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The aim of these lecture notes is to give an introduction to analytic geometry,
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1. COMPLEX MANIFOLDS

In this chapter we will see that complex manifolds are differentiable manifolds
whose transition functions are holomorphic and we will adapt the notions of tangent
bundle and differential forms to this new context. In analogy to the definition
of the de Rham cohomology in differential geometry, we will use the calculus of
(p, q)-forms and the differential operator 0 to define the Dolbeault cohomology
groups of a complex manifold. The subject of the Hodge Theorem 3.36 is to relate
this cohomology theory to de Rham cohomology, but this needs serious technical

preparation and will be the subject of the following sections.

Throughout the whole text, we assume that the reader is familiar with the basic
notions of differential geometry as explained in [Biq08]. We will use the term
differentiable as a synonym for smooth or C*°!. Let U C C™ be an open subset
and f : U — C be any complex-valued function. We say that f is differentiable if
for some R-linear identification C* ~ R?® and C ~ R2, the composition f : U C
R?" — C ~ R? is differentiable. It is straightforward to see that this definition
does not depend on the choice of the identifications.

1.A. Holomorphic functions in several variables. In this section we recall
very briefly the notions from holomorphic function theory of several variables. A
reader who is not so familiar with this subject may want to consult [Voi02, Ch.1].
For a much more ample introduction to the function theory of several complex
variables, [Gun90, KK83, LT97] are standard references.

1.1. Definition. Let U C C™ be an open subset, and let f : U — C be a (complex-
valued) differentiable function. We say that f is holomorphic in the point a € U if
for all j € {1,...,n} the function of one variable

Zj = f(al, ey B —1, 25, G541, - - - 7a'n)
is holomorphic in a;.

1.2. Exercise. Let U C C™ be an open subset, and let f : U — C be a differentiable
function.

a) Denote by z1,..., 2, the standard coordinates on U, and by z; (resp. y;) their
real and imaginary parts. Show that f is holomorphic in a € U if and only if

9f 1<af 'af)(a)—O Viz1,.. . .n

7% Y= 2\ ag; Ty,

b) For a € U, consider the R-linear application given by the differential
df, : C" — C.

Show that the function f is holomorphic in a if and only if df, is C-linear. OJ

n many cases, the C'°°-condition is actually much more than what we will need. For the sake
of simplicity we will make this assumption throughout the whole text.
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1.3. Definition. Let a € C” be a point. The polydisc around a with multiradius
R € (R*)™ is the set

D(a,R) :={2€C" | |z —aj| < Rj forall j € {1,...,n}}.

If R=(1,...,1) and a = 0, we abbreviate D(0, R) by D" and call D" the unit disc
in C™.
1.4. Theorem. [Vo0i02, Thm.1.17] Let U C C™ be an open subset, and let f : U —

C be a differentiable function. The function f is holomorphic in every point zy € U
if and only if it satisfies one of the following conditions:

(1) For every point a € U there exists a polydisc D C U such that the power
series

fla+2z) = Za;zl,
T

converges for every a + z € D.
(2) If D = D(a,r) is a polydisc contained in U, then for every z € D

= i " L &
f(Z) - (271'1) /|Cj—aj|—7'j f(C) G—= Ao Cn — 2n

1.5. Exercise. (Maximum principle) Let f : U C C* — C be a holomorphic
function. If | f| admits a local maximum in a point zy € U, there exists a polydisc
D around z such that f|p is constant. O

The notion of holomorphic function immediately generalises to the case of a map
with values in C™.

1.6. Definition. Let U C C" be an open subset, and let f : U — C™ be a
differentiable map. We say that f is holomorphic in the point zg € U if f1,..., fin
are holomorphic in zg for every j =1,...,m.

A holomorphic map f : U — C"™ is locally biholomorphic in the point zy € U if
there exists a neighbourhood V' C U of 2y such that f|y is bijective onto f(V') and
f |;1 is holomorphic. It is biholomorphic if it is bijective on its image and locally
biholomorphic in every point.

1.7. Definition. Let U C C™ be an open subset, and let f : U — C™ be a
holomorphic map. The Jacobian matrix of f at a point a € U is the matrix

0 fk
i) = (5E@) .
! 0z; 1<k<m,1<5<n

As for differentiable maps, a holomorphic map whose Jacobian matrix has locally
constant rank admits locally a simple representation:

1.8. Theorem. (Rank theorem, [KK83, Thm.8.7]) Let U C C™ be an open subset,
let f : U — C™ be a holomorphic map, and let zy € U be a point such that J;(z) has
constant rank k in a neighbourhood of zy5. Then there exist open neighbourhoods
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20 € V.C U and f(z9) € W € C™ and biholomorphic mappings ¢ : D™ — V and
1 : W — D™ such that ¢(0) = 2o, ¥(f(20)) = 0 and
Yofogp:D" — D™
is given by
(z1,. -y 2n) — (21,. .., 25,0,...,0).

1.9. Exercise. Let f : U C C" — C" be a holomorphic map. Show that f is
locally biholomorphic in the point zg € U if and only if

det Jf(ZO) 7£ 0.
]

1.10. Exercise. (Cauchy-Riemann equations) Let U C C™ be an open subset, and
let f=(f1,.-.,fm): U — C™ be a differentiable function such that

fi(z) = fi(z1, ..., zn).
Set
zi = Re(zk), yr = Im(2x) and u; = Re(f;), v; = Im(f;)
forall j € {1,...,m} and k € {1,...,n}. Show that f is holomorphic if and only if
Ouj _ v Ouj __ Ov;

orr,  Oyr’ Oy oxy,
forall je{l,...,m}and k€ {1,...,n}. O

1.11. Exercise. Let V' C C" be a simply connected open subset. Let ¢ : V' — R be
a differentiable pluriharmonic function, i.e. a function such that for every a,b € C"
the restriction of ¢ to the line VN {a +b¢ | ¢ € C} is harmonic. Then there exists
a holomorphic function f : V — C such that Re(f) = ¢. O

1.12. Theorem. (Hartog’s theorem) Let A be a polydisc of dimension at least
two, and let f : A\ 0 — C be a holomorphic function. Then there exists a unique
holomorphic function f : A — C such that f|a\o = f.

1.B. Complex manifolds.

1.13. Definition. A complex manifold of dimension n is a connected Hausdorff
topological space X such that there exists a countable covering (U;);e; by open
sets and homeomorphisms ¢; : U; — V; onto open sets V; C C™ such that for all
(i,7) € I x I, the transition functions

¢; 0 67 o, winuy)  ¢:(Us NU;) — (U N U;)

are biholomorphic. We call the collection (U;, ¢;)ier a complex atlas of the manifold.

A complex manifold is compact if the underlying topological space is compact.

As in the case of differential geometry [Biq08, Ch.1.2], we say that two atlas are
equivalent if their union is still an atlas. This defines an equivalence relation on the
set of complex atlas on X.
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1.14. Definition. A complex structure on X is the data of an equivalence class of
a complex atlas on X.

1.15. Remark. Note that in contrast to differentiable manifolds, it is in general
not possible to choose the whole affine space is a coordinate chart: just take X =D
the unit disc, then by Liouville’s theorem there is no non-constant holomorphic
map C — D. We say that a complex manifold X is (Brody-)hyperbolic if it does
not admit non-constant holomorphic maps f : C — X. Deciding whether certain
manifolds are hyperbolic is a very active (and difficult!) research subject.

1.16. Examples.

1. Let U C C™ be an open set. Then U is a complex manifold, an atlas is given by
one chart.

2. More generally let X be a complex manifold of dimension n, and let U C X
be a connected open set. Then U has an induced structure of complex manifold of
dimension n.

3. Let A C C" be a lattice of rank 2n. Then the quotient group X := C"/A
endowed with the quotient topology has a unique holomorphic structure induced
by the standard holomorphic structure on C™ (cf. Exercise 1.17). We call X a
complex torus?.

4. Let V be a complex vector space of dimension n + 1 and let P(V') be the set
of complex lines in V' passing through the origin, i.e. the set of complex subvector
spaces of dimension one. If v € V' \ 0 is a point, then Cv, the complex vector
space generated by v is an element of P(V') which we denote by [v]. Furthermore
if v = Av for some A € C*, then [v'] = [v]. Vice versa if | € P(V), there exists
a v € V\ 0 such that [ = [v] and v is unique up to multiplication by an element
A € C*. Therefore we have a surjective map

7:V\N0O—=P(V),v— [v]

and we endow P(V) with the quotient topology defined by 7 and the standard
topology on V.

Let V ~ C"*! be a C-linear isomorphism, then we can write v = (vg,...,v,) and
we call
[Vt ... vy
homogeneous coordinates of [v] € P(V). As in the case of the real projective space,
we can then define a structure of complex manifold on P(V) as follows: for every
i€ {0,...,n}, set
Us = {[v] € (V) | vy # 0}

and ,\
Vo V; v
i U —C" ] = (—,eey =, =),
Vs U Uy

2In the sequel whenever we write X := C™ /A, we implicitly assume that the lattice has maximal
rank. Equivalently X is always supposed to be compact.
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With this definition we have
(i)z(Ul N Uj) = {(Zl’ s 7Zn) | Zj 7& 0}7

so the transition functions ¢; o ¢; ! 6 (Ui - (Ui N U;) — ¢5(U; N Uj) given by

21 Z zic1 1z z
(215 vzm) = 21 izimn i Loz iz o (& 2 = — )
Zj Zj Zj oz % Zj

are well-defined and biholomorphic. One checks easily that the complex structure
on P(V) does not depend on the choice of the isomorphism V ~ C"*1.

Very often we will denote by P™ the projective space P(C"T1).

1.17. Exercise. Let X be a complex manifold, and let I' be a subgroup of the
group of automorphisms of X. We say that I" acts properly discontinuous on X if
for any two compact subsets K1, Ko C X, we have

V(K1) N Kz #0
for at most finitely many v € I'. The group acts without fixed points if
v(x) #x Vyel.

Suppose that ' acts properly discontinuous and without fixed points on X, and
denote by X/I' the set of equivalence classes under this action. Show that X/T
admits a unique complex structure such that the natural map 7 : X — X/T is
holomorphic and locally biholomorphic. [J

1.18. Exercise. Show that as a differentiable manifold, we have
]P;n ~ S?n+1/sl
where S?7t1 c C"*t! ~ R2"+2 denotes the unit sphere and S' C C acts on C**+!
by scalar multiplication
St x €t — € (A 2) - A

In particular the topological space P™(C) is compact. [J

1.19. Exercise. (Grassmannian) Let V be a complex vector space of dimension n.
For an integer 0 < r < n, we define the Grassmannian as the set

G, (V) := {S C Vsubspace of dimension r}.

Fix a Hermitian product on V and denote by Uy C GL(V,C) the unitary group
with respect to this metric. Show that we have a surjective map

UV — GT(V)
We endow G,.(V) with the quotient topology induced by the surjection Uy —
G, (V). Show that G,.(V) is a compact topological space.

We define an atlas on G,.(V) as follows: for any T; C V a subspace of dimension
n —r, set
U, :={S C Vof dimension r | SNT; = 0}.
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Choose an arbitrary S; € U;, then we can define
¢; : Ui — Hom(S;, T;) ~ C"("~")
by associating to S € U; the unique linear map f € Hom(S;,T;) such that
SCcV=S8oT;
is the graph of f. Show that the maps ¢; = ¢;(S;,T;) define a complex atlas on
G.(V). O
1.20. Exercise. (Hopf varieties) Let A be a real number such that 0 < A < 1. We
define a group action
Z x (C"\0) — (C"\0),(m,2) — A"z,

and denote by H the quotient (C™ \ 0)/Z. Show that H admits the structure of a
complex manifold and is diffeomorphic to $?"~! x S!. Hint: note that C"\ 0 is
diffeomorphic to S?"~1 x RT. O

1.21. Definition. Let X (resp. Y) be a complex manifold of dimension n (resp.
m) and denote by (Ui, ¢; : Uy — Vi)ier (resp. (M;,%; : M; — Nj)jes) the
corresponding atlas. A holomorphic map from X to Y is a continuous map f :
X — Y such that for every (i,7) € I x J, the map

pjofog;t:V;CcC"— N; cC™
is holomorphic.

A holomorphic function on a complex manifold X is a holomorphic map f : X — C.

1.22. Example. The Hopf varieties (cf. Exercise 1.20) admit a holomorphic map
f+ H — P! defined as follows: by definition

H=(C"\0)/Z and P !=(C"\0)/C*
and it is straightforward to see that the projection 7 : C*\ 0 — P"~! factors
through the projection 7 : C*\ 0 — H.
1.23. Exercise. Show that the fibres of f are elliptic curves. O

1.24. Exercise. Let V be a complex vector space of dimension n, and fix an
integer 0 < r < n. Show that there exists a natural biholomorphism between the
Grassmannians (cf. Exercise 1.19)

G (V) = Grnrn(V7),
where V* is the dual space of V. [J

1.25. Exercise. Show that a holomorphic function on a compact complex manifold
is constant. [J

1.26. Remark. We define the category of complex manifolds as the topological
spaces that locally look like open sets in some C™ and the holomorphic functions as
the holomorphic maps to C. While this approach is very close to the corresponding
definitions in differential geometry, an equivalent approach that is closer to the
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spirit of modern algebraic geometry is to define a complex manifold as a ringed space
(X, Ox) where X is a topological space and Oy is the structure sheaf (cf. Definition
1.57), i.e. the sheaf of rings whose sections we define to be the holomorphic ones.
For more details on this point of view, cf. [Wel80, Ch.1].

1.27. Definition. A holomorphic map f : X — Y is a submersion (resp. immer-
sion) if for every x € X, there exists a coordinate neighbourhood of x such that
the Jacobian of f has the maximal rank dimY (resp. dim X). A holomorphic map
f: X — Y is an embedding if it is an immersion and f is a homeomorphism from
X onto f(X).

1.28. Remark. It is an easy exercise to check that the rank of the Jacobian does not
depend on the choice of the coordinate charts. Note also that a proper holomorphic
map f: X — Y is an embedding if and only if it is injective and immersive.

1.29. Definition. Let X be a complex manifold of dimension n, and let Y C X be
a closed connected subset. Then Y is a submanifold of X of codimension & if for
each point x € Y, there exist an open neighbourhood U C X and a holomorphic
submersion f : U — D* such that UNY = f~1(0).

1.30. Example. Let X and Y be complex manifolds of dimension n and m respec-
tively. Let f: X — Y be a holomorphic map, and y € Y such that the Jacobian
J¢ has rank m for every € f~'(y). Then the fibre f~!(y) is a submanifold of
dimension n — m.

1.31. Exercise.

a) Show that a submanifold of a complex manifold is a complex manifold.

b) Show that the image of an embedding f : X — Y is a submanifold of Y. O
1.32. Exercise. Let X be a compact complex submanifold of C". Show that X
has dimension zero (Hint: cf. Exercise 1.25). O

1.33. Exercise. (1-dimensional complex tori)

Let A C C be a lattice, and let X := C/A be the associated complex torus.

a) Show that X is diffeomorphic to S x S1.

b) Let ¢ : C/A — C/A’ be a biholomorphic map such that ¢(0) = 0. Show that
there exists a unique « € C* such that A = A’ and such that the diagram

zZ—az

C C

™ !

C/A C/N

©

commutes. Hint: recall (or prove) that the group of biholomorphic automorphisms
of Cis Aut(C) ={z—az+ 0| acC*peC}.

¢) Show that X is biholomorphic to a torus of the form X (1) := C/(Z + Z7) where
7 € C such that Im(7) > 0.
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d) Let H := {7 € C | Im(7) > 0} be the Poincaré upper half plane. We define a
group action

SL(Q,Z)XHHH,((Z Z),r) — “Tiz.
CT

Show that the biholomorphic equivalence classes of complex tori of dimension 1
have a natural bijection with H/SL(2,Z).

Remark: the set H/SL(2,Z) has a natural complex structure. , The J-invariant “
defines a biholomorphism H/SL(2,Z) — C (cf. e.g. [Eke06]). O

1.34. Definition. A projective manifold is a submanifold X C PV such that there

exist homogeneous polynomials fi,..., fr € C[Xy,...,Xn] of degree dy,...,dx
such that

X={zeP" | fi(z)=...= falzx) = 0}.
Let f1,..., fr € C[Xoy,...,Xn] be homogeneous polynomials. We will establish a
sufficient (but not necessary!) condition for the closed set

X={zeP" | fi(z)=...= fu(x) =0}

to be a submanifold of PV,

Let m: CN+1\ 0 — PV be the projection map, we call #=1(X) the affine cone over
X. It is straightforward to see that

7N (X) ={z € (CYFIN\0) | fa(z) = ... = fu(z) = 0},

where we consider the f; as polynomials on CN+1. Suppose now that for every
x € 7 1(X), the Jacobian matrix

92 ) 1<j<ro<isn

has rank k. Then 771(X) is a submanifold of (CN*+!\ 0) of dimension N + 1 — k.
A straightforward computation shows that X is a submanifold of PV of dimension
N — k.

1.35. Definition. A projective submanifold X C P" of dimension m defined by
n —m homogeneous polynomials of degree dy, ..., d,_,, such that the Jacobian has
rank n —m in every point is called a complete intersection.

1.36. Exercise. Let f1,...,fr € C[Xo,...,Xn] be homogeneous polynomials of
degree dy,...,d; and set

X:={zecPV | fi(z)=...= fu(z) =0}
Show that X is a submanifold of codimension m if and only if the Jacobian matrix

921 ) 1 <jcho<isn

has rank m for every point in the affine cone 7=1(X). O
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1.37. Exercise. Let f € C[Xy,...,Xn]| be a homogeneous irreducible polynomial
and set
X :={z PV | f(z) = 0}.
Then the hypersurface X is smooth, i.e. a submanifold, if and only if
=L@ =0
is empty. Show that this criterion is not true for homogeneous polynomials that

of B
{z e PV | B—Xo(m)_

are reducible.

Hint: this exercise is more difficult than it seems at first glance. You will need the
Jacobian criterion for smoothness, e.g. [Fis76, 2.15]. O

1.38. Exercise. Show that
C={X:Y:Z:TeP | XT-YZ=Y*-XZ=27>-YT =0}
is a submanifold of dimension one of P3. Can you find two homogenuous polyno-
mials fi1, fo such that, as a set,
C={[X:Y:Z:TecPP|AH(X:Y:Z:T)=fo([X:Y:Z:T])=0}?
What is the rank of the Jacobian matrix? [J
1.39. Exercise. Let V be a complex vector space of dimension n, and fix an integer

0 < k < n. Let G(V) be the Grassmannian defined in Exercise 1.19. We define a
map

k
v Gu(V) = B(\V)
as follows: let U C V be a subspace of dimension k and let uq,...,u; be a basis of
U. The multivector
ur N\ ... Nug

gives a point in IP’(/\k V).

a) Show that v is well-defined, i.e. does not depend on the choice of the basis.
Show that v defines an embedding, the Pliicker embedding.

b) Show that G (V) is a projective manifold.

Hint: show that im ¢ can be identified with the set of multivectors w € /\k V that
are decomposable, i.e. there exists vectors vy, ...,vx € V such that

w=v1 NA...N\Vg.

For every w € /\k V' consider the linear map

k41
GV — /\V,vr—>v/\w.

and prove that w is decomposable if and only if rk ¢, < n — k.

c) Set V :=C*, and let ey, ..., e4 be the canonical basis. Every 2-vector w € /\2 c*
has a unique decomposition

w = X0€1 N ea +X161 N es + X2€1 Neyg+ X362 N esz + X462 N ey +X563 N ey.
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Show that for the homogeneous coordinates [Xg : ... : X5] on P(A”> C*), the Pliicker
embedding of G(2,C*) in P(A® C*) ~ P has the equation

XoX5 — X1 X4 + XoX3 = 0.
0

The statement b) of the preceding exercise has the following vast generalisation.

1.40. Theorem. (Chow’s theorem) Let X be a compact complex manifold that
admits an embedding X < PV into some projective space. Then X is algebraic,
i.e. defined by a finite number of homogeneous polynomials.

1.C. Vector bundles. We will now define two different notions of vector bundles.
Complex vector bundles are just differentiable vector bundles with complex values
while holomorphic bundles have holomorphic transition functions.

1.41. Definition. Let X be a differentiable manifold. A complex vector bundle
of rank r over X is a differentiable manifold E together with a surjective map
m: FE — X such that

(1) for every z € X, the fibre E,, := 7~ !(z) is isomorphic to C"
(2) for every x € X, there exists an open neighbourhood U of x and a diffeo-
morphism h : 771(U) — U x C” such that
Tty =p10oh
and for all x € U,
ppoh:E, —C"
is a C-vector space isomorphism®. We call (U, h) a local trivialisation of
the vector bundle E.

We call E the total space of the vector bundle and X the base space.

Let (Uy, ho) and (Ug, hg) be two local trivialisations of E, then the map
haohg': (UyNUg) x C" — (Uy NUg) x C
induces a differentiable map
9ap : Ua NUg — GL(C, 1)
where g5(z) is the C-linear isomorphism hZ o (hg)_1 : C" — C". The functions
gap are called the transition functions of the vector bundle E.

1.42. Exercise. Show that the transition functions satisfy the cocycle relations

9aB © 43y © Gya = Id
on Uy, NUgNU, and
Jaa = Id

3Throughout the whole text we will denote by p1 : X XY — X and p2 : X XY — Y the
natural projection on the first and second factor of a product X x Y.
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on U,. Vice versa given an open covering U, and a collection of functions gng :
Uo NUz — GL(C,r) that satisfy these relations, there exists a unique complex
vector bundle F with these transition functions. [J

1.43. Example. Let X be a differentiable manifold, then its tangent bundle Tx
is a real vector bundle of rank dimg X =: n over X. The complexified vector
bundle T'x ®g C is a complex vector bundle of rank n over X. More precisely, let
gap : Ua NUs — GL(R,n) be the transition functions of Tx. Using the inclusion
GL(R,n) C GL(C,n), we define Tx ®g C as the complex vector bundle given by
the transition functions gag : Uy N Uz — GL(C,n). We will study this example in
detail in Subsection 1.D.

1.44. Definition. Let X be a complex manifold. Let 7 : F — X be a complex
vector bundle given by transition functions g5 : Uy N U — GL(C, ). The vector
bundle is holomorphic if the transition functions g,g are holomorphic.

1.45. Exercise. Let 7 : E — X be a holomorphic vector bundle over a complex
manifold X. Show that the total space F is a complex manifold. [J

The trivial bundle X xC" is of course a holomorphic vector bundle. More interesting
and very important in the following is the tangent bundle.

1.46. Definition. Let X be a complex manifold of dimension n and denote by
(Ui, ¢i : Uy — V;)ier the corresponding atlas. We define the holomorphic tangent
bundle T'x as the vector bundle of rank n that is trivial over U; for every i € I and
the transition morphisms

UsNUgxC"CUgxC"—=U,NUg xC" C U, xC"
are given by
(ua U) = (ua J¢ao¢;17u(v))7
where J¢ 061w is the Jacobian matrix of ¢, o ¢51 at the point u.
a0ds
1.47. Remark. As in the case of real differential geometry, one can define the

tangent bundle in terms of equivalence classes of paths through a point [Big08,
Ch.1.3].

Yet another way of seeing the tangent bundle is in terms of derivations (cf. also
[Wel80, p.15f]): for any open set U C X, let Ox (U) be the C-algebra of holomorphic
functions f : U — C. For a point x € X we set

ﬁxﬂ. = 11&11 ﬁx(U),
zeUcCxopen

the C-algebra of germs of holomorphic functions. A derivation of the algebra Ox ,
is a C-linear map D : Ox , — C that satisfies the Leibniz rule

D(fg)=D(f) g(x)+ f(z)-D(g) V f g€ Oxpu.

The tangent space of X at x is the space of all derivations of Ox ..
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1.48. Exercise. Let V be a complex vector space of dimension n and fix an integer
0 < r < n. The Grassmannian G, (V) parametrises the subspaces of dimension r
of V, and we denote by [U] € G,(V) the point corresponding to U C V. In this
spirit we define the total space of the tautological vector bundle U,.(V') as

{([U,z) e G, (V) x V |z €U} C G (V) x V.

The projection on the first factor gives a map 7 : U,(V) — G,(V). Show that this
defines a holomorphic vector bundle of rank r. [J

1.49. Examples. A very useful tool for constructing vector bundles is to take
well-known constructions from linear algebra and use Exercise 1.42 to show that
these constructions "glue“ together to a vector bundle. More precisely let X be a
complex manifold, and let E and F be complex (resp. holomorphic) vector bundles
over X. Then one can define the following complex (resp. holomorphic) vector
bundles over X.

E @ F, the direct sum.

E ® F, the tensor product.

Hom(E, F), the vector bundle of fibrewise C-linear maps from E to F.
E* := som(E,C), the fibrewise C-linear maps from E to C.

/\k E, the k-th exterior algebra of F| in particular the determinant bundle
det B := NP E.

e S*E, the k-th symmetric product of E.

Let us show for two examples how these constructions work: let U, be an open cov-
ering of X that trivialises both E and F, and let go3 : UoNUs — GL(C, 1k E) and
hap : Uy NUg — GL(C, 1k F') be the transition functions for £ and F' respectively.
Then E & F is the vector bundle of rank rk E¥ + rk F' with transition functions

_( 9ap O
faﬁ'_< 0 haﬁ)'

It is straightforward to see that f,g satisfies the cocycle relations.

Analogously E* := sfom(E,C) is the vector bundle of rank rk E' with transition
functions

fsa = ghp € GL(C,1k E).
Then we have
Jap © [y 0 fra = gtﬁa ngyﬂ 0 gf)m
(9ap) o (959)" 0 (g50)
= (¢laoghyogis) !
((9ap 0 gpy © g'ya)t)il =1Id

t

1.50. Definition. Let X be a complex manifold, and denote by Tx its tangent
bundle. We call

QX = T)*(
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the cotangent bundle,

Kx :=detQx
the canonical bundle and

K% =detTx

the anticanonical bundle of X.

1.51. Definition. Let X be a complex manifold and let m; : £ — X and 75 :
E; — X be complex (resp. holomorphic) vector bundles of rank r over X. We say
that E; is isomorphic to Fs if there exists a diffeomorphism (resp. biholomorphism)
¢ : E1 — F» that is fibrewise C-linear such that

7T1:7T20¢.

1.52. Exercise. Let X be a complex manifold. In analogy to Exercise 1.42 it is
immediate to see that if U, is an open covering of X and gog : Uy NUg — C* a
collection of holomorphic functions such that

9aB © Yy © Yoo = Id
on Uy, NUgNU, and
Joa = 1d

on U, there exists a holomorphic line bundle (vector bundle of rank one) L with
these transition functions. Show that L is isomorphic to the trivial line bundle X xC
if and only if up to taking a refinement of the covering, there exist holomorphic
functions s, : U, — C* such that

_ 3
gaﬂ—Sa

on U, NUg.

Show that the set of isomorphism classes of holomorphic line bundles on X has a
natural group structure. We will denote this group by Pic(X), the Picard group of
X. O

1.53. Exercise. Let f : X — Y be a holomorphic map between complex manifolds,
and let 7 : E — Y be a complex (resp. holomorphic) vector bundle of rank r. We
define the pull-back f*FE as the closed set

fE={(z,v) e XX E| f(z)=7(v)} C X x E.

Let ' : f*E — X be the map induced on f*E by the projection p; : X x B — X.
Show that 7’ : f*E — X is a complex (resp. holomorphic) vector bundle of rank
r. If gop : Uy NUg — GL(C,r) are the transition functions of E, what are the
transition functions of f*E 7 [

This exercise shows in particular that if U C X is a submanifold and E a vector
bundle over X, then the restriction E|y given by restricting the transition functions
to U defines a vector bundle.
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1.54. Definition. Let 7 : E — X be a complex vector bundle over a differentiable
manifold E. A (global) section of E is a differentiable map s : X — E such that
mos=1Id.

If X is a complex manifold and E is a holomorphic vector bundle, a (global) section
of E is a holomorphic map s : X — FE such that 7o s = Id.

1.55. Remarks.

1. The definition of a section makes sense, since the total space of a holomorphic
vector bundle is a complex manifold.

2. Complex vector bundles have many sections, since we have local bump functions
at our disposal. For holomorphic vector bundles, the situation is very different (see
Exercise 1.60 below).

3. The set of global sections of a complex or holomorphic vector bundle has a
natural C-vector space structure given by fibrewise addition. If E is a complex
vector bundle over X, we will denote by

C*(X,E)
the space of differentiable sections. If E is a holomorphic vector bundle over X, we
will denote by
I'X,E)
the space of holomorphic sections.

4. Let E be a complex (resp. holomorphic) vector bundle of rank r over X, and
let x € X be a point. A local frame (resp. local holomorphic frame) of E around x
is given by an open neighbourhood z € U C X and sections s1,...,s, € C°(U, E)
(resp. s1,...,s,. € I'(U, E)) such that for all z € U, the vectors s1(z),...,s.(x) are
a basis of F,.

As an example, let T'x be the tangent bundle. Let x+ € U C X be a coordinate
neighbourhood with local holomorphic coordinates z1, ..., z,. The description of
the tangent bundle in terms of derivation (Remark 1.47) shows that the partial
derivations % form a holomorphic frame for Tx |y .

1.56. Exercise. Let 7 : E — X be a complex (resp. holomorphic) vector bundle
of rank r over X, and let x € X be a point. Let sq,...,s, € C®(U, E) (resp.
$1,...,8- € (U, E)) be a local frame (resp. local holomorphic frame). Show that
the frame induces a trivialisation h: 7= 3(U) — U x C". O

1.57. Definition. Let X be a topological space. A sheaf of abelian groups .% on
X consists of the data

a) for every open set U C X, an abelian group .% (U) and
b) for every inclusion V' C U of open sets, a morphism of abelian groups

ryv : F(U) — F(V),

that satisfies the following conditions:
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(1) #(0)=0.

(2) ryu is the identity map F(U) — Z(U).

(3) If W C V C U are three open subsets, then ryw = ryw oryy.

(4) If U is an open subset and V; is an open covering of U, and s € .Z (U) such
that ryv, (s) = 0 for all 4, then s = 0.

(5) If U is an open subset and V; is an open covering of U, and s; € Z#(V;) are
sections such that

mvivinvy) (81) = vy vinv;) (55)
for all 4, j, then there exists a unique s € .#(U) such that ryvy,(s) = s;.

1.58. Exercise. a) Let X be a complex manifold, and let E be a holomorphic
vector bundle over X. For every U C X an open set, let I'(U, E) be the vector
space of sections of F|y. Furthermore if V' C U is another open set, we define
ryv : T'(U, E) — I'(V, E) by restricting a section of E|y to the open subset V.

Show that this defines a sheaf of abelian groups on X which we will call the sheaf
of sections Ox (F). In particular if we take E to be the trivial bundle, this shows
that the holomorphic functions form a sheaf of abelian groups (in fact of a sheaf of
rings), the structure sheaf Ox.

Note that the same statement (and proof) holds for the space of sections C*(U, E)
of a complex vector bundle F.

b) Let X be a complex manifold. We say that a sheaf of abelian groups % on X is
invertible if there exists an open covering (U, )aca such that F|y, =~ Oy,. Show
that we have a bijection between invertible sheaves and holomorphic line bundles
on X. U

We come now to the most important line bundle in algebraic geometry: the tauto-
logical line bundle over the projective space.

1.59. Example. Recall that P* = (C"*1 \ 0)/C* can be seen as the set of lines in
Cn*+! passing through the origin and we denote by [I] € P™ the point corresponding
to I C C"*!. In this spirit we define the total space of the tautological line bundle
Opn(—1) as

{(I],z) eP* x C"™ |z €1} CP" x C"HL.
The projection on the first factor p; : P* x C**! — P" gives a map 7 : Opn(—1) —
P" and it is clear that 71(1) is exactly the line [ ¢ C**1.

Let U; = {[l] € P* | I; # 0} be the standard open set, then we define a section
S; € F(U,, ﬁﬂ:\m(—l)) by

lo ln
lo:...: 1, — e,
[lo ] — (li I,

Since the i-th component of s; is equal to 1, the section s; does not vanish in any
point. Therefore we can use s; to define the local trivialisation

h; 7771(Ui) —U; x (Ca ([l]ax) = ([l]a/\l)v
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where JA; is the unique complex number such that = A;s;([1]).
On the open set U; N Uj, we have
hiohyt: (UinUy) x C— (Ui nU;) x C, ({1, 27) = (1], Ay (1)) = ([, o),

where A; is the unique complex number such that A;s;([l]) = A;s;([l]). Looking at
the i-th coordinate, we see that

Iy

I

Thus the transition function g;; : U; NU; — C* is given by
l

J

A=A

S

gij =

o~

Using the constructions of vector bundles in Example 1.49, we define for all £ € N
Opn (—k) := Opn (—1)®*
and
Opn (k) := Opn (—k)*.

Set furthermore Opx (0) for the trivial line bundle, then for all k € Z the transition
functions of the line bundle Opr (k) are

9ij = (li)k~

%

o~

1.60. Exercise. Let Op:(k) be the line bundles on P! defined in Example 1.59.
Show that
0 if k<0,
L(PY, 0pm(k)=<{ C if k=0,
homog. polynomials of two variables of degree k if k > 0.

Generalise the statement to the line bundles Op» (k) on P". O

1.61. Definition. Let 7 : E — X be a complex (resp. holomorphic) vector bundle
of rank r over a complex manifold. A submanifold F' C E is a subbundle of rank
m if
(1) FnE;, is a subvector space of dimension m for every z € X,
(2) m|r : F — X has the structure of complex (resp. holomorphic) vector
bundle induced by E, i.e. there exist local trivialisations U; for E and F

such that the transition functions of F' are the restriction of the transition
function of E to the corresponding subspaces.

1.62. Examples.
1. The tautological bundle Opn(—1) is a subbundle of the trivial vector bundle
Pm x CnHL.

2. Let Y C X be a submanifold of a complex manifold X. Then the tangent bundle
Ty is a subbundle of the restricted tangent bundle Tx|y .
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1.63. Exercise. (a bit harder, but interesting) Let X be a complex manifold, and
let E be a holomorphic subbundle of rank r of the trivial vector bundle X x C".
Show that there exists a unique holomorphic map f : X — G,(C") such that
E = f*U.(C"), where U,(C") is the tautological bundle (Exercise 1.48). Hint:
set-theoretically, the definition of f is clear. For € X, the image f(x) is the point
corresponding to the subspace £, C C". [J

1.64. Exercise. Let X be a complex manifold, and let 7: £ — X and ¢ : F — X
be holomorphic vector bundles over X. A morphism of vector bundles of rank k
is a holomorphic map ¢ : £ — F such that m = ¢ o ¢ and for every x € X, the
induced map

o :¢|EI By, — Fy
is C-linear of rank k. Show that im ¢ is a holomorphic subbundle of rank k of F.
We set

ker¢ :={e € E | ¢r()(e) = 0}.
Show that ker ¢ is a holomorphic subbundle of rank rk £ — k of E. [J
1.65. Exercise. Let X be a complex manifold of dimension n, and let S, F and
@ be holomorphic vector bundles over X. Let ¢ : S — E and ¢ : E — Q be
morphisms of vector bundles. We say that the sequence

SLEYLQ
is exact at F if im ¢ = ker 1.
a) Let
0—S LA FE 4, Q —0.

be an exact sequence of vector bundles, i.e. a sequence that is exact at S, F and
Q. Show that we have an induced isomorphism

det E ~ det S ® det Q)

b) Let L — X be a holomorphic line bundle, and let o € I'(X, L) be a non-zero
section. We set

D:={zeX|o(x)=0}
and suppose that D is smooth. Show that there exists a well-defined global section

do € T'(D, (Qx ® L)|p),

such that locally (i.e. in a trivialising neighbourhood U of L) we have do|ynp = ds
where s is a holomorphic function on U corresponding to the section o.

Suppose now that do(x) # 0 for all z € D. Show that we have an exact sequence
on D

0—Tp —Tx|p — Llp — 0,
where Tp — T'x|p is the natural inclusion between of the tangent bundles. Deduce

the adjunction formula
Kp ~ (KX ®L)‘D
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¢) Show that on X = P™ we have an exact sequence
(1.1) 0 — Opn — Opn (1)®" T — Tpn — 0.
This sequence is called the Euler sequence. Deduce that

Kgn ~ Opn(n +1).

d) Let H C P" be a submanifold defined by a homogeneous polynomial of degree
d. Show that we have an exact sequence on H

0— Ty — Tpr|lg — Opn(d)|g — 0,
where Ty — Tpr| g is the natural inclusion of tangent bundles. Deduce that
Ky~ Opn(n+1—d)|u.
Generalise to the case of a complete intersection (cf. Definition 1.35).

e) Show that the twisted cubic (cf. Exercise 1.38) is not a complete intersection. O

1.D. The complexified (co-)tangent bundle. We will now start the systematic
investigation of the relation between the differentiable and the complex structure of
a complex manifold. The main tool will be the decomposition of the complexified
(co-)tangent bundle into holomorphic and anti-holomorphic parts. We will illustrate
the concept on the example of vector spaces, then generalise to the situation of
vector bundles.

Let V be a real vector space of real dimension 2n, and let J : V' — V be a R-linear
isomorphism such that J? = —Id. We call J a complex structure on V. Indeed,
J induces a structure of complex vector space where the scalar multiplication is
defined by
(a+if)v:=av+ BJ(v) Va,0eR.

Vice versa if V' is a complex vector space of dimension n, then it can be considered
as a real vector space of dimension 2n and the multiplication by 7 defines an R-linear
endomorphism of V' that is a complex structure.

Let V be a real vector space of real dimension 2n, and let J be a complex structure
on V. Consider the complexification V ®@g C of V| then V has complex dimension
2n. We extend J to a C-linear map on V ®g C by setting

Jv®a)=JW)a.

It is clear that the extended morphism still satisfies J? = —Id, so the endomorphism
J is diagonalisable and has two eigenvalues {i, —i}. We denote by V1.0 (resp. V1)
the eigenspace corresponding to i (resp. —i). Thus we get a canonical identification

VerC=V"0gqVvol
Furthermore we can define a conjugation on V ®g C by setting
1Qa=v®a VveV,aeC.
With this definition, we obtain an equality of subspaces

Vol =V1o,
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1.66. Example. Let C™ the complex vector space of n-tuples (z1,...,2,), and
let z; = a; + ib; be its decomposition in real and imaginary parts: this gives an
identification of C™ with the real vector space of 2n-tuples (a1, b1, ..., an,b,). The

scalar multiplication by i in C" induces a linear map .J : R?” — R?" given by
(ala b17 vy A, bn) = (_blaala sy _bnyan)-
We call J the standard complex structure on R?".

Denote now by x1,41,...,%n,yn the canonical basis on the complexified vector
space R?" @ C. The extended morphism .J is then given by

Tj > Yjs Yj o T
Therefore
xj—iyj VjE{l,...,n}
forms a basis of the i-eigenspace and
T+ 1y; VjE{l,...,n}
forms a basis of the —i-eigenspace. Since T; = x; and y; = y;, we have
Tj—1Y; = Tj +iy;,

so the —i-eigenspace is the conjugate of the i-eigenspace.

We will now define the analogue of a complex structure in the case of differentiable
manifolds.

1.67. Definition. Let X be a differentiable manifold of dimension 2n. An almost
complex structure on X is a differentiable vector bundle isomorphism J : T'x — Tx
such that J2 = —Id.

1.68. Remark. In general a differentiable manifold of even dimension does not
admit an almost complex structure [Wel80, p.31].

1.69. Proposition. A complex manifold X induces an almost complex structure
on its underlying differentiable manifold, that is it defines a differentiable vector
bundle isomorphism J : Tx g — T'x g such that J? = —Id.

The key point of this proposition is as follows: the tangent space Tx of a com-
plex manifold is a holomorphic vector bundle of rank dim X, in particular T, is
a complex vector space of dimension n. Let Tx g be the tangent bundle of the
underlying differentiable manifold, then Tx . is a real vector space of dimension
2n. The complex structure on Tx g, will be defined by constructing a canonical
isomorphism between T'x r , and the real vector space underlying Tx .

Proof. We follow the proof in [Wel80] and proceed in two steps : first we define
for every z € X a complex structure on Tx r 5. Then we show that the complex
structure does not depend on the choices made in the definition. It will be imme-
diate from the construction that the vector bundle isomorphism J : Txr — Tx r
is differentiable.
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Step 1. Fix a point x € X and let ¢ : U — V C C" be a coordinate neighbourhood
such that ¢(x) = 0. Denote by 21, ..., 2z, the local holomorphic coordinates around
x, and by

x1 = Re(z1),y1 = Im(z1),...,2, = Re(zn), yn = Im(2,)
the local differentiable coordinates induced by them. Then the holomorphic vector

fields 8%1, ceey % (resp. the differentiable vector fields 8%1, 8%1 R %, %) give

a local frame of Tx (resp. Tx r), so they define a biholomorphism
Tx|ly ~U x C"

and a diffeomorphism

Txgly ~U x R*™
The construction of the coordinates gives an isomorphism of (real) vector bundles

UxCr~U xR™.
Thus we have an isomorphism of differentiable vector bundles

Tx|ly ~U xC" ~Txgly

which defines a complex structure on Tx r|v.

Step 2. In order to see that the definition does not depend on the choice of the
holomorphic coordinates, let f : V' — V be a biholomorphism such that f(0) = 0.
Let (3, ...,(, be the local holomorphic coordinates around x such that
Cj = fj(zlv ) Zn)a
and
&1 =Re(C1),m =Im(G1), ..., & = Re(Gn), nn = Im(Cn)
the local differentiable coordinates induced by them. The diffeomorphism f can
then be expressed in these local coordinates by
fj = uj(xla ey Ty Y1,y - 7yn) n; = vj(xla ey Ty Y1ye e 7yn)

where u; and v; are the real and imaginary parts of f;. By definition of the
tangent bundle, the real Jacobian of this map is a transition function between the
corresponding trivialisations of the tangent bundle. Since for both trivialisations,
the complex structure is defined by the standard complex structure, we only have to
check if the transition function commutes with the operator J. The real Jacobian

is a n X n matrix of 2 x 2-blocks
au]' 8u]-
ox ]
o, o0 |-
dxr Oy

Since f is holomorphic the Cauchy-Riemann equations (1.10) hold, so

ail.j aU.j avj Buj
ox Jy _ 0 Jy
Oz Oyk Oyr  Oyk
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Thus the Jacobian is a n x n matrix of 2 x 2-blocks of the form

(5%2)

Since the operator J is the standard complex structure, its matrix is a n X n matrix
of 2 x 2-blocks of the form
0 —1
(1)

along the diagonal and zero elsewhere. It is straightforward to see that the two
matrices commute. O

1.70. Remark. A much harder question to answer is which almost complex struc-
tures arise from a structure of complex manifolds. This question is answered by the
Newlander-Nirenberg theorem: an almost complex structure comes from a com-
plex structure if and only if the almost complex structure is integrable in terms of
Lie brackets. For a proof of this statement in the case when X is a real-analytic
manifold, cf. [Voi02, p.56].

As in the case of vector spaces, the existence of a complex structure on T'x g induces
a canonical decomposition of the complexified bundle: let X be a complex manifold,
and set

Txc:=Txr®rC
for the complexification of the real tangent bundle (it is a complex vector bundle of
rank 2n over X, cf. Example 1.43). We extend the complex structure J : Tx g —
Tx r to a C-linear isomorphism

J®rlde: Txc — Tx,c

which we still denote by J and which satisfies J? = —Id. We denote by T )1(’0 (resp.
TY") the vector bundle of +i-cigenspaces (resp. —i-eigenspaces) for J. These are
complex vector bundles of rank n and we have

Txc=Ty" ®Ty"
We extend the conjugation on C to a conjugation on T'x ¢ = Tx g ®r C by tensoring
with Idry ;. By the definition of Ty and TY" we get
79! = 710,
Let Tx be the holomorphic tangent bundle of X, then we have a natural inclusion
Tx = Txc=Txr®rC

which can locally be defined as follows: let z1, ..., z, be local holomorphic coordi-
nates and z; = Re(z;) and y; = Im(z;) the local coordinates induced by z1, ..., 2,
on the underlying differentiable manifold. Then we have

0 1,0 .0 .
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Since in these local coordinates JJ maps %j to aiyj and aiyj to —%, the subbundle

Tx — Txr ®g C identifies to the subbundle of i-eigenspaces T)I(’O. Although this
identification shows that T)I(’0 naturally carries a structure of holomorphic vector
bundle, we will consider it in the following as a mere complex vector bundle. In par-
ticular a section of T)l(’0 is only supposed to be a differentiable section. Note further-
more that the holomorphic coordinates z1, .. ., 2z, induce a local (anti-holomorphic)
frame of the complex vector bundle T)O(’1 given by

0100
8Z ) an 8yj '

By duality, the decomposition

Txc=Ty" & Ty"
induces a decomposition of 2x ¢ :=T% ¢ into
(1.2) Qxc =03 &0y,

where Qﬁ(’o = (T)l("o)*, Qgél = (T)O(’l)*. Thus we get a decomposition of the complex-
valued differentiable 1-forms into what we will call forms of type (1,0) and (0,1).
More generally we get

k
k s
Qxc = /\QX,C = @ R,
p+q=k

where
p q
oyt = Aoy’ e Ao}

is the vector bundle of (p, g)-forms on X.

1.71. Definition. A k-form of type (p,q) with p 4+ g = k is a differentiable section
of the subbundle Q57 C Q% ..

The formal definition of the vector bundles Q57 can be easily understood in local

coordinates: fix a point x € X, and let zq,..., z, be local holomorphic coordinates
around z. Let x1,y1,...,Zn,Yyn be the corresponding local differentiable coordi-
nates, then

dl’ladyla e 'adxnvdyn

are a local frame of Qx c. Let a € C™(X,Qx c) be a 1-form, then we have locally

o= Zozjdxj + B;dy;.

=1

We have seen before that -2-,..., -2 and =,..., = are a local frame of T
0z1 0z1 0z1 O0Zn X

and T)O(’l7 so we can define the dual frames dz1,...,dz, and dz7,...,dZ,. Note that

de = dl‘j + idyj

and
dZ = dl’j — Zdyj
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for all j € {1,...,n}. Thus we get a local decomposition of « in its components of
type (1,0) and (0, 1)

o = Z’dezj‘ + (%dZ
j=1

where v; = a; —i; and §; = a; + i;. More generally, let o« € C™(X, Q%?) be a
form of type (p, q), then we have in local coordinates

o= E oy rdzy Ndzg,
[J|=p,|K|=q

where o j i are differentiable functions and we use the usual multi-index notation.
1.72. Exercise. Let f : X — Y be a holomorphic map between complex manifolds.
a) Show that the pull-back

[*O®(Y, Q¥ c) — CF(X, Q% o)

respects the decomposition in forms of type (p, q), i.e. if w has type (p, q), then also
ffw.

b) Let Ty : Tx.c — f*Tyc be the tangent map. Show that Tj(Ty°) C f*Ty° and
THTSY) € Iyt O

1.73. Exercise. Let z1,...,2, and z; = Re(z;),y; = Im(z;) be the canonical
complex and real coordinates on C". We denote by

d\=dxy Ndy1 A ... Ndxy A dy,
the standard volume form on R?". Show that we have
d\ = %dzlAdZA...A%dznAdZ
and that for every ¢ € End(C™)

P AN = | d(cet IR

and detg ¢ = |detc ¢|?, where detg ¢ denotes the determinant of ¢ seen as an
element of Endg(C").

Deduce that a complex variety always admits a canonical orientation. (Hint: show
that if 6%1’ RN %ﬂ is a local frame of Tx, the local frame 8%_1, Biyl’ ceey %, % is
an oriented basis of T'x r.)

Deduce that we have a canonical isomorphism

e: H(X,C) — C,[a] — / .
X
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1.E. Exterior differentials. If X is a differentiable manifold, we can consider for
every k € N the exterior differential

d: C®(X,0%) - C=(X,Q),
which satisfies the Leibniz rule
dlaAB)=daAB+ (~DFandd VaecC®X,0%),3cC>X,Qk)

Let now X be a complex manifold, then d ® Id¢ defines an exterior differential
on the complexified cotangent bundle 2x ¢ = Qxr ®r C which for simplicity of
notation we will denote by

d: C®(X, Q% c) — C=(X, Q).
If « € C*(X, QI}(,C) is a form of type (p,q) then we can decompose da according
to the decomposition
Cx(X, Q) = P o),
e =k+1

do= > pe

p'+q'=k+1
and it is natural to ask how this decomposition looks like. We start by considering

into

the case where a: X — C is a complex-valued differentiable function on X (i.e. a
section of C*(X, Q% )). Then

da € C®(X,Qxc) = O (X,0%°) ® C=(X,0%")
and we define da (resp. da) to be the (1,0)-part (resp. (0, 1)-part).

Fix now a point z € X, and let z1, ..., z, be local holomorphic coordinates around
x. Let z1,y1,...,Zn,yn be the corresponding local differentiable coordinates, then
" da ox
da = —dz; + —dy;
= 8a:j J ayj J
"1 da IoJe" "1 O ox
= —(=——1 )dz; + —(=— +i-—)dz;
j; 2 813]‘ 6 J ]; 2 8 j 8yj 7
o Ja
= —dz; + —dz;
j=1 0z; s 0zj o

thus we get the local expressions

Oo = —dz;
=1 BZJ'
and
da = 804. dz;.
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More generally, let « € C°(X,Q%7) be a complex-valued differentiable form of
type (p, q) given in local coordinates

o= E agrdzy ANdZ g,
|J|=p,|K|=¢q

where o i are differentiable functions. Since d(dz; A dzZk) = 0 for all multiindices
J, K, we get by the Leibniz rule

dae = Z d(OZJ’K)dZ]/\dEK
|J|=p,|K|=q
= Z a(O[JVK)dZJ/\de‘F Z 5(0[J7K)dZJ/\dEK
|J|=p,|K|=q |J|=p;|K|=q

" da Oa
Yo Y gdahdz ndEk ) 2R 47 A dzg Nz

2 Zl
|7|=p,| K|=q I=1 |7|=p,|K|=q
We see that da decomposes uniquely into a sum of two forms, one of type (p+1, q),
the other of type (p,q+ 1), so
1, Jq+1
da € C°(X, Q501 @ 0°° (X, QRIH).

1.74. Definition. Let X be a complex manifold, and let o € C*°(X, Q%7) be a
differentiable form of type (p,q). Then we define da (resp. da) as the component
of type (p,q+ 1) (resp. (p+1,q)) of da.

More generally, if a € C*(X, Q’;(,(C) is a complex-valued differentiable form of
degree k, let a =3
Then we set

piq=k @7 be its unique decomposition in forms of type (p,q)-

da = Z daP?, Oa = Z 0aPi,

p+q=k p+q=k

Note that by definition, we have
da = da.
We will now show some properties of these operators.

1.75. Lemma. Let X be a complex manifold, and let « € C*(X, QI;(,C) and
B e C>(X, Q’)“(/,C). Then the operators 0 and O satisfy the Leibniz rule, that is
AanpB)=0aAB+ (-1)fandp

and
I anp)=0anpB+(—1)Fandp.

Proof. Note first that by the additivity of O it is sufficient to show the equality
under the additional assumption that a has type (p,¢) and 8 has type (p',¢’). By
the usual Leibniz rule

dla A B) =daA B+ (—1)kaAdp,
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thus

da A B+ (=1)*andp
= daNB+IanB+ (-1 Fandf+ (-1)fanop
(Ba A B+ (=1)FandB) + (0a B+ (-1) ardB)

d(a A B)

gives a decomposition in forms of type (p+p’,q+¢ +1) and (p+p' + 1,9+ ¢).
By definition d(a A 8) (resp. d(a A 3))is the component of type (p +p',q+ ¢’ + 1)
(resp. (p+p'+1,¢+¢)). 0

1.76. Lemma. Let X be a complex manifold, then we have the following relations:
2°=0, 99+09=0, & =0.
Proof. Note again that by the additivity of the differential operators it is sufficient
to check the equality for forms a of type (p,q). By definition, we have d = 0 + 0,
so d? = 0 implies
0=d’a=0a+ (00 + 00)a + d*a.
Since &« (resp. (00 + 00)a, resp. 0%a) have type (p,q +2) (resp. (p+1,q+ 1),
resp. (p,q+2)), all three forms are zero. O

The preceding lemma shows that for each p € {0,...,n} we can define a cohomo-
logical complex of C-vector spaces

0— C=(x, 2% 2 o= x, 0% 2.2 o (x,0%") — 0.
For every g € {0,...,n}, we define the cocycles
ZP9(X) = {a € C®(X,08) | da = 0}
and coboundaries
BPI(X) = {ae C®°(X,0%%) | 33 € C=(X, 087,93 = a}.

The Dolbeault cohomology groups of X are the cohomology associated to the com-
plexes above, i.e.

HP4(X) 1= HY(C™(X,087)) = 279(X)/B"(X).
If the vector spaces HP*9(X) have finite dimension?, their dimensions
hP 4 = dim HP1(X)
are called the Hodge numbers of X.

One of the main objectives of these lectures is to get a better understanding of
these Dolbeault cohomology groups. We will see later that if X is a compact
complex manifold, then the Dolbeault cohomology groups are C-vector spaces of
finite dimension. Since any form of type (p, q) is also a complex-valued k-form, one

4This holds as soon as X is a compact complex manifold, cf. Corollary 3.28.
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should also ask for the relation with the de Rham cohomology groups H*(X,C).
More precisely, we can ask if the decomposition of global sections

C=(X, Q% c) = P (X, 9
p+q=Fk
translates into a decomposition of cohomology groups

(x)  HMX, )= @ HM(X).
p+q=k

We will see very soon that in general this is not the case, but the Hodge decom-
position Theorem 3.36 will tell us that the decomposition (*) holds on the rather
large class of K&hler manifolds that we will introduce in Section 3.

Before we start to examine these much more involved problems, let us take a look
at the cohomology groups H?*(X) for p € {0,...,n}. Since there are no forms of
type (p, —1) we have BP0 = 0, so

HPO(X) = ZP9(X) = {a € C®(X,0%") | da = 0}.

Let o € HP9(X), then we can identify it to a global section of Qgéo. Fix now a

point z € X and holomorphic coordinates z1, ..., z, then
o= Z aydzy,
[J|=p

where the «; are differentiable functions. By definition
0=0a= Z i%df ANdz
0z k 7
|J|=p k=1

Since the monomials dz; A dz; define a local frame of Qggl, it follows that for every
J and every k € {1,...,n}

8OCJ

and/—
07y, ’

so the functions a; are holomorphic. Recall now that we can identify Q’)’(’O to
the holomorphic vector bundle Q% . Then we have just shown that « is a global
holomorphic section of Q% , so we get

1.77. Proposition.
HPO(X)=T(X,0%) Vpe{o,...,n}.

1.78. Exercise. Let f : X — Y be a holomorphic map between complex manifolds.
Show that the pull-back f* induces functorial linear maps

ffHPUY) —» HPI(X).

Hint: cf. Exercise 1.72. O
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1.79. Exercise. Let X be a complex manifold, and let E be a holomorphic vec-
tor bundle of rank r over X. In this exercise, we will extend the definitions and
statements about Dolbeault cohomology to the case of (0, ¢)-forms with values in
ES.

Let o € C™(X, Qg("q ® FE), and let U C X be a trivialising subset of E, i.e. let
e1,...,¢e- be a local holomorphic frame for £ on U. Then we can write in a
neighbourhood

T
OtlU = Zaj X ey,
j=1
where a; € C(U, Q%%). We set

dpaly =Y _0(a;) @e;.

Jj=1

/

Show that if V' C X is another trivialising subset of E and e},... el a local

holomorphic frame for £ on V', then

(5E04|U)|Unv = (EEOZ‘V”UH\L

Since the sections of a complex vector bundle form a sheaf (cf. Exercise 1.58), we
can use the local expressions to define

g : C®(X, 0% @ E) - C=(X, 0% @ B).
Show that g satisfies the Leibniz rule
Ip(aNpB)=0anp+(—1)%andps
for all « € C®(X, Q%) and § € C®(X, Qg(’q/ ® E).
Show furthermore that 0z 0 0 = 0, so we get a complex of C-vector spaces
0 C=(X,E) 22 0=xX,0% 0 E) %8 ... 22 0>(X,0%" © E) — 0

and we define the Dolbeault cohomology groups of E as the cohomology associated
to the complex above, i.e.

H(X,E) = Hj (C™(X, 0% @ E)).

Show that
HY(X,E)=T(X,E).

5Note that since Qg( is a holomorphic vector bundle, we also get statements for (p, ¢)-forms
with values in E, we simply define H?9(X, E) := H1(X, Q% ® E).
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1.F. Dolbeault lemma and comparison theorems. The goal of this section
is to indicate how the isomorphism HP*(X) = T'(X,Q%) can be generalised to
all the Dolbeault cohomoloy groups HP'4(X). This can be done by the compari-
son theorems. The first step towards the comparison theorems is the Dolbeault-
Grothendieck lemma that computes the Dolbeault cohomology of polydiscs (cf.
Definition 1.3) and is the analogue of the Poincaré lemma for the de Rham coho-
mology.

1.80. Theorem. Let X := D(2p, Ry) C C™ be a polydisc. Then we have
HP(X)=0 Vp=0,g21,

i.e. for every differentiable form u of type (p,q) such that du = 0, there exists a
differentiable form v of type (p,q — 1) such that 9v = u.

The proof needs some auxiliary statements, starting with the following generalisa-
tion of Cauchy’s theorem in one variable.

1.81. Theorem. Let U C C be an open set, and let f : U — C be a differentiable
complex-valued function. Let D C U be the closure of a disc contained in U. Then
for every w € D, we have

Flw) = —— (2) dzf/ B

270 Jop 2 —w B 27(z —w) 0z

Proof. For simplicity’s sake we suppose that w = 0 and D is the the unit disc D,
the general case being analogous. The function z — % is locally integrable at z = 0,
S0

/La—fdmdz:hm 9y n iz
D 27z 0Z =0 Jp\D(0,e) 272 0%

Since d =  + 0, we have
1 dz i Of
Thus for 0 < & < 1 by Stokes’ theorem

/ KO PR SE (C PR S B (O
B\D(0,¢) 272 OZ 21 Jo1 2 2mi Jge 2

where S¢ is the circle of radius € around 0. A path integration shows that the
second integral converges to f(0) for ¢ — 0. O

As usual denote by Z(C) the space of differentiable complex-valued function with
compact support in C, and by 2’(C) its dual, the distributions on C.

1.82. Corollary. Let dy be the Dirac measure at 0. Then in 2'(C) we have an
equality
o1

oz mz .
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Proof. Let p € 2(C) be a test function and denote by K C C its support. Let D
be a disc around 0 such that K C D, then ¢(z) = 0 for every z € 9D. By definition

01 1 Op 1 0pi _
e R e S L
By Theorem 1.81 this integral is equal to ¢(0) = (do, ¢). O

As a consequence we can locally resolve the d-equation in C:

1.83. Theorem. Let U C C be an open set and f : U — C a differentiable
complex-valued function. Then for every disc D C U there exists a differentiable
function g such that

99

5 = o
If furthermore f depends holomorphically on some parameters z1,...,z,, then g
depends holomorphically on the parameters 21, ..., 2.

Proof. By the preceding corollary % is a fundamental solution, so the convolution
g= % * f works since

dg 01

—=——xf=dxf=Ff.

0z 0zm7z f=doxf =1
The second statement follows from inverting differentiation and the integration used
to define the convolution. O

Remark. For an essentially equivalent but more down to earth presentation of the
last proof cf. [Voi02, Thm.1.28].

Proof of Theorem 1.80. We suppose without loss of generality that zp = 0 and
Ry =(1,...,1), and denote by z1,. .., 2z, the holomorphic coordinates on C™. Since
we are in C", the vector bundle Q%7 is trivial, so we can write

U= Z uiijdZJ/\de: Z dzy N\ Z UJ,KdEK
[J|=p,|K|=q [J|=p |K|=q

Since 9 <Z|K|:q u_]yKdEK) has type (0,q + 1), the equality

OZEU:(—l)p Z dzj AO Z uy kdzZK

[J|=p |[K|=q
shows that

5 Z UJ7KdEK =0 V|J‘=p.
|K|=q
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Hence it is sufficient to show for every J that there exists a v such that vy =
(Z\Klzq UJJ(dEK). We are thus reduced to treat the case where p = 0 and will in
the following consider only this situation, i.e. we suppose that

u = Z udeK

|K|=q
with ou = 0.
We will now argue by induction on the integer 0 < I < n such that the monomials
dZk appearing with non-zero coefficient in u involve only dzy,...,dz;. More for-
mally speaking if ux # 0, then K C {1,...,1}. If | < g, the (0, g)-form w is zero, so
the statement is trivially true. For the induction step, suppose that the statement
holds for [ — 1 and write

U= E ugdzZg + E wgdzZg N dz;.
|K|=q,k<! |K|=q—1,k<l
Then we have

0=0u= Y ZauKdzm/\de+ > ZawK dZm N dZx A d7;.

|K|=g¢,k<lm=1 |K|=¢—1,k<lm=1

Since only the forms awK dzm ANdZx ANdz; for m > [ have two factors dz; with m > [,
we get that

MWK _ o sl K| =g 1.
0Zm,
This shows that the differentiable functions wg (21, ..., 2,) are in fact holomorphic
with respect to the variables z;11,...,2,. For every multi-index |K| = ¢ —1, we
can resolve by Theorem 1.83 the equation
Ohrk
0z, - UK
and a solution hg is holomorphic with respect to the variables z;41,...,2,. Set
now
Z hxdzZk,
|K|=¢—1
then
=y Z AL - ¥ Z AL widENZ R
\Klqlml IK\qlml " |K|=q—1
since %}gf = wg and %ﬁ = 0 for m > [. Therefore we get a (0, ¢)-form
/ —17 — (3'hK
ui=u— (=17 0h = Z ugdzZig — (— Z Z
|K|=q,k<l |K|=g—1m= 1
such that the monomials dZx appearing in v’ involve only dz1,...,dz;_1. Further-

more Ju’ = d(u — (—1)9719h) = 0, so u’ is J-closed. By the induction hypothesis,
there exists a (0,q — 1)-form v such that dv’ = u’. Therefore

vi=1v4(=1)7"1h
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satisfies Ov = w. O

Let us recall briefly the basics of Cech cohomology (cf. [Har77, III, Ch. 4]): let X
be a topological space, and let % = (U;);cr be an open (countable) covering of X.
We fix an ordering on the index set I. For any finite set of indices ig,...,i, € I,
we denote the intersection U;, N...NU;, by Uy, ... 4,

Let % be a sheaf of abelian groups on X. We define a complex of abelian groups
C* (% ,F) as follows. For each p > 0, let

CUU,F) =iy<..<i, 7 (Uig,....i,)-
Let now a € CP(%,.%) be given by
Qg0 G 32( 00, ’zp)'
Then we define the coboundary map & : CP(%,.%) — CP*Y (% ,.F) by

p+1

_ k
(5a)i07---7ip7ip+1 - Z(i]‘) Oéio {; ipt1

k=0

1.84. Exercise. Show that § : C* — C**! defines a cohomological complex, i.e.
show that §od =0. O

1.85. Definition. Let X be a topological space, and let %7 be an open covering of
X. Let .Z be a sheaf of abelian groups on X, then the g-th Cech cohomology group
of % with respect to the covering % is defined as the ¢-th cohomology associated
to the complex above, i.e.

B'(%,.7) = H](C*(%.7)).
We define the ¢-th Cech cohomology group of .% by taking an inductive limit®
H'(X,Z) = limH" (%, %),
%

where two classes a and o' for some covering % and %' are identified if they map
to the same class in a common refinement of the coverings.

Let X now be a complex manifold, and let F be a holomorphic vector bundle over
X. We have seen in Exercise 1.58 that the sections of F form a sheaf of abelian
groups which we denote by Ox (FE). Let now % be an open covering of X, then we
can consider the Cech cohomology groups

H' (%, 0x (E))
and
(X, Ox(E)) :==1lmH" (%, Ox (E)).
4

and ask about their relation with the Dolbeault cohomology groups H?(X, E) de-
fined in Exercise 1.79.

6There are some technical facts that one has to check for the definition to make sense, cf.
[For91, Ch.12] for a precise and readable presentation.
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1.86. Exercise. Construct an example of a complex manifold X, an open covering
% and a holomorphic vector bundle F such that

H(%,0x(E)) # H'(X, E)
O

We have seen in the preceding paragraph, that for every open set U C X
Qx (U) = ker(d : Q°(U) — Q%1 (U)).

Therefore the Dolbeault-Grothendieck Theorem 1.80 shows that for every p > 0,
the sequence of sheaves

i El E E
(*) O—»Qg(ﬁﬂgéoaﬂgéle...eﬂgéneO

is exact: indeed exactness can be checked locally and the Dolbeault-Grothendieck
lemma shows that on a polydisc U C X, we have

ker (5: O (U, Q%%) — C=(U, Qﬁ;q“)) —im (5: O (U, Q%7 — C>(U, Qg@q)) .

The de Rham-Weil isomorphism [Wel80, Ch.IT,Thm.3.13] shows that the Cech co-
homology of Q% is the cohomology of the corresponding complex of global sections”:

0 C=(x, 020 % o= x, % 2.2 o (X,0%") - 0.

By definition the Dolbeault cohomology groups are exactly the cohomology of this
complex, thus we obtain the following comparison theorem.

1.87. Theorem. Let X be a complex manifold, then
HY (X, 08) ~ HP(X).

Using the Dolbeault-Grothendieck lemma for forms with values in a holomorphic
vector bundle (Exercise 1.89), the result generalises to

H (X, 0% © Ox(E)) ~ H(X, E).

One of the advantages of Cech cohomology is that it is more tractable, since we
have the following theorem of Leray.

7 Advanced technical remark. On page 50 we will give an explicit description of the map between
the cohomology groups in the simplest case. Showing that this map is an isomorphism is a bit
more complicated, one strategy of proof is the following: in a first step one shows that the Cech
cohomology groups are isomorphic to the cohomology groups of the sheaf Qg( in terms of the
right derived functor of the global section functor. Then the de Rham-Weil theorem shows that
the cohomology in terms of the right derived functor can be computed by taking a resolution by
acyclic sheaves. In our case, the de Rham-Weil theorem applies since the complex vector bundles
Qgéq can be seen as sheaves of modules over the sheaf of rings C§of differentiable functions on
X. Since CY is a fine sheaf, the sheaves Qg(’q are fine [Wel80, Ch.II,Defn.3.3]. In particular they
are acylic, that is

(X, Q8% =0 Vs>0.

Therefore (*) defines a resolution of the vector bundle Q% by acyclic sheaves.
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1.88. Theorem. Let X be a complex manifold, and let E be a holomorphic vector

bundle over X. Let now % be an open covering of X such that for any Uiy,...i, We

have
H*U;y i E)=0 Y k>0.
Then the morphism
1%, 0%  Ox(E)) — 0'(X, 0% @ Ox(E))

is an isomorphism.

Using the classical Poincaré lemma, one shows that
0-CHg> Lt . L%, -0

is exact, where C*° is the sheaf of differentiable functions. Arguing as above we get
an isomorphism between the de Rham cohomology with complex coefficients and
the Cech cohomology of the sheaf of locally constant functions C:

(1.3) HY(X,C) ~H'(X,C).

1.89. Exercise. Let X be a complex manifold, and let E be a holomorphic vector
bundle of rank r over X. Show that an analogue of the Dolbeault-Grothendieck
lemma holds for holomorphic g-forms with values in E: if a« € C*(X, Qggq ® F)

such that Oga = 0, there exists for every point € X a neighbourhood U and
B e U, " @ E) such that

éEﬁ = a|U.
]

1.90. Exercise. Let X be a compact complex manifold, and let f : X — C be a
differentiable function such that 99 f = 0. Show that f is constant.

Suppose that w € H'?(X) such that there exists a differentiable function f such
that w = df. Show that w =0. O

1.91. Exercise. Let X be a complex manifold. Show that the Picard group Pic(X)
(cf. Exercise 1.52) is isomorphic to the Cech cohomology group ﬁl(X ,0%). O

1.92. Exercise. Use the comparison theorem to compute the cohomology of the
line bundle Kp1 ~ @p1(—2) on PL. [J
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2. CONNECTIONS, CURVATURE AND HERMITIAN METRICS

In this slightly technical section we will introduce the tools we will need in order
to get a deeper understanding of complex manifolds. After a brief resume of the
general theory of Hermitian differential geometry, we will specify to the case of
holomorphic line and vector bundles.

2.A. Hermitian geometry of complex vector bundles. The concepts of con-
nections, curvature and Hermitian metrics for complex differentiable vector bundles
are essentially the same as for real differentiable vector bundles. We will therefore
only give a very short exposition and refer to [Big08, Ch.3] for details and expla-
nations.

2.1. Definition. Let X be a differentiable manifold, and let # : £ — X be a
complex vector bundle over X. A connection on F is a C-linear differential operator

D:C*X,FE) - C®(X,Qxc®E)
that satisfies the Leibniz rule
D(fo)=df -c+ f-Do VfelC®X),ceC®X,E).

It is easy to see that a connection defines in fact a C-linear differential operator
k k+1
D: COO(X,/\QX7C [ E) — COO(X, /\ QX,(C ® E)
for every k € N that satisfies the Leibniz rule

k 1
D(7A0) = drAo+(—1)*7ADa V7€ C’OO(X,/\QX@),G € COO(X,/\QX@@E).

Indeed if we fix o € C(X, \" Qxc ® E), a point g € X, and a local frame
€1, ..,er of the vector bundle F in a neighbourhood U of xg, then we can write

I
o= E S; ® ey,
Jj=1

where the s; are k-forms defined on U. Since we want D to be a linear operator
that defines the Leibniz rule, the only possible definition for Do is
Do = Z [ds; ® ej + (—1)Fs; ® Dej] .
j=1
2.2. Exercise. Check that the definition of Do does not depend on the choice of
the frame eq,...,e,. Show that D satisfies the Leibniz rule for every k € N. [J

Suppose now that k = 0, then the preceding computation shows that in order to

compute
T

(x)  Do=Y [ds;®e;+s; ® Dej,
j=1
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we only have to know De; for every j =1,...,r. Since
Dej S COO(U7 QX,C ® E)7

we can express De; in the frame eq,..., e,

r
Dej = E a;; X e,
i=1

where the a; ; are 1-forms defined on U. Thus the connection D is locally given by
a matrix

A= (ai,j)lgi’jgr .
0 . . .
The frame ey, ..., e, defines a trivialisation 7=1(U) =~ U x C", so we can identify
the section o with a r-tuple
6
0=5=1(S1y...,8).

Thus we can rewrite (%) in this trivialisation as

Do 2 ds + As.

Vice versa it is clear that the choice of a matrix A of 1-forms on the open set U
defines locally an operator D that satisfies the Leibniz rule.

Let us now see what happens under a change of frame, i.e. let €], ..., el be another
local frame of the vector bundle E defined in a neighbourhood U’ of xzg. On the
intersection U N U’ we have two different trivialisations

T UNUNY L (UNU)xC and m U NU) % (UNU') x C,
inducing two representations
Do L ds+ As and Do & ds' + A's'.

Let g: (UNU') x C" — (UNU') x C" be the transition function from the second
to the first trivialisation, then

s=gs and  D(s)=gD(s).
Then we have
ds = d(gs') = dgs' + gds' = g(g~'dg s’ + ds'),
thus
ds+ As = g(g~'dg s’ +ds') + Ags' = g (ds' + (g 'dg + g~ ' Ag)s') .

This implies that we have the following transition relation for the matrices defining
the connection

(2.4) A =g ldg + g Ag.

In particular the connection on F is certainly not a C'*°-linear operator.



38 ANDREAS HORING

Let us now see what happens if we apply the connection twice. Since Do L ds+ As,
the Leibniz rule implies
D20 L D(ds+ As) = d(ds + As) + A(ds + As)
= d*s+dAs — Ads + Ads + AN As
= (dA+ANA)s.
Using the transition relation for the matrix A established above, one sees that

dA 4+ A N A defines a globally defined 2-form with values in the bundle End E. So

we have shown

2.3. Proposition. There exists a section Op € C(X, \’ Qx c ® End E) such
that for every o € C(X, \* Qxc®E)

D*(0) =Op Ao
If the connection is locally given by a (r,r)-matrix of 1-forms A, then

Op=dA+ANA

2.4. Remark. Since A is a matrix of 1-forms, the product A A A is in general not
zero. This will be the case if E is a line bundle, a case that we will study much
more in detail at the end of this section.

2.5. Definition. Let X be a differentiable manifold, and let 7 : £ — X be a
complex vector bundle over X. A Hermitian metric A on E is an assignment of a

Hermitian inner product < e, e > to each fibre F, of E such that for any open set
U C X and any ¢,n € C*°(U, E) the function

<¢n>U—=C, z—<{(z),n(z)>

is differentiable. A complex vector bundle E equipped with a Hermitian metric h
is called a Hermitian vector bundle (E, h).

2.6. Remark. In these notes we follow the convention that a Hermitian product
is C-linear in the first and C-antilinear in the second variable.

Fix a point xg € X, and let ey, ..., e, be a local frame for FE in a neighbourhood
U of z¢ so that we get a trivialisation ==(U) L2 U x C". The (r,7)-matrix of
differentiable functions H = (hy ,)1<x,u<r defined by

(2.5) hau(z) =< ex(z),eu(x) >

represents the Hermitian metric with respect to the chosen frame. More precisely
if we identify ¢,n € C*°(U, E) to r-tuples ((1,...,¢) and (n1,...,n,) then

hae(Cm) =C"HR =Y Cau(@).

1< u<r

If ¢,... e, is another local frame for E on a trivialising subset U’ defining a

9/
trivialisation 7=1(U’) ~ U’ x C" so that we get a transition function g : (UNU’) x
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C" — (UNU’) x C" from the second to the first trivialisation, it is not hard to see
that

(2.6) H =g'oHog.

2.7. Proposition. Every complex vector bundle 7 : E — X admits a Hermitian
metric.

Proof. Let U, be a locally finite covering of X with local frames e, ..., e for E.

We define a Hermitian metric on E|y, by
<(n>%= ZCMTA-
A

Let p, be a differentiable partition of unity subordinate to the covering, then we
set

<= pa <G>y
(03

It is clear that for every x € X this defines a Hermitian inner product on FE,.
Furthermore if {,n € C*°(U, E), the function

o< >=Y pa <G E=Y pa Y G
o a A
is differentiable. O

A Hermitian metric on E defines bilinear mappings
(2.7) C*(X, Q’;(,(C ® E) x C*(X, Qg(,c ® FE) - C*(X, Qg:é), (o,7) — {o,7}

which are locally described as follows : fix a point x € X and let eq,...,e,. be
a local frame for F in a neighbourhood z € U so that we get a trivialisation
7 1(U) 2 U x C. Then locally 0 = >0 0j ®ej and 7= >0,
the oy (resp. 7)) are p-forms (resp. g-forms). We set

{o,7} =0" H 7,

T; ® e;, where

where H is the matrix 2.5. Using the Gram-Schmidt procedure, we can replace the
local frame ey, ..., e, by an orthonormal local frame, i.e. a frame such that

< ej, e >= 5j,k~

We call the corresponding trivialisation isometric. Since in such a trivialisation,
the matrix H representing the Hermitian metric h is the identity, we have

T
{o,7} :ZJjA?j:Z ot AT
j=1

2.8. Definition. Let X be a differentiable manifold, and let (E, h) be a Hermitian
vector bundle over X. We say that a connection D on E is Hermitian (or compatible
with h) if the Leibniz rule

d{o’, T} = {DJ, 7_} + (71)p{07 DT}
holds for every o € C%(X, Q%  ® E), 7 € C®(X, Q% ® E).
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2.9. Lemma. Let x € X be a point, and let eq,...,e,. be a local frame for F

6
in a neighbourhood U of z defining an isometric trivialisation 7=*(U) ~ U x C".
Let A be the (r,r)-matrix of 1-forms defining the connection D with respect to the
trivialisation. Then D is Hermitian if and only if

that is the matrix A is anti-autodual.

Proof. By what preceeds, we have
{o,7} =0"' AT,
SO
d{o,7} = (do)' AT + (=1)Pa" A d7.
Since in the trivialisation D. =d. + A A ., we have

{Do,7} = (do+ AANo) AT =do' AT+ (=1)Pct A A N T

and
{o,D7} =c"'N(dT+ANT)=0"'NdT+ 0" NANT.
Therefore
{Do, 7} + (=1)?{0, D7} — d{o,7} = (~1)Pa* AN (A" + A) AT
is zero for arbitrary o, 7 if and only if A* + A = 0. O
2.10. Remark. A similar computation shows that if eq,..., e, is any local frame

for E in a neighbourhood = € U, then
(2.8) dH = A'H + HA.
Given a connection D on a complex vector bundle, we can define the adjoint con-

nection D*¥ to be the connection given locally by the matrix _A'. With this
definition it follows from the computation above that

d{o,7} = {Do,7} + (-1)*{o, D“djr}

and D is Hermitian if and only if D = D% . We can now produce a Hermitian
connection by taking 1 (D + DY) defined locally by 1 (A4 — Zt). This proves:

2.11. Proposition. Let X be a differentiable manifold, and let (E,h) be a Her-
mitian vector bundle over X. Then there exists a Hermitian connection D.
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2.B. Holomorphic vector bundles. Let now X be a complex manifold, and let
7w : E — X be a complex vector bundle over X. Recall that by Formula (1.2) the
complex structure induces a decomposition
Qxe =00 a0}
Let
D:C®(X,F) — C®(X,Qxc®E)

be a connection on FE, then we can define the (1,0)-part (resp. (0, 1)-part) by
composing D with the projection

C®(X,Qxc®E) —» C=(X,0%" © E)
resp. with

C®(X,0xc®E) — C®(X,0% @ E).
Let ey, ..., e, bealocal frame for E on some open set U C X defining a trivialisation

7~ YU) Luxcr. Locally the connection D is given by a (r,r)-matrix A of 1-forms
such that if we identify a section o € C*(U, E) to a r-tuple s = (s1,...,$,), we
have

Do Lds+ Ans.

Since we are working on a complex manifold, we have ds = Js + 0s, furthermore
the matrix A has a unique decomposition A = AL0 + A% where A0 (resp. A%!)
is a (r,r)-matrix of (1,0)-forms (resp. (0,1)-forms). Thus the local presentation of
the (1,0)-part (resp. (0, 1)-part) is given by
DYoL 95+ AV A s
respectively by
Do L35+ A A s,
With these local descriptions, it is clear that the differential operators
DY C®(X,E) — C=(X, 0 @ E)
and
D% O®(X,E) — C=(X,0%' ® E)
satisfy the Leibniz rule
DY (fAo)=0f Ao+ fAD"o VYV fecC®X),0cC®X,E).
and
D" (fAno)=0fNo+fADY 0 ¥V feC®X),o0cC®X,E).
respectively.

Suppose now that E is a holomorphic vector bundle on X. We have defined in
Exercise 1.79 a differential operator

g : C®(X,E) — C®(X, 0% ® E)
that satisfies 52 = 0 and the Leibniz rule
Op(fANo)=0f No+ fADdgo VfeC®(X),0eC®X,E).
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We will now see that O is the (0, 1)-part of a unique connection that is compatible
with the metric.

2.12. Theorem. Let X be a complex manifold, and let (E,h) be a Hermitian
holomorphic vector bundle of rank r on X. Then there exists a unique Hermitian
connection Dg on E such that

Dyt =9p.

We call Dg the canonical connection or Chern connection of (E,h) and the corre-
sponding curvature tensor the Chern curvature of E (or (E,h)).

Proof. We will start by showing that if the connection Dg exists, then it is unique.
This proof will also give us an idea on how to construct the Chern connection.

Let eq,...,e,. be a local holomorphic frame for E in some open subset U C X
0
defining a holomorphic trivialisation 7=!(U) ~ U x C". Locally the connection Dg
is given by a (r, r)-matrix of 1-forms such that if a section o € C°(U, E) identifies
to a r-tuple s = (s1,..., ), we have
DpoLds+ANs
and
DYl L35+ A% As,

If o € I'(U,E), then we have D%'c = dzo = 0 by Exercise 1.79. Furthermore
s = 0, so we see that A®! = 0. Therefore A is a (r,r)-matrix of (1,0)-forms.

Let now H = (hy)1<a,u<r be the (r,r)-matrix of differentiable functions defined
by
hou(x) =< ex(x),eu(x) > .
Since Dp is compatible with h, we have by Formula (2.8)
dH=A"H + H A.

Comparing the (1,0)- and (0, 1)-parts, we get

OH = H A.
Since ej,...,e, is a local frame and the Hermitian metric is nondegenerate, the
matrix H is invertible, thus
(2.9) A=TH '0H.

This shows that the Hermitian metric determines the connection matrix A, so the
Chern connection is unique.

Vice versa we can use Formula (2.9) to define the canonical connection, once we
have shown that the definition is compatible with a holomorphic change of frame.
Let €], ..., el be another local holomorphic frame for F in an open subset U’ C X

0
defining a holomorphic trivialisation 7=1(U’) ~ U’ x C" so that we get a transition
function g : UNU" — GL(C,r) from the second to the first trivialisation. Let H’



KAHLER GEOMETRY AND HODGE THEORY 43

be the matrix representing h with respect to the new frame, then by Formula (2.6)

we have
H =g¢'Hy,
SO
g@=H"g "
and

gA" = g(H) ' oH
- H'g g Hy)
- 7 'g! (8??9—1—?8?94—??89).
Yet g is a holomorphic change of frame, so
a?:@:o and dg = dg.
Thus the expression above simplifies to
gA =T ' (9H) g+dg=dg+Ag.

By Formula (2.4) this is a necessary and sufficient condition for the matrices to
define a connection. ]

2.13. Corollary. Let X be a complex manifold, and let (E,h) be a Hermitian
holomorphic vector bundle on X. Let Dg be the Chern connection on F and O
its curvature tensor. Let A be a matrix representing the Chern connection with
respect to some local holomorphic frame. Then

(1) Ais of type (1,0) and 0A = —A A A.
(2) Locally O = 0A, thus O is of type (1,1).
(3) 00 = 0.

Proof. Let eq,...,e, be alocal holomorphic frame, and let H be the matrix repre-
senting h with respect to this local frame. Then we have by Formula (2.9)

A=TH 'oH.
Since 8°H = 0 and Bﬁ_l = —ﬁ‘laﬁ F_l, we have
0A =0(H '0H)=—(H '0H)A(H oH).
For the second statement recall that for any complex vector bundle and any con-
nection © = dA+ AN A, so by the first statement © = dA+ANA =dA—0A = 0A.

Since A is of type (1,0), it is clear that © = 9A is of type (1,1). The third item is
. . =2
immediate from 9" A = 0. O

Let X be a complex manifold, and let (E,h) be a Hermitian holomorphic vector
bundle on X. Let S <— FE be a holomorphic subbundle of £ and we define hg to
be the Hermitian metric on S given by restricting h. Furthermore let

St.={ecE, | hleg,s,) =0} VaoelX.
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Now S+ is a complex vector bundle such that £ ~ S @ S+ as complex vector
bundles. For all k € N, we denote by pg : C*(X, Q])cqc ® FE) - O*(X, Q’)“(,C ®9)
the projection induced by the isomorphism

C®(X, Q% c®E)~C™(X, 0% c ) & C®(X, 0% c ® S1).
2.14. Corollary. Let Dg and Dg be the Chern connections on (E, h) and (S, hg).

Then we have

DS:pSODE-

Proof. We will show that pg o D satisfies the properties of the Chern connection
on (S, hg) and conclude by uniqueness. Let 0 € C*°(X,S), then

(ps © D) () = ps(DY'0) = ps(Di0) = Dso.
Furthermore for every o,7 € C*(X,S) C C*(X, E), we have

d{o,7}ng = d{o,7}n = {Dgo,7}n + {0, DT}
Yet since 7 and ¢ have values in S C F, we have

{Dgo,7}n = {ps(Dgo),7}ns, {0,Dp7n = {0,ps(DET)}hs-
O

2.15. Exercise. Let X be a complex manifold, and let (E,h) and (E’,h’) be
Hermitian holomorphic vector bundles on X. Show that

Dep heny = De @ Idg + 1dp @ Dgr,

cf. also [Dem96, Ch.V]. O

So far all the computations we made were for arbitrary local holomorphic frames.
It would of course be very helpful if we could choose a local holomorphic frame
that is isometric, i.e. the matrix representing locally the Hermitian metric is the
identity. In general this is not possible, since the computations in the Gram-Schmidt
orthonormalisation algorithm are not holomorphic. The following lemma shows
that nevertheless we can find a holomorphic frame that gives an approximation to
the first order of an isometric frame. A similar statement about normal coordinates
on Kéhler manifolds (Theorem 3.15) will be the technical corner stone of the next
section.

2.16. Lemma. Let X be a complex manifold, and let (E,h) be a Hermitian
holomorphic vector bundle on X. Fix a point x € X, then there exists a local
holomorphic frame such that

(1) H(z) = Id + O(|2]?).
(2) i05(0) = —idTH(0).
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Proof. The second statement follows immediately from the first and Formula (2.9).

For the proof of the first statement, we will make two changes of frame. So start

by choosing any local holomorphic frame eq,...,e,, and let H be the matrix resp-

resenting the metric h with respect to this frame. The matrix H(0) is a positive

definite Hermitian matrix, so by linear algebra there exists a matrix A such that
A'H(0)A = Id.

Since A is nonsingular, the vectors A(e;),..., A(e,) form a local frame that is
orthonormal in the point 0. Therefore if H’ is the matrix representing h with
respect to that frame, then
H' =Id+ O(|z]).
We will now make a second change of frame, this one will be of the form Id+ B where
B = B(z) is a matrix of holomorphic linear forms. The matrix H" representing h
with respect to that frame will then be of the form
H" = (Id+ B')H'(Id + B)
and by Taylor’s formula we will have H” = Id + O(]z|?) if and only if dH"(0) = 0.
Since
dH" = dH' +d(Id+ B")H' + H'd(Id + B) + O(|z|)
and H'(0) = Id, we have
dH"(0) = dH'(0) + dB*(0) + dB(0) = 9H'(0) + dB'(0) + 0H'(0) + dB(0).

Thus if we set

then dB!(0) = dB*(0) = —0H(0) and —9H'(0) = B(0) = dB(0). Therefore if H”
is the matrix representing h with respect to the frame (Id + B)(A(e1)),. .., (Id +
B)(A(e,)) the new frame satisfies dH"”(0) = 0. O

2.C. The first Chern class and holomorphic line bundles. Let 7 : L — X
be a complex line bundle over a differentiable manifold, and let D be a connection
on L. By Proposition 2.3, the curvature of the connection D is given by

2
©p € C*(X, \ Qxc @ End L).

Since for a line bundle End L ~ L* ® L ~ X x C, we see that ©p is in fact a

two-form. Fix now a local frame e; for L defining a trivialisation 7= (U) LU x C,
then D is represented by a (1, 1)-matrix of 1-forms A, so again by Proposition 2.3

Op LdA+ANA=dA,
since the product of a 1-form with itself is zero. This implies immediately
dOp =0,

that is the curvature tensor is a closed two-form, and we denote by [Op] € H?(X,C)
the corresponding de Rham cohomology class. Let now D’ be another connection
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on L, that is given with respect to the frame e; by a 1-form A’. For every o €
C>=(X, \" Qx ® L) we have locally

D(o) — D'(0) £ (ds + As) — (ds + A's) = (A — A)s,

where s represents o with respect to the frame e;. Using the transition relation
(2.4) for the matrices A and A’, we see that A — A’ glues to a global form, i.e.

D(o) - D'(0) L B Ao,
where B € C*°(X,Qx c). Therefore
Op —Op =dB
is a coboundary, so we have an equality of cohomology classes in H?(X,C)
[©p] = [Op/].
We resume our considerations in the following

2.17. Proposition. Let m : L — X be a complex line bundle defined over a
differentiable manifold, and let D be a connection on L. Then the curvature ©p
defines an element

e1(L) = [5-Op] € H*(X,C)
that does not depend on the choice of D. We call ¢;(L) the first Chern class of L.

The following lemma gives some more precise information on the first Chern class.

2.18. Lemma. Let m: L — X be a complex Hermitian line bundle defined over a
differentiable manifold. Let D be a Hermitian connection on L, and let be ©p the
corresponding curvature form. Then

1©p € C7(X, Q%QR),
that is i©p is a real differential form. In particular

ci(L) = [%@D] € H*(X,R).

2.19. Remark. The first Chern class is only the easiest case of a more general
theory of Chern classes for vector bundles, cf. [Biq08, Ch.3.6] or [Wel80, Ch.IIL,3].

Proof. Being real- or complex-valued is a local property, so fix a point x € X,

and let e; be a local isometric frame for L in a neighbourhood U of z defining a
0

trivialisation 771(U) ~ U x C. Locally the connection D is given by a 1-form such

that if a section o € C*°(U, E) identifies to a 1-tuple s, we have

Do £ ds + As.
Furthermore we have seen that the form representing ©p is given by
Op £ dA.
Since the frame is isometric, the matrix A is anti-autodual A = —A, so

iOp = —iOp = —idA = —idA = iOp.
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This shows that i© p is invariant under complex conjugation, so it is a real form. [

The lemma explains why we add a constant factor ¢ in the definition of the first
Chern class. The constant factor i
inclusion Z C R induces a morphism® of cohomology groups

H*(X,7Z) — H*(X,R)

improves the situation even further: the

and we have the following

2.20. Lemma. Let 7 : L — X be a complex Hermitian line bundle defined over a
differentiable manifold. Let D be a Hermitian connection on L, and let be © the
corresponding curvature form. Then
i
L)=[—0© H*(X,Z).

ei(L) = [-Op] € H(X,7)
We omit the proof (cf. [Dem96, V, 9.2]), but will prove a converse at the end of
this section.

2.21. Exercise. Let X be a differentiable manifold, and let V' be a complex vector
bundle. We define the first Chern class of V by®
(V) :=ci(det V).

Let now L be a complex line bundle, and let E be a complex vector bundle of rank
r. Show that

aA(E®L)=c(E)+re(l).
O

Let now X be a complex manifold, and let (L, k) be a Hermitian holomorphic line
bundle over X. Let Dy be the Chern connection, and denote by ©, its curvature
tensor. Fix a point x € X, and let e; be a local holomorphic frame for L in

a neighbourhood U of z defining a holomorphic trivialisation 7= (U) Luxc.
Locally the Hermitian metric is given by a differentiable function
H(z) =< e1(2),e1(2) >= |lea (2)][}-
The function H : U — C is real-valued and everywhere strictly positive, so we can
take the logarithm to obtain a differentiable function ¢ : U — R such that
H(z)= e ¥
and we call ¢ the weight of the metric with respect to the frame e;. By Formula
(2.9) the Chern connection is given by the (1, 0)-form
A=H "0H = ¢#®ge#() = —0p(2),
so by Corollary 2.13
Or = 0A = —00p(2) = dp(2).

8In general this morphism is not injective since H2(X,Z) may have torsion elements.
9This definition is compatible with the definition given by the general theory of Chern classes
of vector bundles, but you will not need this here.
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It follows that the first Chern class [5-© ] is represented by a real-valued (1, 1)-form
given locally by

1 (R
2.1 — = — .
(210) —0L(z) = 5-00(2)
Since ¢(z) = —log ||e1(2)||? and every holomorphic nonvanishing section s : U — L
defines a local holomorphic frame for L, we see that
1 1 =
(2.11) 0O1(=) = 5000 ls(:)] .

We come to one of the fundamental definitions of these lectures.

2.22. Definition. Let X be a complex manifold of dimension n, and let L be a
holomorphic line bundle over X. We say that L is positive if it admits a Hermitian
metric h such that the curvature form O, defines a Hermitian product on Tx. More
precisely, if the metric h is given locally by a weight function ¢ such that

OL() = dBp(z) = Y F

274z A dz,
1<5,k<n

szBEE

then the matrix ( 9o

5200 is positive definite.

)1<$k<n
A related notion that is of fundamental importance in contemporary algebraic ge-
ometry is the notion of plurisubharmonic or psh functions.

2.23. Definition. (Lelong, Oka 1942) A function ¢ : U — [—00,00[ defined on
some open set U C C™ is plurisubharmonic if

e it is upper semicontinuous;

e for every complex line L C C", the restriction ¢|yny is subharmonic, that
is, for all @ € U and z € C™ such that |z| < d(a,C™\ U), the function
satisfies the mean value inequality

1 2

o(a) < o ), b(a +e2)db.
2.24. Exercise. Let ¢ : U — R be a C?-function. Show that ¢ is plurisubharmonic
¢
62:]'85

if and only if the matrix ( is positive semidefinite. [J

)1<j,k<dimx

2.25. Exercise. (Fubini-Study metric)

a) We set

FrCINO =R, f(2) =log(Y_ |%1?)

§=0

and

i00f(z) =i Y ' dz; A dzy

T A 9zam UM
1<j,k<n
Show that f is plurisubharmonic, i.e. the matrix (aaéaj;) is positive
Zi9%k ) 1<j,k<dim X

semidefinite.
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Show that i00f induces a (1,1)-form w on P" such that dw = 0.

Show that f can be seen as a weight function of a metric h on L := Opn(1) such
that Oy, j is positive. O

2.26. Exercise.

a)) Let X be a complex manifold, and let L be a holomorphic line bundle on X.
Show that L is positive if and only if L®™ is positive for some m € N*.

b) Let X be a complex manifold and let L be a holomorphic line bundle on X.
We suppose that L is globally generated, i.e. for every = € X there exists a global
section o € T'(X, L) such that o(x) # 0. Show that L admits a hermitian metric
with weight function ¢ such that

(62 é k >
j 1<],k§d1mX
iS pOSiti\/e Semideﬁni(e.

Bonus question (hard) : show that if we suppose only I'(X, L) # 0, the line bundle
L admits a singular metric with plurisubharmonic weight. [J

2.27. Exercise. Let X be a compact complex manifold, and let L be a positive
holomorphic line bundle on X. Let M be a holomorphic line bundle on X. Show
that there exists a Ny € N such that

M @ L&N

is positive for every N > Ny. O

If one pushes the computations of Lemma 2.16 one step further, we get

2.28. Proposition. [Dem96, V.,12.10] Let X be a complex manifold, and let
(E,h) be a Hermitian holomorphic vector bundle on X. Fix a point z € X, and

local coordinates z1, ..., z, around x. Then there exists a local holomorphic frame
€e1,...,e, such that the matrix H representing h satisfies
hau(2) = 6x = Y cimanziZi + O(|2),
Jik

where the ¢; 1 x , are constants. In particular we have

iOp(x) =1 g Cikoapdz NdZE @ ey @ e,.
Joks Asp

Using the notation from the proposition, we can write down the Hermitian form
on the vector space (Tx ® E), associated to the curvature tensor ©(FE)(x). Let
n= Zj,/\ 773',/\% ®ex € (Tx ® E), then we set

Op(z)(n,n) = Z Ci ke, Tl AT -
Ik A
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2.29. Definition. Let X be a complex manifold, and let (E,h) be a Hermitian
holomorphic vector bundle on X.

i) We say that (E,h) is positive in the sense of Nakano if for all x € X, the
Hermitian form O g(z) is positive definite on (Tx ® F).

)
ii) We say that (E,h) is positive in the sense of Griffiths if for all z € X, the

Hermitian form ©g(x) is positive definite on all the decomposable vectors in (Tx ®
E),, that is

Op(r)(l®v,6Qv) >0 VEeTxa,vekE,.

If F is a line bundle, the definitions of Nakano and Griffiths positivity coincide and
are just the same as a positive line bundle. For vector bundles of higher rank, this is
no longer case: the definition of Nakano positivity is actually rather restrictive, but
has the advantage that we get vanishing theorems (cf. Theorem 4.13). In general
the less restrictive notion of Griffiths positivity is much more useful, since it has
better functorial properties as shows Exercise 2.54.

We close this section by showing a converse statement to Lemma 2.20.

2.30. Theorem. (Lefschetz theorem on (1,1)-classes) Let X be a complex man-
ifold, and let w € C™(X,Q%") be a d-closed real (1,1)-form such that [w] €
H?*(X,7Z). Then there exists a holomorphic Hermitian line bundle (L,h) on X
such that %@L,h =w.

Before we can prove this theorem, we need the following explicit construction of

the isomorphism in the comparison theorem for the de Rham cohomology (1.3):

let X be a differentiable manifold and let Z! C Qx be the sheaf of d-closed 1-forms.
By the Poincaré lemma, we have an exact sequence

0—>R—>$f°°i>Z1—>0,

where R is the sheaf of locally constant real-valued functions. Analogously, let
Z? C Q% be the sheaf of d-closed 2-forms, then we have an exact sequence

O—>Z1—>QXE>ZQ—>O.

Now by definition of the de Rham cohomology

_ 22X
R = G e

Let Z = (Us)aca be an open covering of X such that for all a € A, the morphisms
d: C™(Uy,Qx) — Z%(U,)
and for all a, 8 € A the morphisms
d: 6 (UsNUg) — Z"(Uy N Up)

are surjective.
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If w is a d-closed 2-form, then choose for every a an A, € C*(U,, Qx) such that
wly, = dA,. On the intersection U, N Upg, the 1-form Ag — A, is d-closed, and an
easy computation shows that

(Ap = Aa)ap
is a Cech 1-cocycle CH (%, Z%).

Choose for a, 8 € A a function fo3 € €°°(Uy NUg) such that Ag — A, = dfas. On
the intersection U, NUgNU,, the differentiable function fg, — foy + fap is d-closed,
hence it is a locally constant function. An easy computation shows that

(foy = fary + fap)asy

is a Cech 2-cocycle in C?(%, R). The proof of the comparison theorem shows that
this cocycle represents the image of [w] under the isomorphism

H?(X,R) ~ (X, R).

2.31. Exercise. Let D C C™ be a polydisc and let w € C*°(D, QZD)R) be a d-closed
two-form of type (1,1). Show that there exists a ¢ € C°°(D) such that

w = 006.
O

Proof of Theorem 2.30. Let % = U, be an open covering by polydiscs such that
the intersections U, N Ug are simply connected. The form w is d-closed, so by
Exercise 2.31 there exist differentiable functions ¢, on U, such that

ia&z&a = wly..

Therefore for every a, 3 the function ¢g — ¢, is pluriharmonic on the intersection
U, NUg. By Exercise 1.11 there exist holomorphic functions f,g on U, N Ug such
that

2Re(fap) = b5 — da-

We consider f = f,g as a Cech 1-chain in CY(%, Ox) (cf. page 33 for the defini-
tion), then its Cech differential is

Of)apy = oy = for + fap
on Uy, NUgNU, and
2Re(3f)apy = 0.
Since the fo3 are holomorphic, this shows (df)asy € I'(Ua N Ug N U, iR).
Consider now the real forms A, = ﬁ(é{ba — O¢). Since
(¢ — ¢a) = O(fap + fap) = Ofap = dfap,
and analogously 9(¢g — ¢o) = dfas, We get

[ p— 1
Aﬂ - Aa = Ed(faﬂ - forﬁ) = %dlmfaﬁ
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Since w|y, = dA,, the explicit construction of the isomorphism H?(X,R) =~
I:IQ(X ,R) shows that the Cech cohomology class of

1
(o
equals the Cech cohomology class corresponding to [w]. By hypothesis [w] is the
image of a Cech cocycle (nqg5,) € H*(X,Z), so

1
(5 Im(foy = fay + fap))apy = Napy +(cap)

for some 1-chain (c,p) with values in R. Set now f/ 5 := fap — 2micap, then the

Im(fgy = fay + fas))apy

preceding computations show that

(fay = fory + fip) € T(Uapy, 2miZ),

80 gap = exp(—f4) defines a l-cocycle in O%. Since

«
¢p — da = 2Re fl5 = —log|gapl?,

the line bundle L corresponding to g.s admits a global Hermitian metric defined
in every trivialisation by H, = exp(—¢) and therefore by Formula (2.10)
i
—0
or
on U,. |

7 —
h—%86¢a—w

2.D. Hypersurfaces and divisors.

2.32. Definition. Let X be a complex manifold. A hypersurface of X is a closed
subset D C X such that for all x € D there exists an open neighbourhood =z € U C
X and a non-zero holomorphic map f : U — D such that

DNU={zeU| f(z) =0}

We say that z € D is a smooth point if we can choose a f : U — D that is
a submersion. We denote by Djons € D the union of smooth points and call
it smooth or nonsingular locus of D. We say that the hypersurface is smooth if
Dyons = D.

2.33. Remark. We do not suppose that a hypersurface is connected. In particular
a smooth hypersurface is a disjoint union of submanifolds of codimension one.

The next exercise shows that hypersurfaces and holomorphic line bundles are closely
related:

2.34. Exercise. Let X be a complex manifold, and let D C X be a smooth
hypersurface. We say that a holomorphic function f, : U, — C is a local equation
for D on an open subset U, C X if f, is submersive and

DNU,={x €U, | falzx) =0}

a) Let (Uy)aca be an open covering of X such that there exist local equations
fo € Oy, for D.
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We define meromorphic functions on U, N Ug by

s b

Show that g.g extends to a holomorphic map on U, NUg that is non-zero for every
x € Uy NUg. Show that (gag)a,sea is a Cech 1-cocyle in 0%. We set

Ox (D) € Pic(X)
for the corresponding holomorphic line bundle. Show that the isomorphism class of
the line bundle does not depend on the choice of the covering or the local equations.

b) Let /p C Ox be the ideal sheaf of D in X, that is the sheaf defined for every
open set U C X by

IpU) ={se0x(U)|s(x)=0VzeDNU}.
Show that if U, is a coordinate neighbourhood and f, a local equation, then
fD(Ua) = faﬁX(Ua)~

Thus .#p is invertible (cf. Exercise 1.58) and we denote by the same letter the line
bundle associated to it. Show that

Ip = Ox(D)*.
Thus we have an exact sequence
0—Ox(D)" - COx — Op—0
¢) Let L — X be a holomorphic line bundle, and let o € I'(X, L) be a section such
that
D:={re X |o(x)=0}
is smooth and do(z) # 0 for all x € D (cf. Exercise 1.65). Show that
L~ 0x(D).
(I

We will now generalise these statements without the smoothness hypothesis. This
needs some extra effort:

2.35. Lemma. Let X be a complex manifold and D C D a hypersurface. Then
the nonsingular locus Dy is an open, dense subset of D.

Proof. The nonsingular locus is clearly open, so all we have to show is that if
x € D is a point, then Dy, is dense in some neighbourhood of x. Taking a local
coordinate neighbourhood we are reduced to consider the situation where X is a
polydisc D™ and « = 0. Set

Ip:={g:D" =D |g(z) =0 V z € D},
then .#p is an ideal in the ring of holomorphic function &p» which is principal (cf.

[GHT78, p.18ff]), so there exists a holomorphic function f : D" — D such that
]D == fﬁ]D)n .
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Let 21, ..., z, be some linear coordinates on D™. If f(z1,0,...,0) =0 for all z; € D,
the line {z2 = ... = z, = 0} is contained in D. Since D is a proper subset of D"
we can suppose (up to changing our coordinates) that this is not the case.

Let I be the order of vanishing of f(z1,0,...,0) in z; = 0, then by the Weierstrass
preparation theorem there exist (up to replacing D™ by a smaller disc and coordinate
change) holomorphic functions

fi:D"—-D Vji=0,...,0—1

such that
f=2+ Z 2 fi(z2, ..., 2n).
0
If the restriction of aa—zfl to D is not zero we are done, since this implies that f is
submersive on the open, dense set

0
Dn{zeD| —f(z) #0}.
82:1
Suppose now that %(2) = 0 for all z € D, then é%{ € #p. Thus there exists a
holomorphic function A such that
of
—— =hf.
321 f

Yet p
degzl 7f < degzl f7
821

so we get g—zfl = 0. We repeat this argument for the other variables, then the worst
case would be

of
— =0 Vi=1,...,n.
82'] j 3 b n
Yet this implies that f is constant, a contradiction to ) # D C D". O

2.36. Proposition. Let X be a complex manifold and D C X a hypersurface.
Then there exists a holomorphic line bundle &x (D) on X that has a global section
o € T(X, Ox (D)) such that

D={ze X |o(x)=0}.

Proof. Set Z := D\ Dpons. Then Dyons C X \ Z is a smooth hypersurface, so by
Exercise 2.34 there exists an open covering U, of X and holomorphic functions

gaﬁ:UaﬂUg\ZHC*

defining a line bundle &'x\ 7 (Dnons) Which has the stated property. By the preceding
lemma the nonsingular locus is dense in D, so Z does not contain any hypersurface.
Thus by Hartog’s Theorem 1.12 the holomorphic functions g.s extend to holomor-
phic functions on U, N Ug. The same holds for ﬁ, so we obtain holomorphic
functions

Jag - UaﬂUQHC*.
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It is easy to check that this function still verify the cocycle relation and the corre-
sponding line bundle Ox (D) satisfies

ﬁX(‘D)‘X\Z = ﬁX\Z(Dnons)-
O

2.37. Definition. Let X be a complex manifold and D C X a hypersurface. We
say that D is reducible if there exist hypersurfaces Dy, Dy C X such that D; C D
and

D = Dy U Ds.

If this is not the case we say that D is irreducible.

Remark. A hypersurface is irreducible if and only if its nonsingular locus is con-
nected [GH78, Ch.1.1]).

2.38. Definition. Let X be a complex manifold. A divisor on X is a finite formal

ZaiDi a; € Z,

where the D, are irreducible hypersurfaces in X. The holomorphic line bundle
associated to D is defined by

ﬁx(D) = ®¢ﬁx(Di)®ai.

sum

Furthermore we set
c1(D) := c1(Ox(D)).

Now that we have seen that to every divisor we can associate a holomorphic line
bundle, it is natural to ask if the inverse holds. In general this is not the case : for
example there are complex tori that do not have any hypersurfaces (cf. Exercise
3.50). The following theorem will be an immediate consequence of the results of
Section 4:

2.39. Theorem. Let X be a projective manifold, and let L be a holomorphic line
bundle over X. Then there exist hypersurfaces D1, Do C X such that

L~ ﬁx(Dl —Dg)

2.40. Remark. If we admit Bertini’s theorem [GH78, p.137] we can even suppose
that D7 and Dy are smooth and intersect transversally.

We can now prove a fundamental result relating the first Chern class with the
integration over a corresponding divisor: let X be a compact complex variety of
dimension n, and let M C X be a smooth hypersurface. If w = dn is an exact form
of degree 2n — 2, then the integral [ W W equals zero by Stokes’ theorem. Thus the
map

COO(X,Q?Hf) — R, wb—>/ w|ar
M

induces a linear form

[M]: H*2(X,R) — R.
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Moreover by Poincaré duality H(X,R) = H*"~2(X,R)*, so [M] can be seen as a
cohomology class in H?(X,R) which we call the Poincaré dual of M. By definition
of the de Rham cohomology, the class [M] can be represented by some closed real
2-form. The following theorem shows that a curvature tensor of the corresponding
line bundle works.

2.41. Theorem. (Formula of Lelong-Poincaré) Let X be a compact complex vari-
ety of dimension n, and let M C X be a smooth hypersurface!’. Denote by &x (M)
the holomorphic line bundle corresponding to M and by c¢; (M) the first Chern class
of Ox(M). Then we have

(M) = [M],

that is if 5-© is some curvature form representing c1(L) and ¢ € C*°(X, Q?)?)Dgz) is

d-closed, then
1
X &7 M

Proof. We endow Ox (M) with some hermitian metric h and denote by © the
corresponding Chern curvature tensor. Let s € I'(X, Ox(M)) be a global section
vanishing exactly along M. For small € > 0 the open set

M) :={z€ X | ||s(2)||n < €}

is a tubular neighbourhood of M in X. By Formula (2.11) we have

: - 2
%(9(2) = 27m,f)@log”s(z)”h Vze X\ Me).

Thus ]
/ Loy = tim L 9Blog l1s()|2 A .
X

T ==0 ) x\ M (e) 20
Since 90 = d0 and 1 is d-closed, Stokes’ theorem yields

1 = 15
[ ommgls@Eav=[ - Bloglls(:)l A v
X\M () aM(e) <M

211

We want to compute the integral on the right hand side. If we take a finite covering
of M by polydiscs U, C X, then OM(e) C U,U, for e small enough. Taking a
partition of unity subordinate to U, we are reduced to computing

—1_
—dlog||s(2)||? Ay
/8 o, Rl

for every a. Up to replacing the covering by smaller polydiscs and choosing appro-
priate coordinates zy, ..., 2, we can suppose that

MNU, ={z, =0}
and

(%) OM(E)NUy ={lzn] =} = (MNU,) x S%,.

10The statement is true without the smoothness hypothesis, but technically more difficult: the
first non-trivial issue is to show that the integral fM W| Mpons CONVErges.
nons
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where S¢ is the circle of radius ¢ around 0 € C. Now for every z € M(e) N U, we
have

15115 = zn|*ha

where h,, : M(g) N U, — RT is positive and bounded from below by some § > 0.
Thus in the complement of M N U,

_ dz; -
dlog||s(2)|? = Zé +3log ha.

Since 0log hy, is bounded one sees easily that

1_
lim —0logho N =0,
e—0 BM(E) 271

dzn __
Zn

—1dz, 1 dz,
[ A Ly,
OM (e)NUy 21 Zy, M ()NU4 2wt zZp

d\:=dzx N...Ndzp,_ 1 NdzA N ...dZ,_1,

so we don’t have to worry about this term. Since dzﬁ and v is real, we have

Set

then we can write the 2n — 2-form in our local coordinates as

Ylv, = (2) dA +,

where each term of 1 contains dz, or dz,. Note that

(**) ¢|UOQM :&(zla"wzn—lao) dA.
By (*) we have dz,, = —zizdzn on OM (g) NU,, so
dZn dzn 7
(z A 11)) lonm (e)nu, = (Z A d>\> lon (e)nU.

Since OM () N U, ~ (M NU,) x S Fubini’s theorem gives

1 dz, 1
/ —On = dA/ LY
OM (e)NUq 2mi zp, MNU,, Se 211 2y,

By the generalised Cauchy formula 1.81

/iﬂdzn:&(zl,...,zm,owr/ L0 e A d
S

< 2Tl 2z ¢ 27z 0Zn

Since Zi is L' around z, = 0, the second term converges to 0 for £ — 0. Thus

1d ~
lim fﬁmz;:/ D(21s -y 21, 0)dA
=0 Jan(e)nu, 2T Zn MU,

Thus by (xx)

1 _
lim —dlog||s(2)||2 Ay = / .
MNU,

e—0 8M(E)ﬂU.1 27(-7/
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2.42. Remark. If we are willing to work with currents, that is differential forms
whose coefficients are not C'°°-functions but merely distributions, we can give a
more conceptual proof of the theorem, at least for the local situation: let D™ be
the unit disc and consider the hypersurface M defined by z,, = 0. As in the proof
of the theorem we want to understand the distribution

- —i- (dz 0 1 1
— 981 ) —— )= — | — | =dz, AN dZ,.
2#88 08 2| 271'8( Zn > 0z, (Wzn> 2%* naz

Yet by Corollary 1.82 the distribution 2= ( 1 ) equals the Dirac mass centered

0Zn, \ Tzn

on the hypersurface z, = 0.

2.43. Notation. If L is a holomorphic line bundle over a compact complex manifold
X of dimension n and ¢ € C* (X, Q%}fﬂgz) is d-closed, we set

[awne=[ oy

where © is some curvature tensor of L. Stokes’ theorem shows that this is well-
defined, i.e. does not depend on the choice of ©.

The theorem has a number of important geometric consequences:

2.44. Corollary. Let X be a compact complex curve, and let D = 3. a;D; be a
divisor on X. Denote by ¢;(D) the first Chern class of the holomorphic line bundle

Ox (D). Then
Zai:/Xcl(D).

Proof. The statement is additive on both sides, so we reduce to the case where D
is a point. In this case let ¢ = 1 be the constant function with value one on X,

then by Theorem 2.41
/ Cl(D)/\IZ/ 1=1.
b'e D

On surfaces the product of Chern classes counts the number of points in the inter-
section.

O

2.45. Corollary. Let X be a compact complex surface, and let My, My C X be
two smooth curves meeting transversally, i.e.

TX,:v:TJV[La:@TM%z Y ax e M N Ms.

Denote by ¢1(M;) the first Chern class of the holomorphic line bundle Ox (M;).
Then

#(Ml N MQ) = /X Cl(Ml) A Cl(MQ).



KAHLER GEOMETRY AND HODGE THEORY 59

Proof. Let 5=©; be some Chern curvature tensor representing c1 (D2). By Theorem
2.41 we have
1

)
ACl(Ml)ACl(M2):/)(Cl(M1)A27T62:/]\/[1 27T62|M1.

Since the intersection is transversal, we can choose a covering U, C X by open
sets, such that for every z € My, N My € U, we have local holomorphic coordinates
z1, 29 such that

Mi N Ua = {Zz = 0}
Thus the restriction of the local equation of My to M is zo = 0, i.e. the equation
of a reduced point. By the construction in Exercise 2.34 this shows that

ﬁX(M2)|M1 = ﬁMl (Ml N M2)7

80 O, is a curvature form for the line bundle &y, (M7 N Ms). Thus by Corollary
2.44

)
‘/Ml %@2‘]\41 = #(Ml ﬁMg).

d

The statement of the corollary holds for irreducible distinct curves not meeting
transversally if we count the number of points in the intersection with the ap-
propriate multiplicity. A first approximation to this more general situation is the
following.

2.46. Exercise. Let X be a compact complex surface, and let C' C X be a smooth
irreducible curve. Let D be a curve such that C is not an irreducible component of
D. Show that
#(CnND)< / c1(C) A er(D).
X
a

2.47. Theorem. Let X be a projective surface and denote by Pic(X) its Picard
group. Then there is a unique pairing Pic(X) x Pic(X) — Z denote by L; - Lo for
any two holomorphic line bundles L1, Ls, such that

(1) if C and D are nonsingular curves meeting transversally, then
Ox(C)-O0x(D)=#(CND),

(2) it is symmetric: Ly - Ly = Lo - Ly,
(3) is is additive: (Ll & L2) -D = Ll -D + L2 - D.

This pairing is given by
L1 . L2 = / Cl(Ll) /\Cl(Lz).
X

2.48. Remark. We will study this intersection product in more detail in Subsection
3.E.



60 ANDREAS HORING

Proof. We leave it to the reader to check that if L; and L} are isomorphic line
bundles, then ¢;(L1) = ¢;(L}) in H?(X,R). Thus the integral

[ ety nat)

depends only on the isomorphism class of L and we get a well-defined map
PIC(X) X PIC(X) — R, (Ll,LQ) = / Cl(Ll) A Cl(LQ).
X

This map is clearly symmetric and additive and also satisfies the property 1) by
Corollary 2.45. In order to see that it is integer-valued we use Theorem 2.39 and
Remark 2.40: given two line bundles L; and Lo we choose smooth hypersurfaces
Dy, D5, D3, Dy meeting transversally such that

L1 ~ ﬁx(Dl — DQ),LQ ~ ﬁx(Dg — D4)
Then the properties 1) — 3) imply that [y ¢1(L1) A ¢1(Lz) € Z.
The uniqueness is shown in the same way, i.e. we use Theorem 2.39 and Remark 2.40

and the properties 2) 4+ 3) to reduce to the case where Ly ~ Ox (D), Ly ~ Ox(D3)
with Dy, Dy smooth and meeting transversally and conclude by property 1). [

The theorem above also holds for X an arbitrary compact complex surface. However
in this case we must use that the first Chern class ¢ (L;) is an element of H?(X,Z).
The intersection product [ ¢1(L1) A ¢1(Lg) then identifies to the cup product in
cohomology, in particular it takes values in H*(X,Z) ~ Z.

If C' and D are curves in X, we set
C-D:= ﬁx(C) . ﬁx(D)

Note that this definition also makes sense when C' = D, i.e. we can define the
self-intersection number of a curve C' C X by

02 = ﬁx(C) . ﬁx(c>
The next exercise gives a (very important) example where this number is strictly
negative !

2.49. Exercise. Let 0 € U C C” be an open neighbourhood of 0. The blow-up of
U in 0 is the set

U ={((z1,-.y2n),(y1: ... 1 yn)) € U x prt | viy; =zjy; Vi, je{l,...,n}}

a) Show that U’ is a submanifold of dimension n of U x P"~1.

b) Let 7w : U’ — U be the map induced by the projection on the first factor. Show
that 771(0) ~ P"~! and that 7|y r-1(p) is a biholomorphism.

¢) Let now X be a complex manifold of dimension n and 29 € X a point. Let U; be
an open covering of X such that xg € U; is a coordinate neighbourhood and such
that xg ¢ U; for i # 1. Let U be the blow-up of U; in x¢. Show that U] U U;>2U;
glues to a complex manifold X’ that admits a holomorphic map 7 : X’ — X such
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that 71 (2¢) ~ P"~! and 7| x/\x—1() is a biholomorphism. We call X’ the blow-up
of X in 29 and E := 7~ !(29) ~ P"~! the exceptional divisor.

d) Show that
KX’ ~ ,U,*KX & ﬁXI(E)(@n_l.
Deduce that
ﬁX/(E)‘E =~ ﬁ[[»n—l (*1)

e) Suppose now that X is a compact complex surface. Show that

// Cl(ﬁx/(E))z = —1.

Hint: use Theorem 2.41 (I

The intersection product on a surface is an extremely useful tool. Let us mention
the following statements which we will be able to prove at the end of Section 4.

2.50. Theorem. (Criterion of Nakai-Moishezon on surfaces) Let X be a projective
surface, and let L be a holomorphic line bundle on X. Then L is positive if and
only if L? > 0 and

L-C>0

for all curves C C X.

Let X be a projective surface and let M be a holomorphic line bundle on X. We
define the holomorphic Euler characteristic

x(X, M) =h’(X, M) — h' (X, M) + h*(X, M).

2.51. Theorem. (Riemann-Roch on surfaces) Let X be a projective surface, and
let L be a holomorphic line bundle on X. Then we have
1 1
X(X,L) = §L2 —g&x L+ x(X, Ox).

2.E. Extension of vector bundles. Let X be a complex manifold of dimension
n, and let

0— S 4, E 4, Q—0
be an exact sequence of holomorphic vector bundles (cf. Exercise 1.65). A holo-
morphic (resp. C'*)-splitting of the exact sequence is a morphism of holomorphic
(resp. complex) vector bundles 7 : Q — E such that ¢y o7 = Idg. We say that E
is an extension of @ by S and the extension is trivial if there exists a holomorphic
splitting.

While a C*°-splitting always exists, an extension of holomorphic vector bundles is
in general not trivial: for example the Euler sequence (Exercise 1.1) on P!

0— Op1 — Opr (1)%2 = Tp1 — 0
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is not trivial, since this would imply @p:(1)%% ~ Op1 @ Tp1. Yet this would imply
that som(Op1 (1), Opr) ~ Op1(—1) has a global holomorphic section, a contradic-
tion to Exercise 1.60. The following exercise shows how to measure the possible
extensions of @ by S.

Let X be a complex manifold of dimension n, and let
0— S 4, E 4, Q—0

be an exact sequence of holomorphic vector bundles. Let h be a Hermitian metric
on E, then we define hg to be the Hermitian metric on S given by restricting h.
Furthermore for z € X, set

St.={ecE,|h(e,s)=0 VscS,}

It is easily seen that S+ is a complex vector bundle that is a subbundle of E such
that ¥|g1 : ST — @ is a C*°-isomorphism. We define the quotient metric hg on
@ to be the metric given by restricting h to S*. Thus we get a C'*°-isomorphism
of hermitian complex vector bundles

(*) (Eah):(SvhS)@(SLvhSL):(SahS)@(thQ)‘

Note that in general this isomorphism is very far from inducing an isomorphism
FE ~ S5 ® Q of holomorphic vector bundles.

Let Dg,Ds,Dg the Chern connections corresponding to the metrics h,hg, hq.
Using the isomorphism (x), we define a hermitian connection on (E, h) by

VeE:=Ds® DQ.
The difference Dg — Vg is given by a 1-form
I'e C*(X,Qx,c @ End(E)).

Let e1,..., e, be an isometric frame of (E, h) such that ey, ..., e; is a frame for S.
Since Dg and Vg are hermitian connections we see by Lemma 2.9 that ft = -TI.

Therefore we can write
—t
r=( =7},
1) 1)

where o € C®(X,Qx,c ® End(Q)),6 € C®(X,Qx c ® End(Q)) such that ' =
fa,gt = —0 and f € C®(X,Qx c ® #Hom(S,Q)). With this notation we have

—t
Dp=|Psta =6 )
1] Dg+9
Yet by Corollary 2.14 we have

Dg =psoDgls =Ds +a,

so a = 0. Using the dual exact sequence one shows analogously that § = 0. Note
furthermore that since 3 represents the linear map

DE|S *DS : COO(X, S) — COO(X,QX,C ®Q)
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and the matrices of D and Dg are of type (1,0) by Corollary 2.13 we have
B € C®(X, 00 @ #Hom(S,Q)).
We call @ the second fundamental form of S in F.
2.52. Exercise. Let X be a complex manifold of dimension n, and let
0S4 ELQ-0

be an exact sequence of holomorphic vector bundles. We say that two extensions
are equivalent if there exists a commutative diagram

0 S E Q 0
Ids Idg
0 S F Q 0

The goal of this exercise is to show that the elements of the cohomology group
-1

H (X, #0om(Q, S)) have a natural bijection with the isomorphism classes of exten-
sions of @ by S.

Note first that the exact sequence of sheaves

Idg+ ®¢ Idg* ®v
— —

0 — Hom(Q,S) Hom(Q, E) Hom(Q,Q) — 0

induces a long exact sequence of Cech cohomology groups
= H(X, Hom(Q, B)) — H(X, #om(Q,Q)) > T (X, #om(Q, S)) — ...
We denote [E] := d(Idg) € I (X, #om(Q, S)).
a) Show that [E] = 0 if and only if the exact sequence splits.
b) Let e € Izll(X7 Hom(Q,S)). Show that there exists an exact sequence
0-S%EL0—=0
such that [E] = e.

Hint: in order to define the vector bundle FE, let (Uy)aeca be a Leray covering
of X and let (eas)a,pea be a Cech 1-cocycle that represents e. We set Ely, =
Slu, ® Q|u, and define the transition functions by

9a5(35,98) = (8 + €ap(qp), p)-

¢) Conclude.

We will now do the analogue construction from the analytic point of view: fix h a
Hermitian metric on E, and let

B e C®(X, 00 @ #Hom(S,Q)).

be the second fundamental form of S in E. Let 5* be its adjoint (i.e. the element
of C®(X, 0% @ s#om(Q, S)) given in an isometric frame by Bt)
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d) Show that 93* = 0 and the Chern curvature of F is

* 1,0 *
@(E) _ 9(5) :B /\ﬁ _Dﬂom(Q)S)ﬂ* )
op e@)-BAB
Since 93* = 0, the form gives a cohomology class [3*] in H(X, #om(Q, S)).

e) Show that the class does not depend on the choice of the Hermitian metric on
E.

f) Show that [3*] corresponds to [E] under the de Rham-Weil isomorphism
I (X, #om(Q, S)) ~ HY (X, #om(Q, S)).
Hint: cf. page 50 for an explicit description of the isomorphism. [J
2.53. Exercise. Let X be a complex manifold of dimension n, and let
0-S4E%0—=0

be exact. Show that there exists a long exact sequence of C-vector spaces (the long
exact cohomology sequence)

0 — H°X,S)— HYX,E)— H°(X,Q)
S HY(X,S) — H'(X,E) —» H'(X,Q)
S H*(X,S) — H2(X,E)
S H™X,S)— H"(X,E) —» H*(X,Q) — 0.

Describe in particular the morphisms §. [J

2.54. Exercise.

a) Let X be a complex manifold and let (Ey, hy) and (FEs, he) be Hermitian holo-
morphic vector bundles that are Griffiths positive. Show that (F1 @ Es, hy @ hg) is
Griffiths positive.

b) Let X be a complex manifold and let (E,h) be a Hermitian vector bundle that
is Griffiths positive. Let

0— S 2, E #, Q—0
be an exact sequence of holomorphic vector bundles. Show that the Hermitian

bundle (@, hq) where hg is the induced quotient metric (cf. Exercise 2.52) is
Griffiths positive.

Note that a subbundle of a Griffiths positive line bundle may be negative: the
vector bundle @p1(1)®? is Griffiths positive since it is a direct sum of positive line
bundles. Since

%Om(ﬁpl (—1), ﬁpl (1)) >~ ﬁ]pl (2),
we have

L(P', #om(Op (—1), Op1 (1)) ~ T(P', O (2)).
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We have seen in Exercise 1.60 that the global sections of €p1(2) can be identified to
the homogeneous polynomials of degree two. Choose two such polynomials sy, so
that have no common zero, then

Op (~1) %2 g (1)22
has rank one in every point, so Op1(—1) is a subbundle of Op1 (1)®2. O
2.55. Exercise. Let X be a complex manifold of dimension n. A P"-bundle over X

is a complex manifold M together with a surjective holomorphic submersion map
m: M — X such that

(1) for every = € X, the fibre M, := 7~ !(x) is isomorphic to P"
(2) for every x € X, there exists an open neighbourhood U of z and a biholo-
morphism h : 771 (U) — U x P" such that
-1y =p1oh
and for all x € U,
peoh:Ey —P"
is an element of PGL(C,r).
Let (Uy, ha) and (Ug, hg) be two local trivialisations of M, then the map
haohg': (Ua NUg) X P" — (Uy NUg) x P"
induces a holomorphic map
9gop : Ua NUg — PGL((C,T)
where gap(z) = b o (hf) ™" : P — P
Let E be a holomorphic vector bundle of rank r + 1 over X given by a collection
of transition functions g.g : Uy N Uz — GL(C,r 4+ 1). Using the natural map
GL(C,r+1) — PGL(C,r), show that we can associate a P"-bundle ¢ : P(E) — X,
the projectivised bundle of E.
We define the tautological bundle on P(E) as
Op sy (—1) == {(z,y) € B(E) x 6°F | y € Car}.
Show that @p(g)(—1) is a holomorphic subbundle of ¢*E.

Show that a Hermitian metric on E induces a Hermitian metric h on Opgy(1) such
that (Op(g)(1)|¢-1(2), hle-1(2)) is a positive line bundle for every x € X. 0

2.56. Exercise. Let X be a compact complex manifold and let E be a Griffiths
positive vector bundle over X. Let P(E*) be the projectivised vector bundle of E*,
and let Op(g-)(—1) be its tautological bundle. Show that the dual bundle Op(g-)(1)
is positive.

A famous conjecture of Griffiths claims that if Opg)(1) is positive, then E is Grif-
fiths positive. Note that this conjecture is only known to be true if X is a curve!
O
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3. KAHLER MANIFOLDS AND HODGE THEORY

In this section we introduce a special class of complex manifolds, the Kahler mani-
folds. We will see that every complex curve is Kéhler but this is not true in higher
dimension: the Hopf varieties are examples of non-Ké&hler manifolds. Roughly
speaking, the Kéhler condition assures a certain compatibility of the differentiable
and the complex structure of the manifold. One consequence of this compatibility
is the Hodge decomposition Theorem 3.36 that establishes a strong link between
the de Rham and the Dolbeault cohomology groups of a compact Kéhler manifold.

3.A. Kahler manifolds. In order to introduce Kéhler manifolds, we proceed as
in Subsection 1.D: we illustrate the basic concept in the case of a complex vector
space, then globalise to the setting of a complex manifold.

Let V be a complex vector space of dimension n, and let Vg be the underlying real
vector space of dimension 2n. Recall that the multiplication by 7 induces a complex
structure on Vg. Furthermore this complex structure induces a decomposition of
the complexified vector space Vg = Vg ®r C in

Ve=vV"0avol

In the same way, let Wx := Hom(Vg, R) be the dual space and W¢ := Wi ® C its
complexification, then we get a decomposition

We =WhH0 g wol,

Let now Whlt = WO A WOl /\2 We be the 2-forms of type (1, 1), and set

Wt =Wt O/Q\WR,
where A Wg € \® We are the real 2-forms.
Recall that a Hermitian form on V is a map
h:VxV—-C
that is C-linear in the first and C-antilinear in the second variable and satisfies
h(u,v) = h(v,u).

The next lemma establishes the link between the real (1,1)-forms and Hermitian
forms on V.

3.1. Lemma. Let V be a complex vector space of dimension n, and let J be
the induced complex structure on the underlying real vector space Vg. There is a
natural isomorphism between the Hermitian forms on V' and Wﬂé’l given by

h—w=—Imh.

and
wreh: VXV -G (u,v) — wu, W) —iw(u,v).
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Proof. Write
h=Reh+ilmh,

then for all u,v in V
Re h(u,v) + iIm h(u,v) = h(u,v) = h(v,u) = Reh(v,u) —iIm h(v,u),

so w = —Imh is an alternating real form. In order to see that it is of type (1,1),
note first that by construction Wl = (V1:1)* where

2
NVe=vevitevo?

so w € WHLif and only if it vanishes on every couple of vectors (u, v) of type V1.0
or Vo1, Since w = @ and VI = V0.1 it is sufficient to check the first case. A

generating family of V10 is given by v —i.J(v) for v € V.. For such vectors we have
wlu — i (w),0 — i (0)) = w(u, v) — (I (W), T(W)) — i ((u, () + (I (w),0))
Since
h(J(w), J(v)) = ih(u, J(v)) = —i*h(u,v) = h(u,v)
and h(u, J(v)) = —h(J(u),v), we have
w(u,0) = w(J(w), T(v)) and w(u, J(v) = —w(J (), )

This shows one inclusion, we leave the inverse construction as an exercise to the
reader. O

It is crucial for our purposes that the isomorphism does not depend on the choice
of a basis of the complex vector space V. Nevertheless it is enlightening to see the
correspondence for a basis z1,...,z, of V. Then any Hermitian form on V' can be
written as
h= > hjrz @z

1<g,k<n
The corresponding (1,1)-form is then

i _

w=g Z hjkzj A zf.
1<),ksn

3.2. Definition. We say that a real form of type (1,1) is positive if the corre-
sponding Hermitian form is positive definite.

3.3. Definition. Let X be a complex manifold. A Hermitian metric on X is a
Hermitian metric on the tangent bundle Tx, and we denote by w the corresponding
differentiable (1,1)-form. We say that w is a Kéhler form if it is closed, that is

dw = 0.

We say that a complex manifold is Kéahler if it admits a Kahler form.
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3.4. Example. The real (1,1)-form
KN _
w=g ; dz; N dz;

induced by the standard Hermitian product on C™ certainly defines a Kahler metric.

In the same spirit, let A C C™ be a lattice. Then the complex torus C"/A admits
a Kéahler form: let )
W = % >° hyudz Ada
1<j,k<n
be any Kéhler form on C™ with constant coefficients h;j, € C. Then o’ is invariant
by the translations A : C" — C™,z — z + A for all A € A, so v’ induces a Kéhler
form w on C™/A such that w’ = 7*w where 7 : C* — C"/A is the quotient map.

3.5. Exercise. Let X be a complex manifold. Let w be a (1, 1)-form corresponding
to a Hermitian metric on X. Prove that we have an equivalence

dw=0 & Ow=0 & Ow=0.
O
3.6. Exercise. Let X be a complex curve. Show that X is Kéhler. [J

3.7. Exercise. Let X be a complex manifold endowed with a Hermitian metric h.

Let w be the corresponding (1, 1)-form. Then % is a volume form on X. [J

3.8. Exercise. Let X be a complex manifold, and let L be a positive holomorphic
line bundle over X. Show that the first Chern class [5=©y] is represented by a
Kéhler form. [

3.9. Example. Exercise 2.25 shows that the curvature form associated to the
Fubini-Study metric on the line bundle Op~ (1) is a K&hler form. Thus the projective
space is Kahler.

3.10. Exercise. Let X be a Kéahler manifold/ Show that the blow-up of X in a
point (cf. Exercise 2.49) is a Kahler manifold. O

3.11. Exercise. Let X be a compact Kéhler manifold, and let 7 : P(E) — X be
a projectivised bundle over X (cf. Exercise 2.55). Show that P(F) is a compact
Kéhler manifold. O

Let (X,w) be a complex manifold of dimension n endowed with a Hermitian form.
We have seen in Exercise 1.73 that the underlying real differentiable manifold is
endowed with a canonical orientation. Furthermore if w is the (1, 1)-form associated
to a Hermitian metric on Tx, then “jl—, is the volume form (Exercise 3.7). In

particular we see that if (X,w) is a compact Kihler manifold, then

wn
[0

Since dw* = 0 for all k € {1,...,n}, we can consider the corresponding de Rham
cohomology class.
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3.12. Proposition. Let X be a compact complex manifold of dimension n, and
let w be a Kéhler form on X. Then for all k£ € {1,...,n}, the cohomology class

[w*] € H**(X,R)

is non-zero.

Proof. If w* = dn, we have w™ = d(n A w™*), so by Stokes’s theorem

/ / (nAwW™™ :/ nAw" k=0,

a contradiction. O

3.13. Exercise. Show that a Hopf variety (cf. Exercise 1.20) is not a Kahler
manifold. (Hint: Kiinneth formula) O

3.14. Exercise. Let X be a compact complex manifold of dimension n, and let w
be a Kéhler form on X. Show that for all k € {1,...,n}, the cohomology class

[w"] € HMM(X)

is non-zero. [

The following property of Kéahler manifolds will turn out to be very useful in the
proof of the Kahler identities (Proposition 3.30).

Let (X,w) be a Kahler manifold, and fix a point 2 € X. Let 21,..., 2, be local
holomorphlc coordinates around z, then we have

W= % S hywdz Adz,
1<4,k<n
where the h;j are differentiable functions. In these coordinates, the condition
Odw = 0 is equivalent to
Ohjy  Ohyg
0z 0z;
3.15. Theorem. Let (X,w) be a Kéhler manifold. Then locally we can choose

holomorphic coordinates (1, ... ¢, such that h;, = ;1 + O(|¢|*). We call (1,...¢p
normal coordinates for the Kéahler form w.

(3.12) V1< kl<n.

Proof. Starting with any choice of local coordinates z1, ..., z, around z, it is clear
that we can make a linear change of coordinates such that dzi,...,dz, induce a
basis of {2x , that is orthonormal with respect to w. Thus we can write

> hjrdz Adzg,
1<j,k<n
where hj;, = 0; 1 + O(]z|). The Taylor expansion to the first order is then

(3.13) hjrx = 0%+ Z (ajmz + ajz) + O(|21).
1<I<n
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Since w = w, we have hy ; = h; . In particular

(*) Akjl = a;kl'
Furthermore we have by Formula (3.12),

() Akl = Quij-

Set now )

Ck:zk+§ Z k1752 Vk=1,...,n.

1<4,l<n
By the theorem of invertible functions (; defines a local holomorphic system of
coordinates and
1 1
dCr = dzg, + § Z ajkl(zjdzl + Zldzj) =dz, + 5 Z (ajkl + alkj)zldzj,

1<4,l<n 1<5,l<n

which by (xx) equals
dCy, = dzp, + Z ajklzldzj.

1<5,i<n
Therefore
) Z dC}M\d@ZZ‘ Z dziNdZg+1i Z ajklZdzkAdZ+ajklzldsz@+O(\z|2).
1<k<n 1<k<n 1<),k 1<n

Now () implies
§ : ajkl Zidze A dzj = E agg zidzj N\ dz = E aZidz; N dzy,
1<g,k,I<n 1<g,k,I<n 1<y, k,l<n

thus

iy dGANdG =i Y |Gkt Y ajua + g | dz Adz + O(|2]?).

1<k<n 1<j,k<n 1<i<n
Comparing with Formula (3.13), we see that i), <, <, dCk ANdC, =w+0(|z)?). O

3.16. Exercise. Let i : Y — X be a submanifold of a Kéhler manifold. Show that
Y is a Kéhler manifold. More precisely show that if w is a Kéhler form on X, then
1*w is a Kéhler form on Y. In particular

/ Z-*wdimY > 0.
Y

Deduce that a projective manifold is Kéahler. [J

3.17. Exercise. (hard) A difficult and important question is to figure out how the
Kahler property behaves under holomorphic maps. Show that if f : X — Y is
a holomorphic submersion between complex manifolds such that (X,w) is Kéhler,
then any fibre X, and Y is Kéhler. (Hint: in order to show that Y is Kéhler, one
should look at the direct image of wdmX—dimY+1 a5 4 current, cf. [Dem96, I11].)

Give an example of a holomorphic submersion between complex manifolds f : X —
Y such that Y is a Kéahler manifold, the fibre X, is a Kéahler manifold for every
y €Y, but X is not Kéhler. [J
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3.18. Exercise. Let X be a compact Kéhler manifold.
a) Let D C X be a smooth hypersurface. Show that
[D] € HY'(X)

and this class is zero if and only if D = () (cf. Theorem 2.41 for the definition of
the Poincaré dual [D]).

b) Let L be a holomorphic line bundle over X. Suppose that ¢;(L) =0 € H?(X,R)
and that I'(X, L) # 0. Show that L is trivial'l. O

3.19. Exercise. Let (X,w) be a compact Kéahler manifold, and let L be a holo-
morphic line bundle over X. We say that L is nef if for every € > 0 there exists a
Hermitian metric A, on L such that

O, (L) = —Ew,

i.e. Op, (L) + ew is positive definite.

Show that if Y C X is a submanifold of dimension d and L is nef, we have

/Y (D) > 0.

Show that if M is a positive line bundle over X, then L™ ® M is positive for every
neN. O

3.B. Differential operators. We recall some of the basic definitions from Appen-
dix A. Let X be a differentiable oriented manifold of dimension n. Let (E,h) be a
euclidean vector bundle over X, and let

C®(X,E)x C®(X,E) - C>*(X),(0,7) — {0, 7}
be the bilinear mapping 2.7.

Suppose now that X is endowed with an euclidean metric, and denote by vol the
associated volume form. We define the L? scalar product and the corresponding
L?norm on C° (X, E) by

(3.14) (a, D) g = (a, B) 2 := /X{mﬂ}vol, || |2 :/X{a,a}vol.

If E and F are euclidean bundles over X and P : CX(X,E) — C*(X,F) is a
linear operator, the formal adjoint P* : C® (X, F) — C°(X, E) is defined by

(Pa,B)r = (o, PP VaeCX(X,E),feCP(X,F).

H1n order to answer this question in full generality, you’ll have to admit/prove the statement
of Theorem 2.41 for singular hypersurfaces.
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The case in which we will be most interested is when FE is some exterior power
of the cotangent bundle Q% . In this case'? we have the Hodge x-operator: if
B e C>®(X,0%) is a p-form, then *3 € C~(X, Q%mx_p) is such that

a8 ={a, f}lvol

for every p-form « (cf. Appendix A for an explicit description in terms of isometric
frames).

For every k € N, the exterior differential gives a linear operator
d: (X, Q) — O (X, 05

and we denote by d* : C®°(X,Q% 1) — C=(X,0%) the adjoint operator. By
Lemma A.6 we have
d* = (—1)"" ! xdx.

Another linear operator on C2°(X, Q%) is given by the contraction of a vector field:
let § € C=(X,Tx) be a vector field and let u € C(X, Q%) be a k-form. The
contraction (fu) € C=(X, Q451 is the (k — 1)-form defined by

Ow)(my .y me—1) == uw(@,n1, ..o Ni—1) Vo, ..o Me—1 € Tx oz

If 3%1, ceey % is a local frame for Tx and dzi,...,dx, the dual local frame for
Qx, we have

0 0 it mé&{ji,...,Jk}
—a(dxj, A. . .Ndzj, ) = —
ame( i Zi) { (=1)Ydxy, A..oda, .. Aday, i mo= gy

Using this formula it is not hard to see that if u, v are differentiable forms, then
(3.15) 0(uAv) = (0u) Av+ (—1)38 %y A (O0).

3.20. Exercise. Let U C R™ be an open set and endow Ty with the standard flat
metric. Let u = Zm:k uydry be a k-form. Use Lemma A.6 to show that

O

12Note that the choice of a metric h on Tx induces metrics on 2x and its exterior powers
Q’;(: if e1,...,en is an isometric frame for T'x on some open set U C X, let e],...,e;, be the
corresponding dual frame for Qx. On U the metric h* is then defined by imposing that ef, ..., e},
is an isometric frame, i.e. for arbitrary sections o,n € C°(X,Qx)
n
(o) (@) = oj(@)n; ()

j=1
where o = 2?21 crje;f and n = Z;;l nje;. It is not hard to see that these local definitions
glue to a global metric on X. In a similar way we define the induced metric on Qg( by imposing
that the induced frame e;l AN e;fp is isometric. Throughout the whole chapter we will always

consider these induced metrics on QI)’(
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Suppose now that X is a complex manifold of dimension n endowed with a Her-
mitian metric h. Denote by wol the volume form associated to h, then we extend
the definition of the Hodge x-operator: if g € C*°(X, Q’)“(,C) is a k-form, then
*B € C®(X, 03 ") is such that

a6 = {a, B}vol
for every k-form a € C*(X, QI;(,(C)'

With this definition the L?-scalar product on C2°(X, Q% ) is given by

(o, B) 2 ::/on/\*B:/X{a,ﬁ}vol.

Let us now see how the Hodge operator acts on complex vector bundles Q?: fix a
point x € X and choose holomorphic coordinates around x such that dzq,...,dz,
is a local frame that is isometric in the point z'3. Let

U = Z /LL]’KdZJ NdZg
[7|=p,|K|=q
and
V= Z /U'],KdZ‘] NdZg
|7|=p,|K|=q

be forms of type (p, q), then {u,v} is given at the point = by

{w,v}e = Y urk(@)UrK().

|J1=p,|K|=q
Since by definition uA*T = {u, v}vol, this shows that the Hodge star operator gives
a C-linear isometry
x: QBT — QTP

since xT is of type (n — p,n — ¢). This implies that the decomposition

C=(X, Q% c) = P (X, 9

pta=k
is orthogonal with respect to the L2-product. Indeed if v is of type (p’,¢’) with
p +q¢ = p+q then
u N\ *U

is of type (n —p' + p,n — ¢ + q), so it is zero unless p = p’,q¢ = ¢’. In order to
get an explicit formula for *v one has to take into account that we are working

13This can always be achieved by a linear change of coordinates, cf. the proof of Theorem
3.15. The tricky point is to understand the behaviour of the metric in a small neighbourhood.
If you don’t like the idea of arguing pointwise, just fix a not necessarily holomorphic isometric
frame &1, ..., &n for the holomorphic tangent bundle T'x in a neighbourhood U of . Then a form
of type (p,q) can be written as

—%
u= E ug k€7 Nk
[J|=p,|K|=q

and we get the same computations as before, but on the open set U.
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with alternate forms. An elementary but somewhat tedious computation [Wel80,
Ch.V,Prop.1.1] shows that

*f(l‘) = E €J7KUJ,KdZCJ NdZck
[7|=p,|K|=q

where ¢ 5 1= (—1)%™Plsign(J, C.J)sign(K, CK) and sign(e, ) is the sign of the
permutation.

As in the real case, we can consider the exterior differential d and its formal adjoint
d*. Since the real dimension of X is even we have by Lemma A.6 that d* = — * dx.
Consider now the differential operators

9 : OX(X, Q%) — C2(X, Q%)
and

9: C(X,Q81) — O=(X, Q4.
Then we define the operators

9 1 O (X, QL) - (X, QP9)

and

9" OX(X, QP9 — (X, QP71
in analogy with the preceding formula by
(3.16) 0% = —x 0%

(3.17) 0 = —x0x.

The following lemma shows that the notation 0* and 9" is justified, i.e. the oper-
ators are the formal adjoints of @ and 0.

3.21. Lemma. Let X be a complex manifold of dimension n. For all o €
C(X,0P9) and € C(X, QP41 we have

(50[,6)[,2 = (0575*6)[42-
For all a € C°(X,QP7) and 3 € C(X,QPT19), we have
(60[’5)[42 = (0576*6)112-

Proof. We show the first statement, the proof of the second is analogous. By
definition

(Oa, B) 12 :/ da A #0.
Since a A %3 € C°(X, Q™" 1), we have )
dlaN*B) = d(aA*B) = da A+ + (=1)PTla A D * (.
Hence by Stokes’ theorem
/ Ja A3 = —/ (—=1)P 9 A D * .
b's X

Since * is a real operator, we have
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(2n—k)k

By Exercise A.2 we have x 1y = (—1) 7 for any k-form v, so * 719 % 3 =

(—1)P*9 % 9 x 3. Therefore

~ [ CrrtandsF— [ ansTeE = (0,05 B)re
X

X
This implies the claim. O

As in Exercise 3.20, one can use this description to give a local expression of the
formal adjoint in terms of contraction by vector fields. Let U C C™ be an open set

and endow Ty with the standard hermitian metric Z;;l 2dz; ®dz; where z1, ..., 2,
are the linear coordinates on C™. Thus 8%1, ey 8(2 is an isometric holomorphic

frame for Ty. Let u be a form with compact support of type (p,q) given in these
local coordinates by u = ZIJIZP,IKIZIJ ujxdzy N\ dZg, then

2 a?,LJK 0 2 5] ou
3.18 o* :—E E — — dzy ANd :—g —
( ) u 821 azl HazJ K 371J321 ’
I=11J]=p,|K|=q =1
where 5 5
U UJj,K —
— = —dzy ANd
7 > g dwAdE
[J|=p,|K|=q

and the contraction by a vector field is defined analogously to the real case.

Now that we have defined the adjoint operators, we define the corresponding Lapla-
cians by

Ay = dd"+d'd
Ay = 90" +9%0

3.22. Lemma. Let X be a compact complex manifold, then we have

(a0, AgB)r2 = (da,dB)p2 + (d*a,d*5) Lz
(0, A98)rz = (0, 0B)r2 + (0", 0" B) 2
(,A58)r2 = (9, 08)p2 + (0,8 ).
Proof. Immediate from the formal adjoint property, i.e. Lemma 3.21. O

3.23. Definition. Let X be a complex manifold. We say that a form « is harmonic
(resp. Ap-harmonic, resp. Agz-harmonic) if Aga = 0 (resp. Apa = 0, resp.

3.24. Lemma. Let X be a complex compact manifold. A form « is harmonic
(resp. Ag-harmonic, resp. Az-harmonic) if and only if it is d- and d*-closed (resp.
0- and 0*-closed, resp. 0- and 5*—Closed).

Proof. The proof is the same as the one for Lemma A.19, just apply Lemma 3.22.
O
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3.25. Lemma. The symbol of the differential operator Ay and Az is
-1
& S llglPrd
In particular the operators Ay and Ay are elliptic operators.

Proof. The proof is exactly the same as for Ay (cf. Examples A.36 or [Voi02,
Lemma 5.18]). O

This lemma shows that we can apply the theory of elliptic operators to Az.

3.26. Theorem. Let X be a compact complex manifold endowed with a Hermitian
metric h. Let J#7¢(X) be the space of Agz-harmonic forms of type (p, q). Then:

(1) s#P9(X) is finite dimensional; and
(2) we have a decomposition

C7(X, QP1) = A71(X) © Ag(C(X, QP7)),

which is orthogonal for the L? scalar product.
Proof. Apply Theorem A.42. O

As in the case of the de Rham cohomology, we obtain immediately a series of
corollaries.

3.27. Corollary. Let X be a compact complex manifold endowed with a Hermitian
metric h. Then we have an orthogonal decomposition

Co(X, QP7) = P9(X) & O(C™(X, QP17 1) @9 (C(X, Qrath))
and imd Nkerd = {0} =imdNkerd . In particular
(3.19) kerd = P1(X)@I(C®(X,QP11))
(3.20) kerd = #PUX)@ D (C®(X,QrTH).

Proof. By Theorem 3.26, we have
Co(X, Q1Y = rra~ Y (X) @ A5 (C™ (X, QP91
so Lemma 3.24 and 52 = 0 imply that
D(C=(X, QP 11)) =9 (C®(X,QP9)).
Analogously we get
9 (C™(X, Q1)) = 37 9(C® (X, QP9)).
So Theorem 3.26 and Az = 90 +9°0 imply that
C>®(X,0P) = P X) @ (C™(X, QP17 1)) +5*(C°°(X, Qpatlyy,

and
(0 3,00) 2 = (B,00a) 2 =0

shows that the last two spaces are orthogonal.
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The second statement is now immediate: if o € kerd Nimd , then do = 0 and
0o =0, s0 is Ag-harmonic by Lemma 3.24. Yet the intersection J#79(X) N
8" (C> (X, QP7t1)) is zero by the first statement. The proof of the third statement
is analogous. 0

Since a Agz-harmonic form is O-closed by Lemma 3.24, we have a linear map
HP1(X) — HP9(X). Formula (3.19) shows that this map is fact an isomorphism,
i.e. every Dolbeault cohomology class is represented by a unique Az-harmonic
form:

3.28. Corollary. Let X be a compact complex manifold endowed with a Hermitian
metric h. Then we have

HPU(X) ~ P X).
In particular the Dolbeault cohomology groups have finite dimension.

3.C. Differential operators on Kihler manifolds. Let now (X,w) be a Kéhler

manifold, and denote by vol, = ‘;—T the volume form (cf. Exercise 3.7) of the

corresponding Hermitian metric. The exterior product with the Kéhler form defines
a differential operator

L:CP(X, Q%) — CX(X, 08, a—»wha
of degree zero. We denote by
A O (X, QFF) — OF(X, 9% o)
its formal adjoint. We claim that
AB = (-1)*(xLx)B
for every k-form .
Proof. Note that since w is a real differential form, it is sufficient to show the claim
for f € C*(X, Qljfﬂi) Then we have
{La,B}vol, = LaAxf=(wAa)Ax*S
= aAwA*xB=an((—1)F«(wA=*p))
= {a, ((fl)k * L*) BYvol,,

where we used Exercise A.2. O

If A, B are two differential operators of degree a and b respectively, their Lie bracket
is a differential operator of degree a + b defined by

[A,B] := AB — (-1)**BA.

Note that if C is another differential operator of degree ¢, then for purely formal
reasons, the Jacobi identity

(3’21) (_1)aC[Aa [Bv CH + (_1)ab[Ba [Cv A]] + (_1)bc[cv [AvB]] =0
holds.
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3.29. Lemma. Let U C C" be an open set endowed with the constant Kéhler
metric

w=1 Z dz; N\ dz;.
1<j<n
Then we have

[0, L] = id.

Proof. Let u € C(U, QIU_’C) be a [-form, then by Formula (3.18)

Therefore we have
0 Ou
— = (wA A — .
[ Z dszﬁzk s U) Tt Z 8ZkJ82k
1<k<n 1<k<n

Since the coefficients of w are constant, we have 88 (WAu) =wA 5+ 8“ . Furthermore
by Formula (3.15)

i( A@u) O A9 (9 Ou
BEm D2n o7 D2n Oz " Oz

thus we get
—x 0 0
1<k<n \I7k Zk
Yet it is clear that %J(w) = —idzg, SO

@, Llu=i Z dzg N — Ou = i0u.

1<k<n Oz,
O

The preceding lemma is a "local’” version of the following Kéahler identities that will
be the corner stones of the proof of the Hodge decomposition Theorem 3.36.

3.30. Proposition. Let (X,w) be a Kahler manifold. Then we have

(3.22) [0 ,L] i0

(3.23) [0*, L] —id.
(3.24) A,0] = —io*
(3.25) [A,0] = D .

Proof. Since L = L and A = A, it is clear that the first (resp. third) identity implies
the second (resp. fourth) one by conjugation. Furthermore the third relation follows
from the first by the formal adjoint property: let u,v be (p, q) forms, then

(A, Du,v) 2 = (u, [0, L]v) 2 = (u,idv) 12 = (—id*u, v) e.

Thus we are left to show the first relation. Note now that the local expressions of
the differential operators only use the coefficients of the metric up to first order:
indeed the operator L uses the metric only up to order zero and 9" = — % 0%
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(cf. Formula 3.16) shows that we only use the metric and its first derivatives. By
Theorem 3.15, we can choose holomorphic coordinates such that
h=1Id+ O(|z%),

thus it is sufficient to consider the situation of an open set in C"” endowed with the
standard Kéahler metric. Conclude with Lemma 3.29. [l

3.31. Theorem. Let (X,w) be a Kéhler manifold, and let Ay, Ap and Az be the
Laplacians associated to the operators d, d and 0. Then we have

Ag =205 = 2A3.
In particular a k-form is harmonic if and only if it is Ag-harmonic if and only if it
is Ag-harmonic.
Proof. We will show the first equality, the proof of the second one is analogous. We
have d = 0 + 0, so
Ag=(0+) (0 "+ )+ (0 "+ )(0+d).
Since @ = —i[A, 8] = —iAd + idA by Formula (3.25)and 82 = 0, we have
(O+0)(0" +8) = 09" — iOND + DO* — iDAD + iDOA

and

(0% +0)(0+ 0) = 00 + iOAD + 0D + iOAD — iADD.
By Formula (3.24) we have 90* = i[A, d] = iAJ — iOA, which implies
(3.26) 0*0 = —iOND = —00".
Thus we get

Ay = 09" —i0AD+i0OA + 0* 0 +i0ND —iNDD = Ay —iADD —iOAND +iOAD +iDOA.
Since 80 = —00, we have
—iADD — iOAD + iOAD + 100N = i(AD — ON)D + i0(AD — IN),
so another application of the Kéhler identity (3.24) gives
i(AD — ON)O +i0(AD — OA) = Ay.

3.32. Exercise. Show that
[Ag, L] = 0.
and
[L,Ala = (k—n)a
for every a € C*°(X, Q% (). O

The comparison Theorem 3.31 has numerous important consequences.

3.33. Corollary. Let (X,w) be a Kahler manifold, and let o be a form of type
(p,q). Then Aga has type (p,q).
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Proof. Obvious, since Agza = 2Ay« has type (p, q). a
3.34. Theorem. Let (X,w) be a Kéhler manifold, and let « =3, _ . a9 be the

decomposition of a k-form in its components of type (p,¢). Then « is harmonic if
and only if a9 is harmonic for all p, q. In particular we have
AHHX)= @ #7X)
pt+q=k

where s2P4(X) is the space of harmonic forms of type (p, q). Furthermore we have

HPUX) = 9P (X) vV p,qeN.

3.35. Remark. Note that by the comparison theorem we are entitled to speak
simply of harmonic forms without specifying the Laplacian.

Proof. By the preceding corollary,
M= Y Agara
k=p+q
is the decomposition of Agza in forms of type (p,q). It is is zero if and only if all

components are zero.

Let 3 be a harmonic form of type (p,q), then 3 has type (q,p). By hypothesis
Ayl = 0, so by the comparison theorem

Ao =DoB =A0z8=20y3=0,
hence Ayl = 0. O

If X is a compact Ké&hler manifold, we can combine Theorem 3.34 with the Corollar-
ies A.23 and 3.28 on the representability of cohomology classes by harmonic forms.
So we get the famous

3.36. Theorem. (Hodge decomposition theorem) Let X be a compact Kéhler
manifold. Then we have the Hodge decomposition

HYX,C)= P HM(X)
k=p+q
and the Hodge duality

HoP(X) = HPa(X).

Note that the isomorphisms HP*4(X) ~ 5#P9(X) depend on the choice of the Kih-
ler metric, so a priori we only have an isomorphism H*(X,C) ~ Dy, H(X).
We will see in Subsection 3.D that the isomorphism is canonical which justifies the
stronger statement H*(X,C) = Di—p g H(X).

3.37. Corollary. Let X be a compact Kéhler manifold. Then we have

(1) by =2 pepyg PP VEeEN
(2) hP9 =hoP ¥ p.qeN.

(3) HV*(X)#0 VYkel,...,n.
(4)
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Proof. The first and second statement are trivial by the Hodge decomposition and
Hodge duality. The third follows from the Hodge decomposition and Proposition
3.12. The fourth is a consequence of the first and the second one. O

3.38. Corollary. The Dolbeault cohomology groups of P are
HPP(P") ~C VOo<p<n
and
HPIPY) =0 Vp#q.
Proof. Tt is a well-known exercise in differential geometry (use induction and the
Mayer-Vietoris sequence !) that
HQP(X,(C):C VO<p<n.

Since P™ is Kéhler, we have HP'P(P™) # 0 by Corollary 3.37. We conclude with the
Hodge decomposition theorem. O

3.39. Exercise. Consider the Kahler manifold (C,w) where w is the standard
Kéhler form on C. Show that

H'(C,C) = 21°(C) & 2% (C),

but
H'(C,C) # H"(C) ® H>'(C).
O

3.40. Exercise. Let X be a compact Kihler variety, and let w € H°(X,QP) be a
a holomorphic p-form. Then dw = 0. O

3.41. Exercise. (Iwasawa manifold) Let G C GL3(C) be the subgroup of matrix

1
0
0

(=i
— < W

where x,y,z € C. Let I' C G be the subgroup of matrices such that z,y, z € Z[i].
Show that G/T is a compact complex manifold.

Show that dx,dy,dz — xdy € H°(G,Q¢) induce holomorphic 1-forms on G/T.
Deduce that G/T" is not Kéhler. OJ

3.42. Exercise. Let X be a compact complex surface, that is a compact complex
variety of dimension two.

a) Let w be a global 2-form of type (2,0). Show that

/ wAw>=0.
X
When do we have equality ?

b) Show that if w € I'(X,QF) is a holomorphic k-form, then dw = 0 (we do not
assume that X is Kéhler).



82 ANDREAS HORING

c) Let f: X — C be a differentiable function such that 99f = 0. Show that f is
constant.

Hint: show that in a coordinate neighborhood, the function f is pluriharmonic.

Deduce that if w € HY9(X) such that there exists a differentiable function f such
that w = 0f, then w = 0. Show that we have an inclusion

HY(X) — H"'(X),w — [©].

d) Show that if w € H*°(X) such that there exists n € C(X, Q}O) such that
w = 0n, then w = 0. Deduce that we have an inclusion

H*%(X) — H**(X),w — [@]

e) Show that we have inclusions
HY(X)— HY(X,C),w + [w]
and
H*%(X) — H*(X,C),w + [w].
For k = 1,2, we can thus identify H*(X) to a subspace of H*(X,C) = H*(X,R)®
C. Show that
HMO(X)n HFO(X) = 0.
Deduce that for every compact surface
R0 < by < 2101,
Give an example where the inequalities are strict.
Hint: for the second inequality, you can consider the exact sequence
0—>(C—>6’XE>Z1—>O,
where Z! is the sheaf of holomorphic 1-forms that are d-closed. O

3.43. Exercise. Let X = C"/A be a complex torus. Show that Tx ~ 09"
Compute the Hodge numbers h?*? for every p,q € {0,...,n}. O

3.D. Bott-Chern cohomology and d9-Lemma. Since the definition of the Lapla-
cian operations A, Ay, Az depends on the Hodge *-operator and thus on the Her-
mitian metric on T, it is a priori not clear if the isomorphism in the Hodge
decomposition Theorem 3.36 depends on the choice of a K&hler metric. In this
paragraph, we show that this is not the case.

3.44. Definition. Let X be a complex manifold. We define the Bott-Chern coho-
mology groups of X to be
o e (X, 0% | da = 0}

HEL(X e
se(X) 8OC>= (X, Qp 111
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Since 993 = dog for any € C(X, 0% “971), the natural morphism
{a € C®(X,0P) | da = 0} — HPHI(X,C)
passes to the quotient, so we have a canonical map
HYL(X) — HPT(X,C).
Since a (p, q)-form that is d-closed is also O-closed, we have a natural morphism
{a € C®(X,QP) | da =0} — HPI(X).

Since 98 = 9(—03) for any B € C=(X,QP~1471)  the morphism passes to the
quotient, so we have again a canonical map

HE4(X) — HP9(X),

The following, 9-Lemma allows to compare the Bott-Chern cohomology with the
Dolbeault and the de Rham cohomology.

3.45. Lemma. Let X be a compact Kdhler manifold and let w be a (p, g)-form
that is d-closed. If w is O- or d-exact, there exists a (p — 1,q — 1)-form ¢ such that
w = 0.

Proof. We will prove the case where w is d-exact, the other case is analogous.

Since w has type (p,q) and is d-closed, it is 0- and O-closed. By hypothesis w = 9n
for some n € C*(X, Q’)’(’q_l) and the analogue of Corollary 3.27 for d shows that
we have a decomposition

n=a+ 08+ 90"y
with a € 0% B € C®°(X, 0% ") and v € C®(X, Q%Y. Since X is
Kihler 3 = %%p’q, so we get

w =008 + 00*.
Since 99* = —0*d by Formula (3.26), this implies
w=—008 — 0*0.
Since dw = 0 and 993 = 0, we have 90*9y = 0. Thus we have 9*9y € (Imd* N

ker 9), so Corollary 3.27 shows that 9*9vy = 0. O
3.46. Corollary. Let X be a compact Kéhler manifold. Then the canonical mor-
phisms

HEL(X) — HP4(X)
and

: E
P HLL(X) — H(X,C)
p+q=k
are isomorphisms.
In particular the isomorphisms in the Hodge decomposition Theorem 3.36 are
canonical.
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Proof. We have HP4(X) ~ s£P9(X) by Corollary 3.28, so every Dolbeault class
can be represented by a unique Ag-harmonic form. By the comparison Theorem
3.31 a form is Az-harmonic if and only if it is A-harmonic, in particular it is
d-closed. This shows that the morphism H%A(X) — HP9(X) is surjective.

Let now v € HZL(X) such that its image in H?9(X) is zero. Let a € C*(X, QP9)
be d-closed such that [a] =~ in H;Z(X). Furthermore [o] = 0 in H??(X), so a is
O-exact. Therefore the d0-lemma 3.45 applies and we see that [a] = 0 in HEZ(X).
This shows that the morphism HEA(X) — HP9(X) is injective.

The proof of the second statement is left to the reader, it follows from the first
statement and

HYX,C) = *(X)= P #7(X).

p+q=k

3.E. Applications of Hodge theory.
Picard and Albanese variety

Let X be a compact Kahler manifold. We consider the long exact cohomology
sequence associated to the exponential sequence

exp(2mie

0—-Z—0x — )ﬁ’;}HO.

Since C ~ HO(X, Ox) =¥ H(X, 0%) ~ C* is surjective, we have an injection

i: HY(X,Z) — H (X, Ox),
so H'(X,Z) is a free Z-module of finite type and we want to understand its image'*.
The inclusion Z C R gives an inclusion H'(X,Z) C H'(X,R) and by the universal
coefficient theorem [Hat02, Cor.3.A.6] we see that H*(X,Z) ® R = H'(X,R), so

it is a lattice of rank b; in H'(X,R). The inclusions Z C R C C thus gives an
inclusion
H'(X,Z) — H'(X,C) = H*(X) @ H"(X)

such that H'(X,Z) is invariant under conjugation. Since H%?(X) = H%1(X) by
the Hodge theorem 3.36, we see that H'(X,Z) N HY%(X) = 0. Thus the pro-
jection on H%1(X) maps H!(X,Z) isomorphically onto a lattice of rank b; =
dimg H%1(X). Using the de Rham and the Dolbeault complex, one sees that this
map identifies to ¢, so we have shown

3.47. Lemma. Let X be a compact Kéhler manifold. The quotient
HY(X,0x)/H'(X,Z)
is a complex torus called the Picard variety Pic?(X).
14Throughout the whole paragraph we will denote by H*(X,Z) the singular cohomology of X

with values in Z. If you prefer, you can replace this by the Cech cohomology groups flk(X, Z) of
the sheaf of locally constant functions with values in Z.
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We claim that the Picard variety parametrises the holomorphic line bundles L
on X such that ¢;(L) = 0 € H?(X,Z). Indeed we have seen in Exercise 1.91
that H'(X, 0%) parametrises the holomorphic line bundles on X. Moreover the
cohomology sequence associated to the exponential sequence yields

0 — Pic’(X) = H (X, 0x)/H (X, Z) — Pic(X) = H (X, 0%) — H*(X,Z)
and the edge operator § : H'(X,0%) — H?*(X,Z) composed with the natural
morphism H?(X,Z) — H?(X,R) is given by the first Chern class. So Pic®(X) is
the kernel of this map. Denote by

NS(X):=iméd
the Neron-Severi group'®. Then we get an exact sequence
0 — Pic’(X) — Pic(X) — NS(X) — 0
and by the Lefschetz theorem on (1, 1)-classes we have
im (NS(X) — H*(X,C)) = im (H*(X,Z) — H*(X,C)) n H"'(X).

Thus the Neron-Severi group is (modulo torsion) the intersection of the lattice
H?(X,7Z) with the subspace H»!(X). The rank of this intersection, the Picard
number p(X) depends on the complex structure of X and can vary between 0 and
Rt

3.48. Example. If X is a compact complex curve, then
1 (X,2) ~ Z

and h%0 = h02 =0, so we get NS(X) ~ Z. Since i (X,Z) is torsion-free, we have
an inclusion }vIZ(X7 Z) C ﬁQ(X, R) ~ H?(X,R). Since the top de Rham cohomology
group is canonically isomorphic to R via the integration morphism, we get an exact
sequence

0 — Pic’(X) — Pic(X) — Z — 0,
where the last arrow is given by [L] — [y c1(L).

3.49. Example. Let X be the projective space P", then H?(P",Z) ~ Z. Moreover

by Corollary 3.38 we have H*(X, Ox) = 0, so the Picard torus is trivial. Hence
Pic(P") ~ Z

and it is not very hard to see that the tautological bundle Op»(—1) is a generator.

3.50. Exercise. a) Show that the Néron-Severi group of a complex torus X = C"/A
identifies to the set of Hermitian forms H = (hj x);k=1,..,» on C” such that

ImH(v,v)eZ  Vv,7 €A
Hint : [BLO4, Sect.2].
15Note that in the literature, the Neron-Severi group is also often defined as the image of the

composed morphism H'(X,0%) — H?(X,Z) — H?(X,R). This amounts to killing the torsion

part, so that one is left with a free abelian group of finite type.
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b) Let a,b, ¢,d € R\ Q that are linearly independent over Q and such that ad —bc €
R\ Q. Let A C C? be the lattice generated by the vectors

1 0 1a ic
0/7\1) " \ib) \id)’
and let X be the torus C2/A. Show that Pic(X) = Pic’(X), i.e. the Néron-Severi

group of X is zero. Deduce that X is not projective.

¢) Show that a complex torus X = C"/A admits a positive line bundle if and only
if there exists a definite positive Hermitian form H = (h;x);k=1,...» on C" such
that

ImH(v,v)eZ Vv,7 €A

Such a torus is called an abelian variety.

Hint: let du be a mesure of volume 1 on X that is invariant under the group action.
Let w be a Kéhler form on X, then w is cohomologous to a K&hler form with
constant coeflicients

o) = [ mwEdu@) = [ wle+ a)duta)
acX acX
where 7, : X — X,z — 2z + a is the translation map by a € X, I
A second torus attached to a compact Kéhler manifold X is the Albanese variety:
the inclusions Z C R C C induce maps
H2n71(X, Z) N H2n71(X’ R) N H2n71(X, (C) _ Hn,nfl(X) D anl,n(X)
and we see as before that
Alb(X) := H"V"(X)/ImH*" (X, Z)
is a complex torus. Since by Poincaré duality the first homology group H;(X,Z) is
naturally isomorphic to H?"~!(X,Z), and by Serre duality 4.3 and the comparison
theorem H" 1" (X) = HY(X)* = H°(X,Qx)*, we have
AlbX = H°(X,Qx)*/ImH, (X, Z)

where the map Hy(X,Z) — H°(X,Qx) is defined as follows: let [y] € Hy(X,Z) be

a class represented by 1-cycle v on X then we can associate a linear map

L, H(X,Qx) = C,w /w.
g

3.51. Exercise. Show that I, depends only on the homology class [y]. (This is
not true on a compact complex manifold that is not Kéhler!) O

Actually the difference between the Picard and the Albanese variety is not that
big: they are dual tori (cf. [BL04, Ch.2.4]). The advantage of the Albanese variety
is that we can define a holomorphic map a : X — Alb(X) as follows: fix a point
xg € X. Then we set

x
a: X — Ab(X),x — (w|—>/ w),
o
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where ffﬂ w is the integration over some path from xg to z. Let us show that this
expression actually makes sense: let v : [0,1] — X be a path connecting z( to z.
The linear map given by integration over the path

I, : H'(X,Qx) — C,w /w.
8!

is of course not independent of the choice of the path, but if 7/ is a second path
connecting xy to x, then the composition of the paths v~'+' defines an element of
H\(X,Z),s0 I,-1, € ImHy(X,Z). Thus I, gives a point in Alb(X) that does not
depend on the choice of the path.

3.52. Exercise. Show that « is holomorphic. [

The Albanese torus has the following universal property:

3.53. Proposition. Let X be a compact Kéhler manifold. Let ¢ : X — T be
a holomorphic map to a compact complex torus 7. Then there exists a unique
holomorphic map ¥ : Alb(X) — T such that ¥ oo = .

Proof. Omitted. Follows from Exercise 3.56 and functorial properties of the coho-
mology groups. O

3.54. Exercise. Let X be a compact Kahler manifold such that b; = 0. Then any
holomorphic map to a torus is constant. [J

3.55. Exercise. Let X = C"/A be a complex torus. Show that the Albanese map
a: X — Alb(X) is an isomorphism. [

3.56. Exercise. (Hodge structures of weight one) A Hodge structure of weight one
is a free Z-module V of finite type such that the complexification Vo = V ®z C
admits a decomposition

Ve=vVi0ovo
such that V% = V0.1 A morphism of abstract Hodge structures is a Z-linear
map ¢ : V — V' such that the complexified morphism ¢¢ respects the Hodge
decomposition.

Show that we have an equivalence of categories between Hodge structures of weight
one and compact complex tori. [

The Lefschetz decomposition
Let (X,w) be a Kihler manifold of dimension n. The Kéhler form w is real'¢

defines a linear map

, 80 it

L: Q’)“(,R — Q82 o w A
We claim that for k£ < n, the map
Lk Q])C(,R — Qggﬁk.

16Note that the whole theory developed in this paragraph also works for the de Rham coho-
mology with complex coefficients.
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is an isomorphism. Since the two vector bundles have the same rank, it is sufficient
to show that for every U C X, the morphism
LF . c>(U, Q%R) — C*(U, Q?@k),a —wA o

is injective: by Exercise 3.32, we have

[L,Ala = (k — n)a
for every a € C*°(X,Q% ). By definition

[L",A] = LIL"" Y A] + [L,A]JL" 1,
so we get inductively for every k-form «
(%) [L", Al = (r(k —n) +r(r—1))L"a.

We will prove by induction over k € {0,...,n} and r € {0,...,n — k} that L"
is injective. For k = 0 and r = 0 this is clear, thus let a be a k-form such that
L"a = 0. By (*) this implies that

L™ YLAa — (r(k —n) +r(r —1))a) =0,
so by the induction hypothesis on r
LAa— (r(k—n)+r(r—1))a=0.

Therefore we get (r(k —n) + r(r —1))a = LG with § = Aa of degree k — 2.
Furthermore L™+ 3 = 0, so by the induction hypothesis on k, we have 3 = 0.

3.57. Definition. Let (X,w) be a Kéahler manifold of dimension n. We say that
a e C>®(X, Q’)“(’R), k < n is primitive if L* *+lq = 0.

3.58. Exercise.
a) Show that o € C*(X, Q’)“(’R), k < n is primitive if and only if Aa = 0.

b) Show that every element o € C*°(X, Q’;QR), admits a unique decomposition of

the form
o= Z L"a,

such that «,. is primitive of degree k—2r < inf(2n—k, k). We call this the Lefschetz
decomposition of a. [

Note now that since w is d-closed, the linear map L induces a linear map on the de
Rham cohomology groups

L:H*X,R) —» H*?(X,R), [a] — [wAa].

3.59. Theorem. (Hard Lefschetz theorem) Let (X,w) be a compact Kéhler man-
ifold of dimension n. Then for every k < n, the map

L% H*(X,R) — H*™ *(X,R)

is an isomorphism.
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Proof. Since [Ag4, L] = 0 by Exercise 3.32, the image L(«) of a harmonic form « is
harmonic. Since X is compact, Corollary A.23 shows that it is equivalent to show
that the induced morphism

Lk % (X,R) — 2" F(X,R)

is an isomorphism. By Poincaré duality (Corollary A.24) both vector spaces have
the same dimension furthermore by the claim above, the morphism

Lnik : COO(Xa Ql)c(,]R) - Coo(Xa Q%g]lgk)

is injective. In particular it is injective on the harmonic forms, so the statement

follows. O

3.60. Definition. Let (X,w) be a compact Kéhler manifold of dimension n. We
say that [a] € H*(X,R), k < n is primitive if L *+1[a] = 0. We denote by
HF(X, R)prim C H*(X,R) the subspace of primitive classes.

As a consequence of Exercise 3.58, we obtain

3.61. Corollary. . Let (X,w) be a compact K&hler manifold. Then every element
[a] € H*(X,R) admits a unique decomposition of the form

(o] =) L"[a]

such that o, € H* 27 (X, R)prim with k& — 2r < inf(2n — k, k). In particular we
have

H*(X,R) = @ L"H**"(X,R)

prim-

This Lefschetz decomposition plays an important role in the Hodge index theorem
(cf. Theorem 3.67 below).

The Hard Lefschetz theorem also holds for the de Rham cohomology with complex
coefficients. Since the Kihler form w is 0-closed, the Hodge decomposition shows
immediately that for all p + ¢ < n, we have an isomorphism

LnP=49: qP9(X) — H" 9" P(X).
3.62. Exercise. Let X be a compact Kéhler manifold of dimension n.
hPmhIE AP by Kbrs Yh=p4g<n

and
WP > hp+17Q+1’ b > bito Vk=p+q>=n.

Hint: note that if « is a harmonic k-form, the Lefschetz decomposition commutes
with the decomposition into forms of type (p,q). O

The Hodge Index Theorem
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We will now consider the Hodge index theorem for the intersection form on H2(X, C).
For the sake of simplicity of notation, we will restrict ourselves to the case of a com-
pact Kéhler surface (cf. [Voi02, Ch.6.3] for a full account).

We start with a technical lemma.

3.63. Lemma. Let U C C? be an open subset and endow Ty; with the standard
metric h = 2(dz; ® dz7 + dzp ® dz3). Let a € C°°(U, Q%) be a primitive two-form.
Then we have

xa = (—1)a.
Proof. We will prove the claim where « is of type (1,1), the other cases are analo-
gous. Let w =i(dz A dz1 + dzo A dZ3) be the Kahler form, and set
o = Ckl’gle AN d@ + 0[27le2 AN da + a111d21 AN dz + a272d2«'2 AN dE

where the o ), are differentiable functions. The volume form is

2
w
= =4%dz ANdz A dza A d73,

2!
so e A xa = {e, a}vol implies
ko = —OzLQle Adzg — C¥271d2’2 A dzy + 04171d22 A dzs + Olggle A dz7.
Furthermore

La=wAha=i(ar1+ag2)dzr Adz1 Adze A dZ

equals zero if and only if o; 1 = —ap 2. This implies the claim. ([

Arguing as in the proof of Proposition 3.30, we deduce:

3.64. Lemma. Let (X,w) be a Kdhler manifold of dimension two, and let o €
C>(X,0%7) be a primitive 2-form. Then we have

xa = (—1)%a.
Let now X be a compact Kéhler variety of dimension two. Then the Poincaré

duality Theorem A.24 shows that we have a non-degenerate symmetric bilinear
pairing
Qi HY(XR) x HX(XCR) — B, ((al,[3) ~ [ ans.
b'e
Therefore
H(a, B) == Q(av, B)

defines a non-degenerate hermitian form on H?(X,C).

3.65. Lemma. Let (X,w) be a compact Kédhler variety of dimension two. The
Lefschetz decomposition

H*(X,C) = H*(X, (C)prim @ LH(X, C)prim = H*(X, (C)prim @ Clw]

is orthogonal.
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Proof. As before we reduce the statement on cohomology to a statement on har-
monic forms. By definition a two-form « is primitive if w A @ = 0. Therefore

H(a,w):/a/\w:/a/\w:().
X X

3.66. Proposition. The subspaces H?¢ C H?(X,C) are orthogonal with respect
to H. Furthermore (—1)?H is definite positive on the subspace

HYm = H*(X, C)prim N HP(X).

O

Proof. The orthogonality is obvious for reasons of type (cf. page 73). Note that
for reasons of type H;’O = H*%(X) and Hg’z = H%2(X). Let v € H?% be

rim Tim prim
a non-zero class. Note also that s#7(X) ~ HP9(X) and the Lefschetz operator
commutes with Az. Thus if « is the harmonic representative of «, then the form «
(hence @) is primitive, i.e. w A « is zero. Then we have by Lemma 3.64

xa = (—1)%a,
$0

(-D)?H(o,0) = (—1)q/ aNa = (—1)2‘1/Xa/\ *xa = ||af|p2 > 0.

X

As a corollary, we obtain

3.67. Theorem. (Hodge Index Theorem) Let X be a compact Kéhler surface.
Then the signature of the intersection form

Q([a],[ﬂ]):/XaAﬂ
on H2(X,R) N HY(X) is (1,hV1 —1).

Proof. By Lemma 3.65 we have an orthogonal decomposition
H*(X,C) = H*(X, C)prim ® Clw].
Since w is a real form, this implies
H*(X,R) N H"'(X) = H*(X,R) N H"Y(X) prim ® Clu].

By the preceeding proposition, the intersection form @ is negative definite on
Hl’l(X)prim. But we have already seen (cf. Proposition 3.12) that

/w/\wz/w/\w>0.
X X

3.68. Exercise. Let (X, w) be a compact Kéhler surface, and let v be a real 2-form
such that [y] € H»(X). Show that

QM. 1) - Q([w], w]) < QB [w])*.

O

O
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3.69. Exercise. (not so easy)

a) Let X be a projective surface, and let H be a positive line bundle on X. Fix
d € Z. Show that the set of classes v € NS(X) such that

Qler(H),y) =d
and such that there exists a curve C C X such that v = [C] is finite.

b) Let C be a compact curve of genus g > 2. Show that the group of biholomorphic
automorphisms of C' is finite as follows: given an automorphism o, let I' C C' x C
be its graph, and let A be the diagonal.

Show first that Ocxc(A)|a ~ K§. Deduce that Q([A], [A]) < 0.
Show that if [I'] = [A], then T' = A, i.e. o is the identity map.
Conclude with a). O
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4. KODAIRA’S PROJECTIVITY CRITERION

We have seen in Section 3 that every projective manifold is a Kéahler manifold,
but in general the converse is not true: a complex torus C"/T" is always a Kéhler
manifold, but if we choose the lattice I" general enough, it is not projective (Exercise
3.50). The aim of this section is to give an outline of the proof of Kodaira’s famous
projectivity criterion for compact Kahler manifolds (Theorem 4.15). A main step
in the proof of this theorem is the equally famous Kodaira vanishing Theorem 4.8.

4.A. Serre duality and Kodaira’s vanishing theorem. Let X be a compact
complex manifold, and let E be a holomorphic vector bundle over X. We endow F
with a Hermitian metric h and define the L? scalar product C*°(X, E) by Formula
(3.14). We define a C-antilinear Hodge operator

Fp:ORIQFE - QY PTIQ ET

as follows: the Hermitian metric induces a C-antilinear isomorphism of complex
vector bundles

T:E—E* s€ E, — hgy(sg,e).
For any open set U C X and any decomposable ¢ @ e € C*°(U, Q%! @ E), we set

Fp(p@e) =+xpaT(e),

and extend the definition by linearity to all elements of C>(U, Q7 ® E). It is then
clear that

aNxgf = {a,B}vol.
Let Dg be the Chern connection of E. Recall that the (0,1)-part of the Chern
connection equals O and we set Op := D}E’O. Since the Chern curvature tensor O g
is of type (1, 1), the equality

= = =2

implies 9% = 0 and O = dgdg + Ogdr = [0r, OE).
We define 93, (resp. 0j) to be the formal adjoints of g (resp. 9g) and the
corresponding Laplacians by

Ay, = 0pdy + 0x0E
and
As in the case where F is the trivial line bundle Ox, one shows that these Laplacians

are elliptic operators. Thus we can apply Theorem A.42. and argue as in the proof
of Corollary 3.27 to show that we have an orthogonal decomposition

C™(X, WIQE) = #P9(X, E)®05(C™(X, W1 \QE))®d5(C®(X, 0P @ F))

and
ker g = #P1(X,E) ® dp(C™(X,QP1! @ E))

In particular we have the
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4.1. Corollary. Let X be a compact complex manifold, and let (E, k) be a her-
mitian holomorphic vector bundle over X. Then we have

HPYX,FE)~ "9 X,E).
In particular the Dolbeault cohomology groups have finite dimension.
4.2. Exercise. In analogy to Formulas 3.16 and 3.17, establish formulas for the
adjoint operators 8% and 8. O
We come to one of the fundamental statements in complex geometry.

4.3. Theorem. (Serre duality) Let X be a compact complex manifold, and let E
be a holomorphic vector bundle over X. Then the bilinear pairing

HP(X,E) x H"P"" (X, E*) — C, ([s],[t]) — / sAt
X
is a nondegenerate bilinear pairing.

4.4. Remark. The symbol s A t should be understood as follows: let eq,..., e, be
a local holomorphic frame on U C X, then

T s
$|U=Zsjej, t\U:the;f,
j=1 j=1
where s; € C°°(U,Q%7) and t; € C>°(U, Q' ”"" 7). Then
T
(sAB)]o =) s N

Jj=1

and one checks easily that these local definitions glue to a global (n,n)-form.

Sketch of the proof. We note first that the map

C®(X, 0@ FE) x C*(X, QY """ 1@ E*) - C, (s,t) — / sAt
X

induces indeed a map on the cohomology groups: if for example s = dgn, then
dpn At =09(nAt)=d(nAt),
since 7 At is of type (n,n — 1). Thus Stokes’ theorem shows that [, s At =0.
Then one shows that (cf. [Wel80, Ch. V.,2] for the details)
¥plg, = A5E*¥E7

so we get a commutative diagram

Cx(X, Q%@ E) T C®X,Qy P10 EY)

*E

71X, E) AP X B,
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Since *g is an isomorphism of complex vector bundles, we get an isomorphism
between the spaces of harmonic forms

HPUX, E) 5B (X B,

By Corollary 4.1, this implies that the vector spaces H?%(X, E) and H" P"~9(X,| E*)
have the same dimension. Moreover the bilinear pairing is non-degenerate since for
every 0 # u € H#P9(X, E), we have ¥gu € " P 4(X  E*) and

/ UN*gu = ||UH%2 > 0.
b's
O
Let (X,w) be a Kéhler variety, and let (F,h) be a holomorphic Hermitian vector
bundle over X. Set
L:CX(X, Q1@ E) — CX(X, QP @ B) s wAu

for the Lefschetz operator with values in F, and denote by A = L* its formal
adjoint. The following lemma adapts the Kéahler identities (Proposition 3.30) to
this setting, we omit the proof which is analogous to the one given in Subsection
3.C.

4.5. Lemma. Let (X,w) be a K&hler manifold, and let (E,h) be a holomorphic
Hermitian vector bundle over X. Then we have

(4.27) [0, L] i0p
(4.28) [0, L] = —idg.
(4.29) [A, OF] —i05,
(4.30) A, 0p] = 0y

A consequence of these commutation relations is the next theorem that should be
seen as a generalisation of the second statement in the comparison Theorem 3.31.

4.6. Theorem. (Bochner-Kodaira-Nakano identity) Let (X,w) be a Ké&hler man-
ifold, and let (E,h) be a holomorphic Hermitian vector bundle over X. Then we
have

Az, =1iOp, Al + Ag,.

Proof. By definition Ay = 00y + 00, so by Formula (4.30)
Agy =
By the Jacobi identity (3.21)
—il0p, [A, 9p]] = —i[A, [0, 0p]] — i[08, (05, Al],
so Formula (4.29) and [0g, 0] = ©p imply that
Az, = —i[A,Op] + —i[0p, i0p] = [iOF, A] + Ag,,.

0,05) = —i[0g, A, OF]).
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4.7. Corollary. (Bochner-Kodaira-Nakano inequality) Let (X,w) be a compact
Kéhler manifold, and let (E, h) be a holomorphic Hermitian vector bundle over X.
Let u € C™(X, 0% ® E) be a (p, ¢)-form with values in E. Then we have

/X{[i@E,A}u,u}vol < (Az u,u)re.

In particular if u is AEE—harmonic, we have
/ {[i®F, AJu,u}vol < 0.
X

Proof. By the definition of the Laplacian and the adjoint property, we immediately
get

(Dopu,u)re = ||dpull® +[|0pull* > 0.
Therefore by the Bochner-Kodaira-Nakano identity

(Ag, u,u)rz = (Aogu, u)re +/ {[i®g, AJu,u}vol > / {[iO®g, AJu, u}vol.
X p's
(]

4.8. Theorem. (Kodaira-Akizuki-Nakano vanishing theorem) Let (X, w) be a com-
pact Kéahler manifold of dimension n, and let (L, k) be a positive line bundle on X.
Then

HPY(X, L)=0 Vp+qg>n+1.

4.9. Remark. The most important case is when p = n. Then the statement
simplifies to Kodaira’s original statement

HY(X,Kx®L)=0 ¥ q>0.

Proof. By Corollary 4.1 we have
HPY(X,L) ~ #71(X, L),

where J#74(X, L) are the Az -harmonic forms. So it sufficient that the Ag -
harmonic forms are identically to zero. Let now u € C*°(X, 0% ® L) be a (p, q)-

form with values in L that is AgL—harmonic. By Corollary 4.7 we have

0> / {[1©r, AJu, u}vol,
X
so we are done if we show
[ tli©w Aluupvol > o+ g = .
X

Technical remark: This inequality will be an immediate consequence of the a-priori
estimate (4.31) which we will prove now. Note that the proof of Formula (4.31)
does not use the hypothesis on the positivity of L and can also be adapted to the
case of vector bundles.
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It is certainly sufficient to establish this inequality pointwise, so fix a point = € X.
By Theorem 3.15 we can choose local holomorphic coordinates such that

w=1i Y  dz Az + O(|2]?).

1<5<n

As in the proof of Proposition 3.30 we see that in order to compute Au in the point

w=1 E dz; N\ dz;,

1<j<n

Au=1 Z Bz

1<j<n

x, we can assume that
hence

On the other hand we can simultaneously diagonalise O, in x, so we get

iOr(x) =1 Z Aedzr N dZg.

1<k<n

Then Ai(x),...,A,(x) are the eigenvalues of the curvature tensor i©y in = and
without loss of generality we can suppose Aj(x) < ... < A, (2).

We clearly have

. 0
1O Au = — Z Aedzp A\ dzi A o JaZJJu
1<j,k<n
Furthermore by Formula (3.15)
A(i©Opu) = Z zi J — | (iApdzi A dZg A )
_ 0z 6,2]
1<j,k<n

= Z )\k {({ZJ(dzk/\dﬁ)/\u—kdzk/\dzk/\J :|
J

1<j,k<n
0

= Z )\k: Jkdzk/\uﬁ-dzk/\dﬁ/\a—J

1<5,k<n &
= Z)\ufZ)\dzj ZAZJ J

1<5<n 1<5<n 1<j<n &
0
+ Z Apdze A dzg N B JaZ]Ju
1<5,k<n
Thus we obtain
0
[i©r, A] Z Aju+ Z Njdz; N =—]u+ Z )\kdzk/\a kJ
1<j<n 1<j<n 1<k<n

Let now e; be a local orthonormal frame for L, then locally

u= E ujrdz; Ndzix ® e1,
[J|=p,|K|=q
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and we claim that

{[i®r, Alu,u}, = Z Ak — Ae)|urk)?

|J|=p,|K|=q

where A =3 ) e Ap and Aoy 1= 37555 Aj. Indeed

> Ajdz A aiju = Y > Nuykdzy ANdEFE @ e

1<5<n 7 |J|=p,|K|=q €]
and
0
E )\kdzk/\ajju: E E )\kULKdZJ/\dZK@@l,
Z
1<k<n k | T|=p,|K|=q k€K

thus we get finally that

{[iOr, A]u,u}, = Z — Z )\j—i—Z/\j—i—Z/\k |UJJ,K|27

|J|=p,| K |=q 1<5<n jeJ keK
which implies the claim. Since A\; < ... < \,, we have
Ak — Aoy = E A — 5 Aptj-
1<k<q 1<j<n—p

So we see that

(4.31) {00, Alu,ule = (D M= D Aprj)luld.

1<k<q 1<j<n—p

Since L is a positive line bundle, the curvature tensor i© gives a Kahler form on
X. Thus we could have supposed from the beginning that w =i® and A\ = ... =
An = 1. Therefore Formula (4.31) simplifies to

{[i0r, Au,u}y = (p+ g — n)|ul3.
The statement is now an immediate consequence. (Il

4.10. Exercise. We want to compute the cohomology of the line bundles Opn (k)
on P™ for arbitary k € Z.

a) Show that for k > —n,

Hq(]P)n,ﬁ[Pn(k)):O Vq} 1.

b) Use the Serre duality Theorem 4.3 to discuss the case k < —(n+1). O

4.11. Exercise. A Fano manifold is a compact Kéhler manifold such that the
anticanonical bundle K% := detTx is a positive line bundle. Show that if X is a
Fano manifold

HY(X,0x)=0 VYi>0.
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4.12. Exercise. Let X be a complex projective variety, L — X a holomorphic
positive line bundle, and let o € T'(X, E) be a global section. We suppose that the
zeroset Y = {z € X | o(x) = 0} is smooth.

a) Show that if dim X > 2, then Y is connected.

b) Give an example where X is a curve and Y is not connected. [

The Kodaira vanishing theorem generalises to Nakano positive vector bundles:

4.13. Theorem. (Nakano vanishing theorem) Let (X,w) be a compact Kéhler
manifold of dimension n, and let F be a Nakano positive vector bundle on X.
Then

HI(X,Kx®E)=0 Vaqgz=1.

4.14. Example. The Kodaira vanishing theorem does not generalise to Griffiths
positive vector bundles: by Exercise 2.54 and the FEuler sequence 1.1, the tangent
bundle Tpr of the projective space is Griffiths positive. Yet the long exact sequence
associated to the Euler sequence tensored with Kpr» and Exercise 4.10 show that

H" 1 (P", Kpn @ Tpn) # 0.

Since Opn(1)"*! is Nakano positive, this shows that the quotient of a Nakano
positive vector bundle is not necessarily Nakano positive.

4.B. Kodaira’s embedding theorem. We come to the last main result of these
lectures.

4.15. Theorem. (Kodaira’s embedding theorem) Let X be a compact complex
manifold. The following statements are equivalent:

(1) X is projective, that is there exists a holomorphic embedding ¢ : X — PV,

(2) There exists a Kéhler form w on X that is an integer class, i.e. is in the
image of the morphism H?(X,Z) — H*(X,R).

(3) There exists a holomorphic line bundle L — X that is positive.

Sketch of the proof of Theorem 4.15, Part I. 1) = 2) is clear since the restriction
of the Fubini-Study form wrs (Exercise 2.25) is an integer Kéahler form.

2) = 3) is an immediate consequence of the Lefschetz Theorem on (1,1)-classes
2.30.

3) = 1) is the difficult second part, see page 100. |

Let us give an immediate application.

4.16. Corollary. Let X be a compact Kéhler manifold such that H?(X, 0x) = 0.
Then X is projective.

4.17. Exercise. Let (X,w) be a compact Kéhler manifold. Show that w is har-
monic. O
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Proof. By hypothesis and Hodge duality H*%(X) = H%%(X) = 0, so by the
Hodge decomposition theorem H11(X) = H?(X,C) ~ H?*(X,Q) ® C. Since
H?(X,C) ~ #?*(X), we can choose a basis ai,...,a,, of H?>(X,Q) such that
the «; are harmonic and of type (1,1). Since the Kéhler form w is harmonic and
real, we have

m
w = E )\jOéj
Jj=1

with A; € R. If we take p; € Q sufficiently close to A;, the Hermitian form
corresponding to 7" pja; is still positive definite, so 37" pja; is a Kéhler
form. Up to multiplying with IV sufficiently big and divisible, we have Z;nzl iy €
H?(X,Z). Conclude with Kodaira’s Theorem 4.15. O

4.18. Exercise. A ruled surface is a compact Kéahler manifold S that admits a
submersion f : S — C onto a smooth curve such that all the fibres S, := f~*(c)
are isomorphic to P!. Show that a ruled surface is projective.

Hint: show that we have an exact sequence
0—-Ts, — Tsls, — Opr — 0.

Thus we have Kgl|g, ~ Op1(—2). O

4.19. Exercise. (Push-forward of sheaves) Let X and Y be complex manifolds,
and let f: X — Y be a holomorphic map. Let # be a sheaf of abelian groups on
X, then we set

LFU) = Z(f71(U)
for every open subset U C Y. Show that f..% is a sheaf of abelian groups on Y. [

Sketch of the proof of Theorem 4.15, Part II. Let L be a positive line bundle on X.
The goal of the proof is to show the following three claims.

Claim 1. For sufficiently high N € N, the line bundle L®V is globally generated,
i.e. for every point € X there exists a global section s € I'(X, L®Y) such that

s(z) # 0.

Claim 2. For sufficiently high N € N, the line bundle L®" separates point, i.e. for
every couple of points o,y € X there exists a global section s € I'(X, L®Y) such
that s(z) # 0 and s(y) = 0.

Claim 8. For sufficiently high N € N, the line bundle L&Y separates tangent
vectors, i.e. for every point x € X and u € Tx, there exists a global section
s € D(X, L®N) such that s(x) = 0 and ds(u) # 0.

Assuming these claims for the time being, let us show show how they imply the
theorem. Choose N € N such that all three claims hold. By the first claim, for
x € X there exists s € I'(X, L®Y) such that s(z) # 0. Therefore

H, ={seD(X,L®) | s(z) =0}
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is a hyperplane in I'(X, L®V). Thus we can define a morphism
©: X - P(D(X, L%V, ©— H,.

We can write this morphism locally around a point zg € X more explicitly if we
choose a basis sg, ..., sq of (X, L®N). Up to renumerating we can suppose that
s0(zg) # 0, so by continuity there exists an open neighbourhood U of xz( such that
so(x) # 0 for every x € U. Thus

A M e, oy)

S0 S0
and one checks that

oy 1 U — P(O(X, LON)), o (1: 22

.5
” ():...: 5 (2)).
We leave it as an exercise to the reader to show that Claim 2 implies that ¢ is
injective, and Claim 3 implies that ¢ is an immersion (cf. also [Har77, II, Prop.7.3]).

Since X is compact, it is then clear that ¢ defines an embedding of X in P™.

We come to the proof of the claims. We will show Claim 1, and leave the other
claims as an exercise to the reader. Fix a point € X and denote by .7, its ideal
sheaf. Consider the exact sequence

0—>ﬂ¢®L®N—>L®N—>L®N\x — 0.
Taking the long exact sequence in cohomology we get
0 D(X, 7 © L®Y) - (X, L%Y) - C - 1 (X, 7, @ L&) — ...

where we used that the restriction of the line bundle L®N to the point x is the
trivial bundle. Thus in order to see that L&Y is generated by global sections in z,
it would be sufficient to show that for N sufficient high

(+)  H'(X,7, ©LEN) =0,

Since this implies that L®Y is generated by global sections in an open neighbour-
hood of z, the compactness of X implies that we can choose N € N that works for
every r € X.

The vanishing property (*) is indeed true, it is a special case of the Serre vanishing
theorem and implicitly this it what the proof of Lemma 4.20 will show. Nevertheless
we feel that it is a bit easier to show only that the inclusion

"X, %, @ L®N) — I'(X, L®N)

is strict. The argument goes as follows: let p : X’ — X be the blow-up of X
in the point x, then X’ is a compact Kéhler manifold (Exercise 2.49). Let E be
the exceptional divisor, then Ox/(—F) ~ .#g and it is not hard to see that its
push-forward (cf. Exercise 4.19) is the ideal sheaf of . Therefore we get

(O (=B) @ p* L) =~ 7, @ L#N.
Analogously one sees that

(X', 0x/(—E) @ p* L) =T(X, 7, @ L®N), T(X/, p* L) = (X, L®N).
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Therefore it is sufficient to show that the inclusion
(X', Ox(~E) @ " LN) o T(X/, 1" L®Y)
is strict. Consider the exact sequence
0— I5@u LN — p* LN — p*L®N|p — 0.
The restriction of the pull-back p*L®Y to the fibre E = p~1(x) is trival, so we get
0—D(X, 75 ® u L) - D(X, u* LEN) - C - H (X, I @ LEN) — ...
By Lemma 4.20 below, we have ﬁl(X, I @ L®N) =0 for N sufficiently high. [

4.20. Lemma. Let p: X’ — X be the blow-up of a compact Kéahler manifold of
dimension n in a point x € X, and denote by E the exceptional divisor. Let L be
a positive line bundle on X, then

(4.32) 1 (X, 55 @ p*LEY) = 0
for N sufficiently high.

Proof. We want to apply the Kodaira vanishing Theorem 4.8, so let us change
slightly the formulation of the problem. We have . ~ Ox/(—F) and Kx/ =
w*Kx + (n — 1)E by Exercise 2.49, so

I LN ~ Kx' ® Ox:/(—nE) @ p* (K% @ L)
and we will show that for N sufficiently high, the line bundle
Ox/(—nE) @ p*(Kx @ L®V)

is positive. Fix a metric h on L such that (L, h) is positive, and let hx be any metric
on K% . We know by Exercise 2.27 that for N; sufficiently high, the curvature form

1Oy hx +Open poni) =i(Oks nyx + N1OL 1)
is positive definite. In particular the pull-back p*(Kyx ® L®N1) admits a metric
with semi-positive curvature.
Consider now the restriction of the line bundle Ox/(—FE) to E. By Exercise 2.49
Ox/(—E)|p = Opn-1(1),

so we can endow Ox/(—FE)|g with the Fubini-Study metric. Fix now any metric hg
on Ox/(—FE) that extends the Fubini-Study metric. For any Ny € N, the curvature
form © associated to the metric h3" @ p*h®N2 on Ox/(—nE) @ p* LON2 satisfies

o(t,t) = n@ﬁX,(_E)JLE (t,t) + NQ(—)L?h(T‘u(t), T#(t)) VieTx: .
Fix now a point € X. Since hg|g is the Fubini-Study metric, it is clear that
O(t,t) = ne)ﬁxl(,E)whE (t,t) >0 VteTE,.

If t € Tg ., we have T),(t) # 0, so O (T, (t),T,(t)) > 0. Hence for sufficiently
high Ny, we get O(t,t) > 0. This shows that © is positive definite on Ty 4,
thus by continuity on T/, for 2’ in a small neighbourhood. Conclude with the
compactness of X. O
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4.21. Remark. Note that if X is a curve, then the blow-up in a point x is just the
curve X itself. So Lemma 4.20 shows that if X compact complex curve, z € X a
point, and L a positive line bundle on X, then

HY(X,O0x(z)* @ LN) =0
for N sufficiently high.

4.C. Sketch of proofs of results in Section 2.D.

Proof of Theorem 2.39. Let A be a positive holomorphic line bundle on X. As in
the proof of Kodaira’s embedding theorem we see that for N > 0 we have
hO(X, A®N) #0, WX, L@ A®N) 0.

Thus there exists an effective divisor D; such that AN ~ @x(D;) and an effective
divisor Dy such that L ® A®N ~ @x(D5). Thus we have L ~ Ox(D; — D5). O

Let us recall the Riemann-Roch theorem on curves.

4.22. Theorem. Let C be a compact curves, and let L be a holomorphic line
bundle on C'. Then we have

X(C L) =1-g(C) + /C e (L),

Proof of Theorem 2.51. By Theorem 2.39 and Remark 2.40 we can write L ~
Ox(C — E) with C and E smooth curves in X. We consider the exact sequences
0— Ox(—E)—> Ox — Og —0

and
0— Ox(-C)— Ox — Oc — 0.
Tensoring both sequences with &x (C') we obtain
0—-0x(C)®Ox(—E)~L— 0x(C)— Ox(C)|lg —0
and
0— Ox — Ox(C) = O0x(C)lc — 0.

By the additivity of the Euler characteristic for exact sequences this implies
X(X, L) + x(E, 0u(C)) = x(X, Ox) + x(C, 0c(C)).

Yet by the Riemann-Roch theorem for curves 4.22 we have

(B, 05(C)) = 1— g(E) + / 1 (05(C))

E
and

X(C.66(C) =1—4(C) + /C e1(06(C)).

By Theorem 2.41 we have

[ e@s() = [ alox@)ra@exc)~c-E

X



104 ANDREAS HORING
and analogously [, ¢1(0c(C)) = C?. Using the adjunction formula we see that

g(C):%(KX-i-C)-C—i-l

and
1
9(E) = §(Kx +E)-E+1.
Conclude with an elementary computation. O

4.23. Exercise. Let X be a complex torus of dimension two. Let A be a positive
line bundle on X. Show that H°(X, A) # 0. O

4.24. Exercise. Using the arguments from the Kodaira embedding theorem prove
that a holomorphic line bundle L on a compact curve C is positive if and only if

/Ccl(L) > 0.
(I

Proof of Theorem 2.50. By Theorem 2.39 and Remark 2.40 we can write L ~
Ox(C — E) with C and F smooth curves in X. We consider the exact sequence

0— Ox(—C)— Ox — Oc — 0.
Tensoring with L™ we obtain an exact sequence
(%) 0 L¥" @ Ox(—C)~ L¥"" '@ Ox(—E) — L®¥" — L|E™ — 0.
We consider the exact sequence
0— Ox(—E)— Ox — O — 0.
Tensoring with L®™~! we obtain an exact sequence
(3) 0— L¥" '@ Ox(—E) — L¥" ' - L|g" 1 — 0.

By hypothesis we have L-C > 0 and L- E > 0 so by Exercise 4.24 the line bundles
L|g and L|¢ are positive. Arguing as in the proof of Lemma 4.20 we obtain that

HY(C,LIE™) =0, HYE, L™ 1) =0

for all m > 0. By the long exact sequences in cohomology associated to the exact
sequences (*) and (x*) we obtain that

.H?()(7 L®m) ~ HQ(X, L®m-1g Ox(—E)) ~ 1_12()(7 L®m_1)

for all m > 0. In particular we see that h?(X, L®™) is a constant ¢ for m > 0. In
particular we have

X(X,L®™) = h%(X, L) — B! (X, L®™) 4 c.
By the Riemann-Roch theorem 2.51 we have
2
m

m
5 L= S Ex - L+x(X,0x),

X, L) =
X( Y ) 2



KAHLER GEOMETRY AND HODGE THEORY 105

so the hypothesis L? > 0 implies that x (X, L®™) goes to infinity for m — co. Thus
we see that for some m > 0 we have

RO(X, L®™) £ 0.
In order to simplify the notation in the rest of the proof we will suppose (without
loss of generality) that H°(X, L) # 0 and there exists a global section o such that
do(x) # 0 for every x € X such that o(x) = 0. In particular
D:={zeX|o(x)=0}
is a smooth curve. We have an exact sequence
0— Ox(—D)— Ox — Op — 0.
Tensoring with L®™ we obtain an exact sequence
(x) 0 1O LM pgm
Since L - D > 0 by hypothesis we see that L|p is positive, so
HY(D,LI§™) = 0
for all m > 0. By the long exact sequences in cohomology associated to the exact
sequence (x * x) we obtain that the map
HY(X,L®™ 1) —» HY(X,L®™)

is surjective for all m > 0. In particular we see that h'(X,L®™) is a constant d
for m > 0. Yet this implies that H'(X,L®™~1) — HY(X,L®™) is actually an
isomorphism, so the restriction arrow

H°(X,L®™) — H°(D,L|$™)
is surjective for m > 0. Since L|p is positive, the line bundle L|%m is globally

generated for m > 0. Thus we obtain that L®™ is globally generated for m > 0.
In particular we have a holomorphic map

0: X — PV

such that L®™ ~ o*Opn(1). We claim that ¢ is finite onto its image: arguing by
contradiction we suppose that there exists a curve A C X such that ¢(A) is a point.
Then we have
L™ A= ¢*Opn(1)-A=0,

a contradiction to our hypothesis. Yet once we know that ¢ is finite we can use
the general machinery of algebraic geometry to show that for m’ > m > 0 the line
bundle L&™ defines an embedding of X into the projective space. The isomorphism
L& ~ o*Opn (1) then implies that L is a positive line bundle. O
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APPENDIX A. HODGE THEORY

by Olivier Biquard

This chapter is an introduction to Hodge theory, and more generally to the analysis
on elliptic operators on compact manifolds. Hodge theory represents De Rham co-
homology classes (that is topological objects) on a compact manifold by harmonic
forms (solutions of partial differential equations depending on a Riemannian met-
ric on the manifold). It is a powerful tool to understand the topology from the
geometric point of view.

In this chapter we mostly follow reference [Dem96], which contains a complete
concise proof of Hodge theory, as well as applications in Ké&hler geometry.

A.A. The Hodge operator. Let V be a n-dimensional oriented euclidean vector
space (it will be later the tangent space of an oriented Riemannian n-manifold).
Therefore there is a canonical volume element vol € Q"V. The exterior product
QPV ANQP PV — Q"V is a non degenerate pairing. Therefore, for a form 3 € QPV,
one can define x3 € Q" PV by its wedge product with p-forms:

(1.33) aA*8 = {a, 5) vol
for all a € QPV. The operator * : QP — Q"~P is called the Hodge x operator.

In more concrete terms, if (e;);=1..n is a direct orthonormal basis of V, then
(el) IC{1,...,n} is an orthonormal basis of QV. One checks easily that

1l =vol, xet=e2Ae3A-- A€,
xvol =1, *ei:(fl)iflel/\~~/\eA"~~e”.
More generally,
(1.34) el = ¢(I,01)e
where €(I,CI) is the signature of the permutation (1,...,n) — (I,CI).

A.1. Exercise. Suppose that in the basis (e;) the quadratic form is given by the
matrix g = (g;;), and write the inverse matrix g=! = (¢%/). Prove that for a 1-form
o = e’ one has

(1.35) S (—1)i_1gijajel/\~--/\gi/\-~-/\e".
O
A.2. Exercise. Prove that %2> = (—1)?("=?) on Q7. O

If n is even, then * : Q%2 — Q"/2 satisfies > = (—1)"/2. Therefore, if n/2 is even,

the eigenvalues of % on 9"/ are £1, and Q"/? decomposes accordingly as

(1.36) Q2 =0, 00 .
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The elements of 2 are called selfdual forms, and the elements of Q_ antiselfdual
forms. For example, if n = 4, then (4 is generated by the forms
(1.37) etnettednet, elnedFeiaet, el net et el
A.3. Exercise. If n/2 is even, prove that the decomposition (1.36) is orthogonal
for the quadratic form Q%2 A Q"2 — Q" ~ R, and
(1.38) aha==%la)*vol ifacQy.
O

A 4. Exercise. If u is an orientation-preserving isometry of V| that is u € SO(V),
prove that u preserves the Hodge operator. This means the following: u induces an
isometry of V* = Q! and an isometry QPu of QPV defined by (QPu)(x!A---AxP) =
u(xt) A+ Au(zP). Then for any p-form o € QPV one has

*(QPu)a = (Q"7Pu) * a.
This illustrates the fact that an orientation-preserving isometry preserves every

object canonically attached to a metric and an orientation. [J

A.B. Adjoint operator. Suppose (M™,g) is an oriented Riemannian manifold,
and F — M a unitary bundle. Then on sections of F with compact support, one
can define the L? scalar product and the L? norm:

(1.39) (s,t) = /M<5,t>E vol?, lls||? = /M<3,S>E vol? .

If E and F are unitary bundles and P : T'(E) — T'(F) is a linear operator, then a
formal adjoint of P is an operator P* : I'(F') — I'(E) satisfying

(1.40) (Ps,t)g = (s, P*t)p

for all sections s € C°(E) and t € C°(F).

A.5. Example. Consider the differential of functions,
d:C™(M) — C>®(QY).

Choose local coordinates (z°) in an open set U C M and suppose that the function
f and the 1-form a = a;dx’ have compact support in U; write vol? = ~(x)dx! A
-+ Adx™, then by integration by parts:

/ <df) Oé> Volg = /g”@lfajydxl . dl‘n
M
- / Jougiayy)da’ - - da”

| I
\
&H
\g

._.
Q

Q
.
2
)

b

It follows that
(1.41) d*a = -y 0i(vgY ;).

More generally, one has the following formula.
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A.6. Lemma. The formal adjoint of the exterior derivative d : T'(QPM) —
L(QPHM) is
d* = (=) xdx.

Proof. For a € C°(Q0P) and 8 € C°(QP1!) one has the equalities:

/M<da, B)vol9 = /M du A xv

= dlu A *v) — (=1D)PuANd*v
M

by Stokes theorem, and using exercice A.2:

= (71)p+1“’(”7p)/ uA**kd*v
M

= (—1)”"“/ (u, *d * v) vol? .
M
O
A.7. Remarks. 1) If n is even then the formula simplifies to d* = — x dx.

2) The same formula gives an adjoint for the exterior derivative dV : ['(Q? ® E) —
['(QPT! ® E) associated to a unitary connection V on a bundle E.

3) As a consequence, for a 1-form « with compact support one has

(1.42) / (d*a)vol? =0
M
since this equals (o, d(1)) = 0.

A.8. Exercise. Suppose that (M™, g) is a manifold with boundary. Note 7 is the
normal vector to the boundary. Prove that (1.42) becomes:

(1.43) / (d*a) vol = —/ k= —/ s vol?M
M oM oM
(]

For 1-forms we have the following alternative formula for d*.

A.9. Lemma. Let FE be a vector bundle with unitary connection V, then the
formal adjoint of V : T'(M,E) — I'(M, Q! ® E) is
Via=-Tr9(Vu) = — Z(Veia)(ei).

1

Proof. Take a local orthonormal basis (e;) of TM, and consider an E-valued 1-form
a = azet. We have xa = (=1)""taze! A--- Ae? A--- Ae™ One can suppose that
just at the point p one has Ve;(p) = 0, therefore de’(p) = 0 and, still at the point
b,

AV x o = Z(viai)el A Aem.
1
Finally V*a(p) = — > (Via;)(p). -
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A.10. Remark. Actually the same formula is also valid for p-forms. Indeed,
dV : T(M,QP) — T'(M,QP*) can be deduced from the covariant derivative V :
I'(M,0P) — T'(M,Q' ® QP) by the formula'”

dV =(p+1aoV,

where a is the antisymmetrization of a (p 4+ 1)-tensor. Also observe that if a €
QF C @PQY, its norm as a p-form differs from its norm as a p-tensor by

lafé = pllalgrgr

Putting together this two facts, one can calculate that d* is the restriction of V*
to antisymmetric tensors in Q! @ QP. We get the formula

(1.44) d*a = —Zepvia.
1

Of course the formula remains valid for F-valued p-forms, if F has a unitary con-
nection V.

A.11. Exercise. Consider the symmetric part of the covariant derivative,
5 T(QY) — T(S2Qh).

Prove that its formal adjoint is the divergence 4, defined for a symmetric 2-tensor
h by

n

(6h)x = — E (Ve h) (e, X).
1
]

A.C. Hodge-de Rham Laplacian.

A.12. Definition. Let (M™,g) be an oriented Riemannian manifold. The Hodge-
De Rham Laplacian on p-forms is defined by

Aa = (dd* + d*d)a.

Clearly, A is a formally selfadjoint operator. The definition is also valid for FE-
valued p-forms, using the exterior derivative dV, where E has a metric connection

V.

A.13. Example. On functions A = d*d; using (1.41), we obtain the formula in
local coordinates:

(1.45) Af = —@a(ﬂ@@f)

In particular, for the flat metric g = > (dz*)? of R™, one has

7T his formula is true as soon as V is a torsion free connection on M.
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In polar coordinates on R?, one has g = dr? + r2df? and therefore
1 1
Af = _;ar(rarf) - ﬁagf

More generally on R™ with polar coordinates g = dr? + r2ggn-1, one has
1 e 1
Af = 77"”7_187(7’ larf) + ﬁASn—lf.
Similarly, on the real hyperbolic space H"™ with geodesic coordinates, g = dr? +
sinh?(r)ggn-1 and the formula reads
B 1
~ sinh(r)n!

A.14. Exercise. On p-forms in R™ prove that A(ardz!) = (Aaj)dz!. O

Or(sinh(r)" 10, f) + T%ASW,*I .

A.15. Exercise. Prove that * commutes with A. O

A.16. Exercise. If (M",g) has a boundary, prove that for two functions f and g
one has

[ @apgvor= [ dgrvo- [ SLgvarn.
M M oM on
Deduce 5 o
= 99 91 oM
[ @ngvo= [ gageis [ (158 oot
O

A.17. Exercise. Prove that the radial function defined on R™ by (V;, being the
volume of the sphere S™)

1 .
G(r):{(n—%vnw ifn>2

ilogr ifn=2

satisfies AG = §; (Dirac function at 0). Deduce the explicit solution of Af = g for
g € C(R™) given by the integral formula

f(x) = - G(lz —yl)g(y)|dy|™.

The function G is called Green’s function.
Similarly, find the Green’s function for the real hyperbolic space. [J
A.D. Statement of Hodge theory. Let (M™, g) be a closed Riemannian oriented
manifold. Consider the De Rham complex
0T L)L ... L@ —o.

Remind that the De Rham cohomology in degree p is defined by H? = {a €
C>(M,QP),da = 0}/dC> (M, QP~1).

Other situation: (E,V) is a flat bundle, we have the associated complex
0 av 1 avy avy
0-T(Q"RE)->T(QRFE)—-->T(Q"®FE)—0
and we can define the De Rham cohomology with values in F in the same way.

In both cases, we have the Hodge-De Rham Laplacian A = dd* + d*d.
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A.18. Definition. A harmonic form is a C*° form such that Aa = 0.

A.19. Lemma. If o € C(M,QP), then « is harmonic if and only if da = 0 and
d*a = 0. In particular, on a compact connected manifold, any harmonic function
is constant.

Proof. Tt is clear that if da = 0 and d*a = 0, then Aa = d*da + dd*a = 0.
Conversely, if Aa = 0, because

(Aa, @) = (d*de, @) + (dd*a, ) = ||de|]? + ||d*||?,
we deduce that dao = 0 and d*a = 0. (I

A.20. Remark. The lemma remains valid on complete manifolds, for L? forms
o such that da and d*« are also L?. This is proved by taking cut-off functions
X;, such that X;1(1) are compact domains which exhaust M, and |dy;| remains
bounded by a fixed constant C'. Then

/ (Aay, xja) vol = / ((da,d(xja» + (d*a,d*(;ga))) vol
M M

= / (Xj(|doz|2 + |d*a)?) + (da, dx; ANa) — (d*a, VXj_lOl>) vol
M

Using |dy;| < C and taking j to infinity, one obtains (Aa,a) = ||da||? + ||d*a||%.
Note H? the space of harmonic p-forms on M. The main theorem of this section
is:
A.21. Theorem. Let (M™, g) be a compact closed oriented Riemannian manifold.
Then:

(1) HP is finite dimensional;

(2) one has a decomposition C*(M,QP) = HP & A(C™(M,?)), which is

orthogonal for the L? scalar product.

This is the main theorem of Hodge theory, and we will prove it later, as a conse-
quence of theorem A.42. Just remark now that it is obvious that ker A L im A,
because A is formally selfadjoint. Also, general theory of unbounded operators
gives almost immediately that L2(M,QP) = HP @ im A. What is non trivial is:
finite dimensionality of H?, closedness of im A, and the fact that smooth forms in
the L? image of A are images of smooth forms.

Now we will derive some immediate consequences.

A.22. Corollary. Same hypothesis. One has the orthogonal decomposition
C®(M, Q) =HP @ d(C(M, Q™)) @ d* (C™ (M, Q¢ T)),

where

(1.46) kerd = H? & d(C™(M, Q"™ 1)),

(1.47) kerd* = HP @ d* (C*° (M, QPt)).
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Note that since harmonic forms are closed, there is a natural map H? — HP. The
equality (1.46) implies immediately:

A.23. Corollary. Same hypothesis. The map H? — HP is an isomorphism.

Using exercice A.15, we obtain:

A.24. Corollary.[Poincaré duality] Same hypothesis. The Hodge * operator in-
duces an isomorphism * : H? — H" P. In particular the corresponding Betti
numbers are equal, b, = b,_p.

A.25. Remark. As an immediate consequence, if M is connected then H™ = R
since H? = R. Since *1 = vol? and [, , vol? > 0, an identification with R is just
given by integration of n-forms on M.

A.26. Remark. In Kéhler geometry there is a decomposition of harmonic forms
using the (p, q) type of forms, H* ® C = ®EHP*~P and corollary A.24 can then be
refined as an isomorphism * : H?¢ — H™~%™~P where n = 2m.

A.27. Remark. Suppose that n is a multiple of 4. Then by exercises A.3 and
A.15, one has an orthogonal decomposition

(1.48) HY?=H, oH_.

Under the wedge product, the decomposition is orthogonal, H is positive and H_
is negative, therefore the signature of the manifold is (p,q) with p = dimH, and
q=dmH_.

A.28. Exercise. Suppose again that n is a multiple of 4. Note dy : T'(Q"/2~1) —
I'(Q.4) the projection of d on selfdual or antiselfdual forms. Prove that on (n/2—1)-
forms, one has d* dy = d* d_. Deduce that the cohomology of the complex

(1.49) 0T L1 2.

is H, H', ..., H"/?>~1 H,. O

@Y B, — 0

A.29. Exercise. Using exercise A.14, calculate the harmonic forms and the coho-
mology of a flat torus R"/Z". O

A.30. Exercise. Let (M, g) be a compact oriented Riemannian manifold.

1) If 7 is an orientation-preserving isometry of (M, g) and « a harmonic form, prove
that v*a is harmonic.

2) (requires some knowledge of Lie groups) Prove that if a connected Lie group G
acts on M, then the action of G on H*(M,R) given by a@ — ~v*a is trivial'®.

3) Deduce that harmonic forms are invariant under Isom(M, g)°, the connected
component of the identity in the isometry group of M. Apply this observation to

181¢ ¢ belongs to the Lie algebra of G and X¢ is the associated vector field on M given by the
infinitesimal action of G' (that is defined by X¢(z) = 4 et€g)4—0), then one has %(eté)*ah:o =

dt
fxg a= ixg doc-i—dixga. Deduce that if « is closed, then the infinitesimal action of G on H® (M, R)
is trivial.
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give a proof that the cohomology of the n-sphere vanishes in degrees k =1,...,n—1
(prove that there is no SO(n + 1)-invariant k-form on S™ using the fact that the
representation of SO(n) on QFR" is irreducible and therefore has no fixed nonzero
vector). O

A E. Bochner technique. Let (F, V) be a bundle equipped with a unitary con-
nection over an oriented Riemannian manifold (M",g). Then V : I'(E) — I'(Q! @
E) and we can define the rough Laplacian V*V acting on sections of E. Using a
local orthonormal basis (e;) of TM, from lemma A.9 it follows that

n
(1.50) V*Vs =Y =V Ves+Vy, s
1
If we calculate just at a point p and we choose a basis (e;) which is parallel at p,

then the second term vanishes.

In particular, using the Levi-Civita connection, we get a Laplacian V*V acting on
p-forms. It is not equal to the Hodge-De Rham Laplacian, as follows from:

A.31. Lemma.[Bochner formula] Let (M™, g) be an oriented Riemannian manifold.
Then for any 1-form o on M one has

Aa = V*Va + Ric(a).

A.32. Remark. There is a similar formula (Weitzenbock formula) on p-forms: the
difference Aa — V*Va is a zero-th order term involving the curvature of M.

Proof of the lemma. We have daxy = (Vxa)y — (Vya)x, therefore

ddax = =Y (Ve da)e,x =Y —(Ve,Ve,a)x + (Ve, Vxa)e,,
1 1

where in the last equality we calculate only at a point p, and we have chosen the
vector fields (e;) and X parallel at p.
Similarly, d*a = — Y] (Ve,@)e,, therefore

n

dd*ax = — ZVX((Veia)ei) = Z(vaeia)ei'

1

Therefore, still at the point p, comparing with (1.50),

n

(1.51) (Aa)x = (V*Va)x + Y (Re, x), = (V*Va)x + Ric(a)x.
1

O

A.33. Remark. There is a similar formula if the exterior derivative is coupled
with a bundle F equipped with a connection V. The formula for the Laplacian
A = (dV)*dY +dV(dV)* becomes

(1.52) Aa = V*Va + Ric(a) + ZY (),
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where the additional last term involves the curvature of V,
n

(1.53) Z (o) x = ZRZ7Xa(ei).
1

The proof is exactly the same as above, a difference arises just in the last equality
of (1.51), when one analyses the curvature term: the curvature acting on « is that
of Q' ® F, so equals R@ 1+ 1® RY, from which:

n

n
Z(Rei,Xa)ei = Ric(a)x + ZR;on(ei).
1 1

Now let us see an application of the Bochner formula. Suppose M is compact. By
Hodge theory, an element of H!(M) is represented by a harmonic 1-form a. By
the Bochner formula, we deduce V*Va + Ric(a) = 0. Taking the scalar product
with «, one obtains

(1.54) [Val? + (Ric(a), o) = 0.
If Ric > 0, this equality implies Va = 0 and Ric(a)) = 0. If Ric > 0, then « = 0; if
Ric > 0 we get only that « is parallel, therefore the cohomology is represented by

parallel forms. Suppose that M is connected, then a parallel form is determined by
its values at one point p, so we get an injection

H!' — Q;.
Therefore dim H' < n, with equality if and only if M has a basis of parallel 1-

forms. This implies that M is flat, and by Bieberbach’s theorem that M is a torus.
Therefore we deduce:

A.34. Corollary. If (M™, g) is a compact connected oriented Riemannian manifold,
then:

e if Ric > 0, then by (M) = 0;
e if Ric > 0, then b(M) < n, with equality if and only if (M,g) is a flat
torus.

This corollary is a typical example of application of Hodge theory to prove vanishing
theorems for the cohomology: one uses Hodge theory to represent cohomology
classes by harmonic forms, and then a Weitzenb6ck formula to prove that the
harmonic forms must vanish or be special under some curvature assumption. For
examples in Ké&hler geometry see [Dem96].

A.F. Differential operators. A linear operator P : I'(M, E) — I'(M, F) between
sections of two bundles E and F is a differential operator of order d if, in any local
trivialisation of E and F over a coordinate chart (z*), one has

Pu(z) = Z a®(x)0pu(x),
ol <d

where o = (a1,...,q) is a multiindex with each o; € {1...n}, |a| =k, 0o =
Oay - - - Oay» and a®(z) is a matrix representing an element of Hom(E,, F).
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The principal symbol of P is defined for x € M and £ € Ty M by taking only the
terms of order d in P:

O—P(xvg) - Z aa(x)ga,

|a|=d

where &, = &4, -+ €, if € = &da’. Tt is a degree d homogeneous polynomial in the
variable ¢ with values in Hom(E,, F,).

A vpriori, it is not clear from the formula in local coordinates that the principal
symbol is intrinsically defined. But it is easy to check that one has the following
more intrinsic definition: suppose f € C*(M), t € R and u € T'(M, E), then

eftf(m)p(etf(r)u(z))

is a polynomial of degree d in the variable ¢, whose monomial of degree d is a
homogeneous polynomial of degree d in df (). It is actually

top(x, df (z))u(z).

The following property of the principal symbol is obvious.
A.35. Lemma. op,g =0poog .

A.36. Examples. 1) If one has a connection V : I'(E) — I'(Q' ® E), then
e V(e u) = tdf ® u+ Vu. Therefore

ov(z,€) = €@ : T(E;) — T(Q; © Ey).
2) The principal symbol of the exterior derivative d¥ : I'(Q” ® E) — I'(QPT @ E)
is og(z, &) = EA.
3) The principal symbol of d* : TP @ E) — T'(Q ® E) is o4« (z,&) = —£..
4) The principal symbol of the composite V*V is the composite —(£1) o (£®) =
—l¢P.

A.37. Exercise. Prove that the principal symbol of the Hodge-De Rham Laplacian
is also oa(7,&) = —[€]2. O

A.38. Lemma. Any differential operator P : I'(E) — I'(F) of order d has a formal
adjoint P*, whose principal symbol is

op-(2,€) = (=1)%op(z,€)".

A.39. Exercise. Prove the lemma in the following way. In local coordinates, write
vol? = v(z)dz* A --- A dz™. Choose orthonormal trivialisations of E and F', and
write P = )" a®*(x)0,. Then prove that

Pt= Y (—1)l—Lg, (u()a®(@)"t).

lal<d v(®)

The proof is similar to that in example A.5. O
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A.40. Remark. In analysis, the principal symbol is often defined slightly dif-
ferently: &; corresponds to D; = %% The advantage is that D; is formally
selfadjoint, so with this definition the principal symbol of P* is always op(z,&)*

and the principal symbol of the Laplacian becomes positive.

A.41. Definition. A differential operator P : T'(E) — T'(F) is elliptic if for any
x € M and £ # 0 in T, M, the principal symbol op(x,§) : E, — F is injective.

Here is our main theorem on elliptic operators. It will be proved in section A.H.

A.42. Theorem. Suppose (M",g) is a compact oriented Riemannian manifold,
and P :T'(E) — T'(F) is an elliptic operator, with rank £ = rank F'. Then

(1) ker(P) is finite dimensional;
(2) there is a L? orthogonal sum

C>(M,F) = ker(P*) ® P(C*(M, E)).

The Hodge theorem A.21 follows immediately, by applying to the Hodge-De Rham
Laplacian A.

Remark that ker(P*) is also finite dimensional, since P* is elliptic if P is elliptic.
The difference dim ker P — dim ker P* is the index of P, defined by

ind(P) = dim ker P — dim coker P.
Operators with finite dimensional kernel and cokernel are called Fredholm operators,
and the index is invariant under continuous deformation among Fredholm operators.
Since ellipticity depends only on the principal symbol, it follows immediately that

the index of P depends only on op. The fundamental index theorem of Atiyah-
Singer gives a topological formula for the index, see the book [BGV04].

A useful special case is that of a formally selfadjoint elliptic operator. Its index is
of course zero. The invariance of the index then implies that any elliptic operator
with the same symbol (or whose symbol is a deformation through elliptic symbols)
has also index zero.

A.G. Basic elliptic theory. In this section we explain the basic results enabling
to prove theorem A.42.

Sobolev spaces. The first step is to introduce the Sobolev space H*(R™) of tem-
pered distributions f on R™ such that the Fourier transform satisfies

(1.55) IF1IZ = /Rn [FE)P(L+ [€7)*|dg|" < +oe.

Equivalently, H*(R"™) is the space of functions f € L?(R") which admit s derivatives
in distribution sense'® in L2, and

(1.56) I£IZ ~ > [10as]Z-.

jal<s

19Weak derivative: g = Do f if for any ¢ € C2°(R™) one has fRn(Daqb)f = fR" bg.
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(But observe that the definition (1.55) is valid also for any real s).

If M is a compact manifold and E a vector bundle over M, then one can define
the space C*(M, E) of sections of E whose coefficients are of class C* in any
trivialisation of E, and H*(M, E) the space of sections of E whose coefficients in
any trivialisation and any coordinate chart are functions of class H® in R™. If M is
covered by a finite number of charts (U;) with trivialisations of E|y, by a basis of
sections (ej,q)a=1,...,r, choose a partition of unity (x;) subordinate to (U;), then a
section u of E can be written u = ) x;u; o€, With x;u; o a function with compact
support in U; C R”, therefore

(1.57) luller = sup Ixjusallcr@ny,  lulls =D X520 Fre ny -

7

Up to equivalence of norms, the result is independent of the choice of coordinate
charts and trivialisations of E.

There is another approach to define C* and H*® norms for sections of E. Suppose
that M™ has a Riemannian metric, and F is equipped with a unitary connection
V. Then one can define

(1.58) (||l cx —supsup|V]u| llulls Z/ |VIu|? vol? .
i<k

A.43. Remark. On a noncompact manifold, the definition (1.57) does not give a
well defined class of equivalent norms when one changes the trivialisations. On the
contrary, definition (1.58), valid only for integral s, can be useful if (M, g) is non
compact; the norms depend on the geometry at infinity of g and V.

A.44. Example. If M is a torus T, then the regularity can be seen on the Fourier
series: f € H*(T") if and only if
7112 = D (L+1EP)*1F ()7 < +oo.
gezn

From the inverse formula f(z) = }_; f(€)exp(i(€,z)), by the Cauchy-Schwartz
inequality,

< 2 < 2\ —s\1/2 . n .

<D FOISIAQ A +167)7) 7 < +oo if s> 5

gezr 3

It follows that there is a continuous inclusion H® € C°is s > 5. Similarly it follows
that H® c C* if s>k+ 3.
Of course the same results are true on R™ using Fourier transform, and one obtains

the following lemma.

A.45. Lemma.[Sobolev] If M™ is compact, k € N and s > k + &, then there is a
continuous and compact injection H® C C*.

The fact that the inclusion is compact follows from the following lemma (which is
obvious on a torus, and the general case follows):
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A.46. Lemma.[Rellich] If M™ is compact and s > ¢, then the inclusion H* C H'
is compact.

Action of differential operators. If P : T'(M,E) — I'(M, F) is a differential
operator of order d, then looking at P in local coordinates it is clear that P induces
continuous operators P : H*+Y4(M, E) — H*(M, F).

In general a weak solution of the equation Pu = v is a L? section u of E such that
for any ¢ € C2°(M, F) one has

(u, P*¢) = (v, 9).
We can now state the main technical result in this section.

A.47. Lemma.[Local elliptic estimate| Let P : I'(M, E) — I'(M, F') be an elliptic
operator. Fix a ball B in a chart with local coordinates (z¢) and the smaller ball
Bi/>. Suppose that u € L?*(B,E) and Pu € H*(B,F), then u € H*"(By 5, E)
and

(1.59) ullzrovas, ) < C1Pulles) + lullzs))-

A.48. Remark. An important addition to the lemma is the fact that for a family
of elliptic operators with bounded coefficients and bounded inverse of the principal
symbol, one can take the constant C to be uniform.

A.49. Remark. Elliptic regularity is not true in C* spaces, that is Pu € C* does
not imply v € C*+4 in general.

We will not prove lemma A.47, which is a difficult result. There are basically two
ways to prove it. The first way is to locally approximate the operator on small balls
by an operator with constant coefficients on R™ or T™, where an explicit inverse is
available using Fourier transform: one then glues together these inverses to get an
approximate inverse for P which will give what is needed on u. See [War83] for this
method. The second way is more modern and uses microlocal analysis: one inverts
the operator “microlocally”, that is fiber by fiber on each cotangent space—this is
made possible by the theory of pseudodifferential operators. See a nice and concise
introduction in [Dem96].

This implies immediately the following global result:

A.50. Corollary.[Global elliptic estimate] Let P : I'(M,E) — T'(M,F) be an
elliptic operator. If u € L2(M, E) and Pu € H*(M, F), then u € H**4(M, E) and

(1.60) lulls+a < C(I1Pulls + llull2)-
From the elliptic estimate and the fact that NgH® = C*°, we obtain:

A.51. Corollary. If P is elliptic and Pu = 0, then u is smooth. More generally, if
Pu is C° then u is C°.

A.52. Exercise. Prove (1.60) for operators with constant coefficients on the torus.
O
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A.H. Proof of the main theorem. We can now prove theorem A.42.

First let us prove the first statement: the kernel of P is finite dimensional. By the
elliptic estimate (1.60), for u € ker(P) one has

[ulls+a < Cful e.
Therefore the first identity map in the following diagram is continuous:
(ker P, L?) — (ker P, H**%) — (ker P, L?).

The second inclusion is compact by lemma A.46. The composite map is the identity
of ker P equipped with the L? scalar product, it is therefore a compact map. This
implies that the closed unit ball of ker(P) is compact, therefore ker(P) is a finite
dimensional vector space.

Now let us prove the theorem in Sobolev spaces. We consider P as an operator
(1.61) P:H*"(M,E) — H*(M,F),

and in these spaces we want to prove

(1.62) H*(M, F) = ker(P*) & im(P).

We claim that for any e > 0, there exists an L? orthonormal family (v, ...,vy) in
H5t4 such that

N

1/2

(1.63) ull 2 < ellullsra+ (Y [(vg,w)[?) 7
1

Suppose for the moment that the claim is true. Then combining with the elliptic
estimate (1.60), we deduce
N

1/2
(1= CO)lfullsra < CPulls + (3 (v w)]?) .
1

Choose € = 55, and let T be the subspace of sections in H**%(M, E) which are L?

orthogonal to the (v;);=1..n. Then we obtain
2||u||s+a < C||Pul|s for ueT.

It follows that P(T) is closed in H*(M,F). But im(P) is the sum of P(T) and
the image of the finite dimensional space generated by the (v;);=1.. n, so im(P) is
closed as well in H*(M, F).

Finally the statement (1.61) in the Sobolev spaces H® implies the statement for
the space C°°, which finishes the proof of the theorem. Indeed, suppose that
v € C*®°(M, F) is L? orthogonal to ker(P*). Fix any s > 0 and apply (1.62) in
H?: therefore there exists u € H*t¢(M, E) such that Pu = v. Then u is C* by
corollary A.51.

It remains to prove the claim (1.63). Choose a Hilbertian basis (v;) of L%, and sup-
pose that the claim is not true. Then there exists a sequence of (uy) € H*t4(M, E)
such that

(D) Nlunllzz =1,
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1/2

(2) ellunllsra + (X7 (v, un)?) " < 1.

From the second condition we deduce that (uy) is bounded in H**4(E), therefore
there is a weakly convergent subsequence in H*+t¢(E), and the limit satisfies
ellulls+a + [lullo < 1.
By the compact inclusion H**¢ C L? this subsequence is strongly convergent in
L?(E) so by the first condition, the limit u satisfies
[ullo =1,
which is a contradiction.

A.53. Remark. The same proof applies for an elliptic operator P : T'(E) — I'(F)
where the ranks of F and F' are not the same. The results are

(1) ker P is finite dimensional (this can be also obtained by identifying ker P
with ker P* P, and by noting that P*P is elliptic if P is elliptic);

(2) the image of the operator P : H**4(M,E) — H*(M,F) is closed, and
there is a L? orthogonal decomposition H*(M, F) = ker P* & im P; note
that here ker P* depend on s as P* is not elliptic if rank F' > rank F.
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