Let (M, g) be a compact oriented Riemannian manifold.

1) If γ is an orientation-preserving isometry of (M, g) and α a harmonic form, prove
that γ∗α is harmonic.

2) (requires some knowledge of Lie groups) Prove that if a connected Lie group G
acts on M , then the action of G on H•(M,R) given by α→ γ∗α is trivial18.

3) Deduce that harmonic forms are invariant under Isom(M, g)o, the connected
component of the identity in the isometry group of M . Apply this observation to

18If ξ belongs to the Lie algebra of G and Xξ is the associated vector field on M given by the
infinitesimal action of G (that is defined by Xξ(x) = d

dt
etξx|t=0), then one has d

dt
(etξ)∗α|t=0 =

LXξα = iXξdα+diXξα. Deduce that if α is closed, then the infinitesimal action of G onH•(M,R)
is trivial.
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give a proof that the cohomology of the n-sphere vanishes in degrees k = 1, . . . , n−1
(prove that there is no SO(n + 1)-invariant k-form on Sn using the fact that the
representation of SO(n) on ΩkRn is irreducible and therefore has no fixed nonzero
vector). �

A.E. Bochner technique. Let (E,∇) be a bundle equipped with a unitary con-
nection over an oriented Riemannian manifold (Mn, g). Then ∇ : Γ(E)→ Γ(Ω1 ⊗
E) and we can define the rough Laplacian ∇∗∇ acting on sections of E. Using a
local orthonormal basis (ei) of TM , from lemma A.9 it follows that

(1.50) ∇∗∇s =
n∑
1
−∇ei∇eis+∇∇eieis.

If we calculate just at a point p and we choose a basis (ei) which is parallel at p,
then the second term vanishes.

In particular, using the Levi-Civita connection, we get a Laplacian ∇∗∇ acting on
p-forms. It is not equal to the Hodge-De Rham Laplacian, as follows from:

A.31. Lemma.[Bochner formula] Let (Mn, g) be an oriented Riemannian manifold.
Then for any 1-form α on M one has

∆α = ∇∗∇α+ Ric(α).

A.32. Remark. There is a similar formula (Weitzenböck formula) on p-forms: the
difference ∆α−∇∗∇α is a zero-th order term involving the curvature of M .

Proof of the lemma. We have dαX,Y = (∇Xα)Y − (∇Y α)X , therefore

d∗dαX = −
n∑
1

(∇eidα)ei,X =
n∑
1
−(∇ei∇eiα)X + (∇ei∇Xα)ei ,

where in the last equality we calculate only at a point p, and we have chosen the
vector fields (ei) and X parallel at p.

Similarly, d∗α = −
∑n

1 (∇eiα)ei , therefore

dd∗αX = −
n∑
1
∇X((∇eiα)ei) = −

n∑
1

(∇X∇eiα)ei .

Therefore, still at the point p, comparing with (1.50),

(1.51) (∆α)X = (∇∗∇α)X +
n∑
1

(Rei,Xα)ei = (∇∗∇α)X + Ric(α)X .

�

A.33. Remark. There is a similar formula if the exterior derivative is coupled
with a bundle E equipped with a connection ∇. The formula for the Laplacian
∆ = (d∇)∗d∇ + d∇(d∇)∗ becomes

(1.52) ∆α = ∇∗∇α+ Ric(α) + R∇(α),
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where the additional last term involves the curvature of ∇,

(1.53) R∇(α)X =
n∑
1
R∇ei,Xα(ei).

The proof is exactly the same as above, a difference arises just in the last equality
of (1.51), when one analyses the curvature term: the curvature acting on α is that
of Ω1 ⊗ E, so equals R⊗ 1 + 1⊗R∇, from which:

n∑
1

(Rei,Xα)ei = Ric(α)X +
n∑
1
R∇ei,Xα(ei).

Now let us see an application of the Bochner formula. Suppose M is compact. By
Hodge theory, an element of H1(M) is represented by a harmonic 1-form α. By
the Bochner formula, we deduce ∇∗∇α + Ric(α) = 0. Taking the scalar product
with α, one obtains

(1.54) ‖∇α‖2 + (Ric(α), α) = 0.

If Ric > 0, this equality implies ∇α = 0 and Ric(α) = 0. If Ric > 0, then α = 0; if
Ric > 0 we get only that α is parallel, therefore the cohomology is represented by
parallel forms. Suppose that M is connected, then a parallel form is determined by
its values at one point p, so we get an injection

H1 ↪→ Ω1
p.

Therefore dim H1 6 n, with equality if and only if M has a basis of parallel 1-
forms. This implies that M is flat, and by Bieberbach’s theorem that M is a torus.
Therefore we deduce:

A.34. Corollary. If (Mn, g) is a compact connected oriented Riemannian manifold,
then:

• if Ric > 0, then b1(M) = 0;
• if Ric > 0, then b1(M) 6 n, with equality if and only if (M, g) is a flat

torus.

This corollary is a typical example of application of Hodge theory to prove vanishing
theorems for the cohomology: one uses Hodge theory to represent cohomology
classes by harmonic forms, and then a Weitzenböck formula to prove that the
harmonic forms must vanish or be special under some curvature assumption. For
examples in Kähler geometry see [Dem96].

A.F. Differential operators. A linear operator P : Γ(M,E)→ Γ(M,F ) between
sections of two bundles E and F is a differential operator of order d if, in any local
trivialisation of E and F over a coordinate chart (xi), one has

Pu(x) =
∑
|α|6d

aα(x)∂αu(x),

where α = (α1, . . . , αk) is a multiindex with each αi ∈ {1 . . . n}, |α| = k, ∂α =
∂α1 . . . ∂αk , and aα(x) is a matrix representing an element of Hom(Ex, Fx).
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The principal symbol of P is defined for x ∈ M and ξ ∈ T ∗xM by taking only the
terms of order d in P :

σP (x, ξ) =
∑
|α|=d

aα(x)ξα,

where ξα = ξα1 · · · ξαd if ξ = ξidx
i. It is a degree d homogeneous polynomial in the

variable ξ with values in Hom(Ex, Fx).

A priori, it is not clear from the formula in local coordinates that the principal
symbol is intrinsically defined. But it is easy to check that one has the following
more intrinsic definition: suppose f ∈ C∞(M), t ∈ R and u ∈ Γ(M,E), then

e−tf(x)P
(
etf(x)u(x)

)
is a polynomial of degree d in the variable t, whose monomial of degree d is a
homogeneous polynomial of degree d in df(x). It is actually

tdσP (x, df(x))u(x).

The following property of the principal symbol is obvious.

A.35. Lemma. σP◦Q = σP ◦ σQ .

A.36. Examples. 1) If one has a connection ∇ : Γ(E) → Γ(Ω1 ⊗ E), then
e−tf∇(etfu) = tdf ⊗ u+∇u. Therefore

σ∇(x, ξ) = ξ⊗ : Γ(Ex)→ Γ(Ω1
x ⊗ Ex).

2) The principal symbol of the exterior derivative d∇ : Γ(Ωp ⊗ E)→ Γ(Ωp+1 ⊗ E)
is σd(x, ξ) = ξ∧.

3) The principal symbol of d∗ : Γ(Ωp+1 ⊗ E)→ Γ(Ωp ⊗ E) is σd∗(x, ξ) = −ξy.

4) The principal symbol of the composite ∇∗∇ is the composite −(ξy) ◦ (ξ⊗) =
−|ξ|2.

A.37. Exercise. Prove that the principal symbol of the Hodge-De Rham Laplacian
is also σ∆(x, ξ) = −|ξ|2. �

A.38. Lemma. Any differential operator P : Γ(E)→ Γ(F ) of order d has a formal
adjoint P ∗, whose principal symbol is

σP∗(x, ξ) = (−1)dσP (x, ξ)∗.

A.39. Exercise. Prove the lemma in the following way. In local coordinates, write
volg = v(x)dx1 ∧ · · · ∧ dxn. Choose orthonormal trivialisations of E and F , and
write P =

∑
aα(x)∂α. Then prove that

P ∗t =
∑
|α|6d

(−1)|α| 1
v(x)

∂α
(
v(x)aα(x)∗t

)
.

The proof is similar to that in example A.5. �
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A.40. Remark. In analysis, the principal symbol is often defined slightly dif-
ferently: ξj corresponds to Dj = 1

i
∂
∂xj . The advantage is that Dj is formally

selfadjoint, so with this definition the principal symbol of P ∗ is always σP (x, ξ)∗
and the principal symbol of the Laplacian becomes positive.

A.41. Definition. A differential operator P : Γ(E) → Γ(F ) is elliptic if for any
x ∈M and ξ 6= 0 in TxM , the principal symbol σP (x, ξ) : Ex → Fx is injective.

Here is our main theorem on elliptic operators. It will be proved in section A.H.

A.42. Theorem. Suppose (Mn, g) is a compact oriented Riemannian manifold,
and P : Γ(E)→ Γ(F ) is an elliptic operator, with rankE = rankF . Then

(1) ker(P ) is finite dimensional;
(2) there is a L2 orthogonal sum

C∞(M,F ) = ker(P ∗)⊕ P
(
C∞(M,E)

)
.

The Hodge theorem A.21 follows immediately, by applying to the Hodge-De Rham
Laplacian ∆.

Remark that ker(P ∗) is also finite dimensional, since P ∗ is elliptic if P is elliptic.
The difference dim kerP − dim kerP ∗ is the index of P , defined by

ind(P ) = dim kerP − dim cokerP.

Operators with finite dimensional kernel and cokernel are called Fredholm operators,
and the index is invariant under continuous deformation among Fredholm operators.
Since ellipticity depends only on the principal symbol, it follows immediately that
the index of P depends only on σP . The fundamental index theorem of Atiyah-
Singer gives a topological formula for the index, see the book [BGV04].

A useful special case is that of a formally selfadjoint elliptic operator. Its index is
of course zero. The invariance of the index then implies that any elliptic operator
with the same symbol (or whose symbol is a deformation through elliptic symbols)
has also index zero.

A.G. Basic elliptic theory. In this section we explain the basic results enabling
to prove theorem A.42.

Sobolev spaces. The first step is to introduce the Sobolev space Hs(Rn) of tem-
pered distributions f on Rn such that the Fourier transform satisfies

(1.55) ‖f‖2s :=
∫

Rn
|f̂(ξ)|2(1 + |ξ|2)s|dξ|n < +∞.

Equivalently, Hs(Rn) is the space of functions f ∈ L2(Rn) which admit s derivatives
in distribution sense19 in L2, and

(1.56) ‖f‖2s ∼
∑
|α|6s

‖∂αs‖2L2 .

19Weak derivative: g = Dαf if for any φ ∈ C∞c (Rn) one has
∫

Rn (Dαφ)f =
∫

Rn φg.
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(But observe that the definition (1.55) is valid also for any real s).

If M is a compact manifold and E a vector bundle over M , then one can define
the space Ck(M,E) of sections of E whose coefficients are of class Ck in any
trivialisation of E, and Hs(M,E) the space of sections of E whose coefficients in
any trivialisation and any coordinate chart are functions of class Hs in Rn. If M is
covered by a finite number of charts (Uj) with trivialisations of E|Uj by a basis of
sections (ej,a)a=1,...,r, choose a partition of unity (χj) subordinate to (Uj), then a
section u of E can be written u =

∑
χjuj,αej,α with χjuj,α a function with compact

support in Uj ⊂ Rn, therefore

(1.57) ‖u‖Ck = sup
j,α
‖χjuj,α‖Ck(Rn), ‖u‖2s =

∑
‖χjuj,α‖2Hs(Rn).

Up to equivalence of norms, the result is independent of the choice of coordinate
charts and trivialisations of E.

There is another approach to define Ck and Hs norms for sections of E. Suppose
that Mn has a Riemannian metric, and E is equipped with a unitary connection
∇. Then one can define

(1.58) ‖u‖Ck = sup
j6k

sup
M
|∇ju|, ‖u‖s =

k∑
0

∫
M

|∇ju|2 volg .

A.43. Remark. On a noncompact manifold, the definition (1.57) does not give a
well defined class of equivalent norms when one changes the trivialisations. On the
contrary, definition (1.58), valid only for integral s, can be useful if (M, g) is non
compact; the norms depend on the geometry at infinity of g and ∇.

A.44. Example. IfM is a torus Tn, then the regularity can be seen on the Fourier
series: f ∈ Hs(Tn) if and only if

‖f‖2s =
∑
ξ∈Zn

(1 + |ξ|2)s|f̂(ξ)|2 < +∞.

From the inverse formula f(x) =
∑
ξ f̂(ξ) exp(i〈ξ, x〉), by the Cauchy-Schwartz

inequality,

|f(x)| 6
∑
ξ∈Zn

|f̂(ξ)| 6 ‖f‖s
(∑

ξ

(1 + |ξ|2)−s
)1/2

< +∞ if s > n

2
.

It follows that there is a continuous inclusion Hs ⊂ C0 is s > n
2 . Similarly it follows

that Hs ⊂ Ck if s > k + n
2 .

Of course the same results are true on Rn using Fourier transform, and one obtains
the following lemma.

A.45. Lemma.[Sobolev] If Mn is compact, k ∈ N and s > k + n
2 , then there is a

continuous and compact injection Hs ⊂ Ck.

The fact that the inclusion is compact follows from the following lemma (which is
obvious on a torus, and the general case follows):
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A.46. Lemma.[Rellich] If Mn is compact and s > t, then the inclusion Hs ⊂ Ht

is compact.

Action of differential operators. If P : Γ(M,E) → Γ(M,F ) is a differential
operator of order d, then looking at P in local coordinates it is clear that P induces
continuous operators P : Hs+d(M,E)→ Hs(M,F ).

In general a weak solution of the equation Pu = v is a L2 section u of E such that
for any φ ∈ C∞c (M,F ) one has

(u, P ∗φ) = (v, φ).

We can now state the main technical result in this section.

A.47. Lemma.[Local elliptic estimate] Let P : Γ(M,E) → Γ(M,F ) be an elliptic
operator. Fix a ball B in a chart with local coordinates (xi) and the smaller ball
B1/2. Suppose that u ∈ L2(B,E) and Pu ∈ Hs(B,F ), then u ∈ Hs+d(B1/2, E)
and

(1.59) ‖u‖Hs+d(B1/2) 6 C
(
‖Pu‖Hs(B) + ‖u‖L2(B)

)
.

A.48. Remark. An important addition to the lemma is the fact that for a family
of elliptic operators with bounded coefficients and bounded inverse of the principal
symbol, one can take the constant C to be uniform.

A.49. Remark. Elliptic regularity is not true in Ck spaces, that is Pu ∈ Ck does
not imply u ∈ Ck+d in general.

We will not prove lemma A.47, which is a difficult result. There are basically two
ways to prove it. The first way is to locally approximate the operator on small balls
by an operator with constant coefficients on Rn or Tn, where an explicit inverse is
available using Fourier transform: one then glues together these inverses to get an
approximate inverse for P which will give what is needed on u. See [War83] for this
method. The second way is more modern and uses microlocal analysis: one inverts
the operator “microlocally”, that is fiber by fiber on each cotangent space—this is
made possible by the theory of pseudodifferential operators. See a nice and concise
introduction in [Dem96].

This implies immediately the following global result:

A.50. Corollary.[Global elliptic estimate] Let P : Γ(M,E) → Γ(M,F ) be an
elliptic operator. If u ∈ L2(M,E) and Pu ∈ Hs(M,F ), then u ∈ Hs+d(M,E) and

(1.60) ‖u‖s+d 6 C
(
‖Pu‖s + ‖u‖L2

)
.

From the elliptic estimate and the fact that ∩sHs = C∞, we obtain:

A.51. Corollary. If P is elliptic and Pu = 0, then u is smooth. More generally, if
Pu is C∞ then u is C∞.

A.52. Exercise. Prove (1.60) for operators with constant coefficients on the torus.
�
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A.H. Proof of the main theorem. We can now prove theorem A.42.

First let us prove the first statement: the kernel of P is finite dimensional. By the
elliptic estimate (1.60), for u ∈ ker(P ) one has

‖u‖s+d 6 C
∥∥u‖L2 .

Therefore the first identity map in the following diagram is continuous:

(kerP,L2) −→ (kerP,Hs+d) −→ (kerP,L2).

The second inclusion is compact by lemma A.46. The composite map is the identity
of kerP equipped with the L2 scalar product, it is therefore a compact map. This
implies that the closed unit ball of ker(P ) is compact, therefore ker(P ) is a finite
dimensional vector space.

Now let us prove the theorem in Sobolev spaces. We consider P as an operator

(1.61) P : Hs+d(M,E) −→ Hs(M,F ),

and in these spaces we want to prove

(1.62) Hs(M,F ) = ker(P ∗)⊕ im(P ).

We claim that for any ε > 0, there exists an L2 orthonormal family (v1, . . . , vN ) in
Hs+d, such that

(1.63) ‖u‖L2 6 ε‖u‖s+d +
( N∑

1
|(vj , u)|2

)1/2
.

Suppose for the moment that the claim is true. Then combining with the elliptic
estimate (1.60), we deduce

(1− Cε)‖u‖s+d 6 C‖Pu‖s + C
( N∑

1
|(vj , u)|2

)1/2
.

Choose ε = 1
2C , and let T be the subspace of sections in Hs+d(M,E) which are L2

orthogonal to the (vi)i=1...N . Then we obtain

2‖u‖s+d 6 C‖Pu‖s for u ∈ T.

It follows that P (T ) is closed in Hs(M,F ). But im(P ) is the sum of P (T ) and
the image of the finite dimensional space generated by the (vi)i=1...N , so im(P ) is
closed as well in Hs(M,F ).

Finally the statement (1.61) in the Sobolev spaces Hs implies the statement for
the space C∞, which finishes the proof of the theorem. Indeed, suppose that
v ∈ C∞(M,F ) is L2 orthogonal to ker(P ∗). Fix any s > 0 and apply (1.62) in
Hs: therefore there exists u ∈ Hs+d(M,E) such that Pu = v. Then u is C∞ by
corollary A.51.

It remains to prove the claim (1.63). Choose a Hilbertian basis (vj) of L2, and sup-
pose that the claim is not true. Then there exists a sequence of (uN ) ∈ Hs+d(M,E)
such that

(1) ‖uN‖L2 = 1,



120 ANDREAS HÖRING

(2) ε‖uN‖s+d +
(∑N

1 |(vj , uN )|2
)1/2

< 1.

From the second condition we deduce that (uN ) is bounded in Hs+d(E), therefore
there is a weakly convergent subsequence in Hs+d(E), and the limit satisfies

ε‖u‖s+d + ‖u‖0 6 1.

By the compact inclusion Hs+d ⊂ L2 this subsequence is strongly convergent in
L2(E) so by the first condition, the limit u satisfies

‖u‖0 = 1,

which is a contradiction.

A.53. Remark. The same proof applies for an elliptic operator P : Γ(E)→ Γ(F )
where the ranks of E and F are not the same. The results are

(1) kerP is finite dimensional (this can be also obtained by identifying kerP
with kerP ∗P , and by noting that P ∗P is elliptic if P is elliptic);

(2) the image of the operator P : Hs+d(M,E) → Hs(M,F ) is closed, and
there is a L2 orthogonal decomposition Hs(M,F ) = kerP ∗ ⊕ imP ; note
that here kerP ∗ depend on s as P ∗ is not elliptic if rankF > rankE.
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