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Chapter 1

Sheaf theory

In complex geometry one frequently has to deal with functions which have vari-
ous domains of definition. The notion of a sheaf gives a suitable formal setting to
handle this situation. In exchange of their rather abstract and technical nature,
they will provide us the framework of a very general cohomology theory, which
encompasses also the “usual” topological cohomology theories such as singular
cohomology. Sheaf theory is a powerful tool, which allows us to unveil the links
between topological and geometric properties of complex manifolds.

1.1 Sheaves and presheaves of abelian groups

Throughout this chapter we generally denote by X a topological space and by
the letters U, V,W its open subsets. Moreover, if {Uj1 , . . . , Ujk} is a collection
of open sets in X we denote by Uj1...jk the intersection

Uj1...jk = Uj1 ∩ · · · ∩ Ujk

Definition. We say that F is a presheaf of abelian groups on X if

(a) to each open subset U ⊂ X there corresponds an abelian group F(U).

(b) for each inclusion of open sets V ⊂ U there corresponds a homomorphism
of groups ρUV : F(U)→ F(V ) called restriction, such that

• ρUU = id for all U .

• ρVW ◦ ρUV = ρUW for W ⊂ V ⊂ U .

By definition F(∅) := 0, the trivial group. One also writes F(U) = Γ(U,F).
Elements s ∈ F(U) are called sections. We often write s|V instead of ρUV (s).

Thus, in order to define a presheaf, one has to define the groups and the
restrictions. In an analogous way one could talk about presheaves of vector
spaces, rings, sets, etc. In the following we will simply talk of presheaves, always
meaning presheaves of abelian groups.

Example. Let C0(U) be the vector space of all continous maps f : U → R.
Then F = C0 is a presheaf with the natural restrictions of maps ρUV (f) = f |V .
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Example. For F = C0 define the following restrictions: ρUU (f) = f and
ρUV (f) = 0 if V ( U . Then (C0, ρ) is clearly a presheaf on X.

The nastiness of the last example suggests us to require some more:

Definition. A presheaf F is called a sheaf (of abelian groups) on X if it satifies
the following conditions, which we will call the sheaf axioms:

(I) Local identity: If {Uj} is a collection of open sets in X and U =
⋃
Uj

then s, t ∈ F(U) and s|Uj = t|Uj for all j implies s = t.

(II) Glueing: If {Uj} is a collection of open sets in X and U =
⋃
Uj then for

any collection of sections sj ∈ F(Uj) with sj |Uij = si|Uij for all i, j there
always exists a global section s ∈ F(U) such that s|Uj = sj for all j.

The sections sj as in (II) are called compatible and s is called the glueing of
the sections sj . By (I) s is unique. Thus we can summarize (I) and (II) as:

In a sheaf there exists a unique glueing for all compatible sections

Remark 1.1.1. By linearity of the restrictions we get the following equivalence

(I) ⇐⇒ s ∈ F(U) with s|Uj = 0 for all j implies s = 0

which we’ll use more often to check that a presheaf satisfies the first sheaf axiom.

Example. C0 with the natural restrictions is a sheaf on X. In fact it clearly
satisfies (I). As for the glueing axiom, suppose fj : Uj → R are continous and
fi|Uij = fj |Uij . On U =

⋃
Uj define the glueing f(x) := fj(x) for x ∈ Uj. We

only need to check that f ∈ C0(U). Let B ⊂ R be open. Then, since f |Uj = fj,

f−1(B) =
⋃
j

f−1(B) ∩ Uj =
⋃
j

f−1
j (B)

so f is continous.

Example. In a similar fashion we see that if X is a smooth manifold one has
the sheaf of smooth functions C∞, where

C∞(U) = {f : U → R : f smooth}

the sheaf of smooth real-valued p-forms Ep, where

Ep(U) = {smooth real p-forms on U}

If X is also a complex manifold we have the sheaf of holomorphic functions O,

O(U) = {f : U → C : f holomorphic}

and the sheaf of holomorphic p-forms Ωp, and so on. We can also consider the
sheaf O∗ of non vanishing (or “invertible”) holomorphic functions

O∗(U) = {f : U → C∗ : f holomorphic}

where we are considering O∗(U) as a group under multiplication of functions.
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Example. A presheaf that doesn’t satisfy the local identity axiom: for a presheaf
F , redefine ρUV = 0 for all V ( U . Then the local identity axiom does not hold1.

Example. A presheaf that doesn’t satisfy the glueing axiom: Let X be a topo-
logical space for which there exist two open disjoint subsets U1, U2. Let G be a
non trivial abelian group. Consider the presheaf G of constant maps

G(U) = {f : U → G : f constant}

with the natural restrictions. Let a1, a2 ∈ G be two distinct elements and define,
for i = 1, 2 the maps fi ∈ G(Ui) as fi(x) = ai for all x ∈ Ui. Since U1 ∩U2 = ∅
we have fi|U12 = 0 (as G(∅) = 0). Then on U = U1 ∪U2 there can be no glueing
f ∈ G(U) of f1, f2 because f must be constant and a1 6= a2.

Stalk of a presheaf

The stalk of a sheaf is a useful construction capturing the behaviour of a sheaf
around a given point. Although sheaves are defined on open sets, the underlying
topological space X consists of points. It is reasonable to attempt to isolate the
behavior of a sheaf at a single fixed point a ∈ X. Conceptually speaking, we do
this by looking at small neighborhoods of the point. If we look at a sufficiently
small neighborhood of a, the behavior of a sheaf F on that small neighborhood
should be the same as the behavior of F at that point. Of course, no single
neighborhood will be small enough, so we will have to take a limit of some sort.
This construction is general and it is called direct limit. It goes as follows.

Let F be a presheaf on a topological space X. For a ∈ X we consider the
family of groups F(U) for which U 3 a. On the disjoint union of this groups we
introduce an equivalence relation: for s ∈ F(U), t ∈ F(V ) we let

s ∼ t ⇐⇒ ∃W ⊂ (U ∩ V ) such that s|W = t|W

In other words we consider equivalent those sections that coincide locally.

Definition. The stalk of the presheaf F at a ∈ X is the group

Fa := lim−→
U3a
F(U) :=

⊔
U3a
F(U)

/
∼

An element in Fa is called the germ of a section of F . The germ of s ∈ F(U)
will be denoted by sa. The germ of a section is represented by a pair (U, s). For
this reason when we want to keep track of U for a germ we also write

sa = 〈U, s〉 ∈ Fa

Remark 1.1.2. Fa is actually a group: let sa = 〈U, s〉, ta = 〈V, t〉. We define

sa + ta := 〈U ∩ V, s|U∩V + t|U∩V 〉

Let’s check it’s well defined: let sa = 〈U ′, s′〉, ta = 〈V ′, t′〉. Then there exists
W ⊂ (U ∩U ′∩V ∩V ′) such that s|W = s′|W and t|W = t′|W since s ∼ s′, t ∼ t′.
Thus 〈U ∩ V, s|U∩V + t|U∩V 〉 = 〈W, s|W + t|W 〉 = 〈U ′ ∩ V ′, s′|U ′∩V ′ + t′|U ′∩V ′〉.

1unless F is the trivial sheaf: F(U) = 0 for all U
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Example (germs of holomorphic functions). Let X be a complex manifold and
consider its sheaf O of holomorphic functions. Let a ∈ U ⊂ X with a local chart
z : U → Cn, with z(a) = 0. Let fa ∈ Oa be the germ of a holomorphic function
f ∈ O(V ). Then fa = 〈V, f〉 = 〈V ∩ U, f |V ∩U 〉. Moreover f has a convergent
power series expansion about a: for all x in some W ⊂ V ∩ U we can write

f(x) =

∞∑
ν1,...,νn=0

cν1...νnz1(x)ν1 · · · zn(x)νn

In particular fa = 〈W, f |W 〉, so fa is represented by a convergent power series.
Conversely, two holomorphic functions on neighborhoods of a determine the
same germ at a precisely if their series expansion about a coincide. Thus there
is an isomorphism of groups (in fact, of rings)

Oa ' {convergent power series about 0 ∈ Cn}

Remark 1.1.3. For any U the map F(U) → Fa, s 7→ sa which assigns to each
section its equivalence class is a homomorphism of abelian groups. It is written

ρUa (s) := sa

In fact if s, t ∈ F(U) then sa + ta = (s+ t)a.

Proposition 1.1.1. Let F be a sheaf on X and s ∈ F(U). Then

s = 0 ⇐⇒ sa = 0 for all a ∈ U

Proof. Suppose sa = 0 for all a ∈ U . Then sa = 〈U, s〉 = 〈U, 0〉. So there is a
small neighborhood Wa of a such that s|Wa

= 0|Wa
= 0. By the local identity

axiom (I) it follows s = 0, as U =
⋃
Wa and s|Wa

= 0 for all a.

1.2 Homomorphisms and sheafification

Let F ,G be two presheaves (of abelian groups) on X.

Definition. A homomorphism of (pre)sheaves (or just morphism) is a collection
of homomorphisms of groups αU : F(U) → G(U) for any U ⊂ X open subset,
which are compatible with the restrictions: the following diagram commutes
(the vertical maps are the restriction maps of F and G)

F(U) G(U)

F(V ) G(V )

αU

αV

for all V ⊂ U open. In other words we can always write

αU (s)|V = αV (s|V )

If αU is injective for all U we say that F is a sub(pre)sheaf of G.

5



Remark 1.2.1. A morphism α : F → G induces a homomorphism on the stalks

αa : Fa −→ Ga 〈U, s〉 7→ 〈U,αU (s)〉 (i.e. αa(sa) = αU (s)a)

In fact we only need to check that this is well defined: if 〈U, s〉 = 〈V, t〉 then
there exists W ⊂ (U ∩ V ) such that s|W = t|W . Thus

〈U,αU (s)〉 = 〈W,αU (s)|W 〉 = 〈W,αW (s|W )〉 = 〈W,αW (t|W )〉 = 〈V, αV (t)〉

Thus we get a commutative diagram

F(U) G(U)

Fa Ga

αU

αa

Definition. A morphism α : F → G is called isomorphism of presheaves if
there exists a morphism β : G → F such that β ◦ α = idF and α ◦ β = idG . In
other words αU is an isomorphism of groups for all U .

Remark 1.2.2. The stalks Fa and Ga of two sheaves can be isomorphic for all
a ∈ X without having F and G isomorphic, of course. In other words two locally
isomorphic sheaves are not isomorphic (think of vector bundles!). A conceptual
explanation for why this is untrue is as follows: a sheaf consists of local data plus
some global data specifying how the local data fit together. Even if all of the
local data of two sheaves are isomorphic, there is no reason to believe that those
isomorphisms can be fit together in a compatible way. This is why we require
that the isomorphisms on stalks arise from a map that is already a morphism of
sheaves: this exactly says that the data fit together in the proper way. Simply
having isomorphisms “pointwise” is not enough. The isomorphisms must also
commute with the restriction maps.

Example (exterior derivative). If X is a complex manifold let

Ap = {smooth complex p-forms}

Then d : Ap → Ap+1, ω 7→ dω is a morphism of sheaves.

Example. C∞ ↪→ C0 on a complex manifold X is a sheaf morphism.

Example. Let X = R. Fixing h ∈ C∞(R) we can define α : C∞ → C∞ as the
sheaf morphism αU (f) = hf for all U . Another one: β : C∞ → C∞, βU (f) = f ′.

Remark 1.2.3. Suppose sa has representative s̃ ∈ F(U) and ta = αa(sa) has
representative t̃ ∈ G(V ). Then we can always find W such that sa and ta have
representatives s ∈ F(W ), t ∈ G(W ) and, most importantly

t = αW (s)

In fact ta = 〈V, t̃〉 = 〈U,αU (s̃)〉 so there is W ⊂ U ∩ V such that (s := s̃|W )

t := t̃|W = αU (s̃)|W = αU (s̃|W ) = αU (s)
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Definition. Let F ,G,H be sheaves on X. We say that a sequence of morphisms

F α−→ G β−→ H

is exact if it is exact on the stalks: for all a ∈ X the following sequence is exact

Fa
αa−→ Ga

βa−→ Ha

In particular we call α : F → G injective/surjective if it is such on the stalks.

Remark 1.2.4. We do not require F(U)
αU−→ G(U)

βU−→ H(U) to be exact.

Example. It is possible to have a sheaf morphism α : F → G surjective on
the stalks (so F α−→ G → 0 exact) but with αX : F(X) → G(X) not surjective.
Consider the punctured plane X = C∗ and the sheaves O and O∗ on X. Let

exp : O −→ O∗, f 7−→ ef

Now expX : O(X) → O∗(X) is not surjective: id : C∗ → C∗, z 7→ z does not
admit a global logarithm (no f = log(z) as a single-valued function on C∗). On
the other hand expa : Oa → O∗a is surjective for any a ∈ X: let ga ∈ O∗a. Then
ga = 〈U, g〉 with U a small open ball around a and g : U → C∗ holomorphic. As
U is simply connected and g is non vanishing we get a well defined2 holomorphic
function f := log(g) on U . Hence expU (f) = g, so expa(fa) = ga.

Proposition 1.2.1. Let F ,G,H be sheaves on X. Then

(i) F α−→ G β−→ H exact =⇒ βU ◦ αU : F(U)→ H(U) is zero ∀U .

(ii) 0→ F α−→ G β−→ H exact =⇒ 0→ F(U)
αU−→ G(U)

βU−→ H(U) exact ∀U .

Proof. (i) Let f ∈ F(U), some U . Since for all a ∈ X we have Im(αa) = ker(βa)
we get (βU (αU (f)))a = βa(αU (f)a) = βa ◦αa(fa) = 0. In other words, the germ
of βU (αU (f)) ∈ H(U) at a is zero for all a ∈ U . Since H is a sheaf, by the local
identity axiom (I) it follows βU (αU (f)) = 0.
(ii) Exactness in F(U): let f ∈ F(U) with αU (f) = 0. Then on all the stalks
αa(fa) = 0, thus fa = 0 for all a since αa is injective. Hence f = 0 by (I).
Exactness in G(U): by the first part of the proposition we know that αU ◦βU = 0,
thus Im(αU ) ⊂ ker(βU ). Let’s prove the other inclusion. Let g ∈ G(U) with
βU (g) = 0. Then 0 = βU (g)a = βa(ga). Thus ga ∈ ker(βa) = Im(αa). Hence
g|Wa

= αWa
(fWa

) for some Wa 3 a and fWa
∈ F(Wa). The collection {Wa}a∈U

is a covering of U and on Wab := Wa ∩Wb we get symmetrically

g|Wab
= (g|Wa)|Wab

= αWa(fWa)|Wab
= αWab

(fWa |Wab
)

g|Wab
= (g|Wb

)|Wab
= αWb

(fWb
)|Wab

= αWab
(fWb

|Wab
)

Hence fWa |Wab
= fWb

|Wab
as αU ’s injective. By the glueing axiom on F there

must be f ∈ F(U) such that f |Wa
= fWa

. On the other hand, for all Wa

αU (f)|Wa
= αWa

(f |Wa
) = g|Wa

which implies αU (f) = g by the local identity axiom on the sheaf G.

2fixing log(z) := log |z|+ i arg(z)
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Proposition 1.2.2. Let α : F → G be a morphism of sheaves. Then α is an
isomorphism of sheaves if and only if αa is an isomorphism for all a ∈ X.

Proof. Let αa : Fa → Ga be an isomorphism for all a. This is equivalent to

0→ Fa
αa−→ Ga → 0

exact for all a ∈ X. Thus 0 → F(U)
αU−→ G(U) → 0 is exact for all U by the

previous proposition. In other words αU is an isomorphism for all U .

Kernel, Image and Quotient sheaves

Let F ,G be sheaves on X and α : F → G a morphism. Then we get a subsheaf
of F : for each group F(U) we can consider its subgroup

ker(α)(U) := ker{αU : F(U) −→ G(U)}

and using the same restrictions existing on F we get the kernel sheaf ker(α).

Remark 1.2.5. ker(α) is actually a sheaf. In fact let U =
⋃
Uj be a covering of

an open subset U ⊂ X. The first axiom is obviously satisfied. The gluing axiom
is also valid: let sj ∈ ker(α)(Uj) = ker(αUj ) be such that sj |Uij = si|Uij for all
i, j. As ker(αUj ) ⊂ F(Uj) and F is a sheaf we know that there exists a (unique)
section s ∈ F(U) such that s|Uj = sj . We only need to prove s ∈ ker(αU ). This
holds because G is a sheaf and thus αU (s)|Uj = αU (sj) = 0 implies αU (s) = 0.

Remark 1.2.6. Note that we get an exact sequence of sheaves by inclusion

0→ ker(α) ↪→ F α−→ G

Analogously, one can consider the subpresheaf of G given by the family of
subgroups Im(α)(U) := Im(αU ) ⊂ G(U). However Im(α) is not a sheaf!

Example. Let X = C∗ and consider exp : O → O∗. As we have already seen
O∗(C) 3 id /∈ Im(expC). However, using the log on a family of disks Uj of
radius j around the origin we see that the sections tj := id |Uj ∈ O∗(Uj) are
such that there exist sj ∈ O(Uj) with tj = exp(sj). Since ti|Uij = tj |Uij and O∗
is a sheaf there is a unique gluing s ∈ O∗(C). But s = id /∈ Im(expC). Thus the
presheaf Im(exp) fails to satisfy the glueing axiom.

Analogously, one can consider coker(α) as the subpresheaf of G given by

coker(α)(U) := coker(αU ) =
G(U)

Im(αU )

which also fails to be a sheaf in general. The cokernel sheaf is important as it is
the starting point for the construction of the quotient sheaf G/α(F). Precisely,
the quotient sheaf is defined as the sheaf generated by the presheaf coker(α).
In the same manner, the image sheaf is conveniently defined to be the sheaf
generated by the presheaf Im(α). But, first of all, we need to know what a
“sheaf generated by a presheaf” actually is. This leads to sheafification.
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Sheafification

Let F be a presheaf of abelian groups on a topological space X. We want to
show that there exists a sheaf F+ on X and a morphism τ : F → F+ such that
if G is a sheaf on X and α : F → G is a morphism then there exists a unique
morphism α+ : F+ → G that makes the following diagram commute

F F+

G

τ

α
∃!

Moreover the pair (F+, τ) is unique. In particular F+ = F , if F is a sheaf.

F+(U) :=

{
s : U −→

⋃
a∈U
Fa satifying (i) and (ii)

}

(i) s preserves the stalks: s(a) ∈ Fa for all a ∈ U .

(ii) s is locally a section of F : any point a ∈ U has a neighborhood Va ⊂ U
and a section t ∈ F(Va) such that s(b) = tb for all b ∈ Va.

We define restrictions on F+ as the natural restrictions of maps: s 7→ s|V for
all V ⊂ U . First of all we claim that this is a sheaf on X. In fact:

(I) Local identity holds: let s ∈ F+(U) and s|Uj = 0 on a covering of U .
Then s(x) = 0 for all x ∈ U . Thus s = 0.

(II) Gluing axiom holds: let sj ∈ F+(Uj) with sj |Uij = si|Uij on all the
intersections Uij of a covering of U ⊂ X. Define a section s ∈ F+(U) as
the most reasonable one: s(x) := sj(x) for x ∈ Uj . The local conditions of
the sj ’s make it well defined. Moreover it is the glueing by definition. We
have to show that s is actually a section of F(U). Condition (i) is obvious.
Also (ii) is clearly satisfied as s is locally equal to some sj ∈ F+(Uj).

There is a natural morphism τ : F → F+. Let f ∈ F(U). Define

f+ : U −→
⋃
Fa a 7−→ fa

Then f+ ∈ F+(U) for (i) is obvious and (ii) holds with Va = U and t = f . Put
τU (f) = f+. Then τ is clearly a morphism of presheaves. Now let α : F → G
be a morphism. Define α+ : F+ → G as follows. Let s ∈ F+(U). Then by
definition there exist neighborhoods Va ⊂ U for all a ∈ U as in (ii), i.e. with
some sections t = t(a) ∈ F(Va) such that s(b) = t(a)b for all b ∈ Va. Define
α+
U (s) = g ∈ G(U) where g|Va = αVa(t).

Remark 1.2.7. The induced τa : Fa → F+
a is an isomorphism of groups. So by

proposition 1.2.2 if F is a sheaf then τ is an isomorphism of sheaves.

Definition. Let α : F → G be a morphism of sheaves. We define the quotient
sheaf G/α(F) as the sheafification of coker(α).
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Remark 1.2.8. We have an exact sequence of sheaves

F G G/α(F) 0

coker(α)

α q+

q
τ

where q is the projection on the quotient. In particular we note that q+
a is

surjective and induces an isomorphism

Ga
αa(Fa)

' (G/α(F))a

1.3 Sheaf Cohomology

In this section we develop the basic constructions of the cohomological theory
of sheaves. We do so by means of the notion of soft sheaves.

Soft sheaves

Here we assume the topological space X to be Haussdorff and paracompact. The
latter means that every open covering {Uj} of X has a subcovering {Vj} which
is locally finite: every point x ∈ X admits a neighborhood W which intersects
only finitely many Vj ’s.

Remark 1.3.1. If X is a smooth manifold (thus Haussdorff and paracompact)
then every open covering {Uj} admits a partition of unity. This is a collection
of smooth maps ϕj : X → [0, 1] such that3

1. Supp(ϕj) ⊂ Uj .

2. {Supp(ϕj)} is a locally finite (closed) cover of X.

3.
∑
j ϕj(x) = 1 for all x ∈ X.

Remark 1.3.2. If {Si}i∈I is a closed, locally finite cover of X and J ⊂ I, then

SJ :=
⋃
j∈J

Sj

is closed. In fact if x ∈ X\SJ let W be a neighborhood of x such that W∩Sj 6= ∅
only for j = i1, . . . , jN ∈ J . Then SW = Sj1 ∪ · · · ∪ SjN is closed and we have
W ∩ SJ = W ∩ SW .

Let F be a sheaf of abelian groups on X. For any K ⊂ X closed we want to
define a group F(K) as a direct limit over the open subsets U ⊃ K. Thus we
need to set an equivalence relation as follows.
If K ⊂ U1 ∩U2 with Ui open and fi ∈ F(Ui) we put f1 ∼ f2 if and only if there
is W open such that K ⊂W ⊂ U1 ∩ U2 and f1|W = f2|W . We thus define

F(K) := lim−→
U⊃K

F(U) =
⊔
U⊃K

F(U)
/
∼

3note that the sum in 3. is always finite by 2.
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If U ⊃ K and f ∈ F(U) we write f |K ∈ F(K) for the equivalence class of f .

Remark 1.3.3. If K = {a} this is nothing new: F({a}) = Fa. So what we have
done here is a generalization of the stalk construction to all closed sets.

Definition. A sheaf F on X is called soft if any section over any closed subset
of X can be extended to a global section. In other words for any K ⊂ X closed
the restriction F(X) → F(K), f 7→ f |K is surjective. Thus, given K and a
section g|K ∈ F(K) with representative g ∈ F(U) where K ⊂ U , there is W
open, K ⊂W ⊂ U and there exists f ∈ F(X) with f |W = g|W .

Proposition 1.3.1. Let X be a smooth manifold and let

0→ A
α−→ B

β−→ C → 0

be an exact sequence of sheaves on X. If A is soft then we get an exact sequence:

0→ A(X)
αX−→ B(X)

βX−→ C(X)→ 0

Sketch of the proof. By proposition 1.2.1 what remains to be proved is that βX
is surjective. Let c ∈ C(X). Since βa : Ba → Ca is surjective for all a ∈ X we
have ca ∈ Im(βa). Hence there is an open cover {Ui} of X and local sections
bi ∈ B(Ui) such that βUi(bi) = c|Ui . Let {ϕi} be a partition of unity subordinate
to {Ui} and let Si = Supp(ϕi) ⊂ Ui. Locally

∑
ϕi = 1, thus {Si} is a covering

of X (closed and locally finite). So bi|Si ∈ B(Si) are such that

βSi(bi|Si) = c|Si

where we have naturally set βSi(bi|Si) := βUi(bi)|Si . By Zorn’s lemma we can
pick the maximal S of the Si’s on which there is b ∈ B(S) with βS(b) = c|S .
What remains to be proved is that S = X and this is left to the reader.

Corollary 1.3.1. 0→ A
α−→ B

β−→ C → 0 exact with A,B soft implies C soft.

The Canonical resolution

From now on, we assume X to be a smooth manifold.

Definition. Let F be a sheaf on X. A family {Fq}q∈N of sheaves on X together
with a family of morphisms dq : Fq → Fq+1, is called resolution of F if there
exists an injection γ : F → F0 and an exact sequence of sheaves

0 F F0 F1 F2 . . .
γ d0 d1

Let F be a sheaf on X. We define a soft sheaf D(F) on X as

D(F)(U) :=

{
t : U −→

⋃
a∈U
Fa | t(a) ∈ Fa

}

The restrictions are the natural restrictions of maps. D(F) is called the sheaf
of discontinous sections of F . Note how its construction is very similar to the
sheafification, except that now we start from a sheaf and we do not require

11



the sections of D(F) to be locally equal to those of F . Let’s check that any
section on a closed set has a global extension. Let K ⊂ X be closed and let
s|K ∈ D(F)(K) have representative s ∈ D(F)(U), some U ⊃ K. Put

f(a) :=

{
s(a) a ∈ U
0 a ∈ X \ U

thus f ∈ D(F)(X) and f |K = s|K . Hence D(F) is a soft sheaf, indeed.

Remark 1.3.4. We have an injection

γ : F −→ D(F)

by γU : F(U)→ D(F)(U), s 7→ γU (s) where γU (s)(a) := sa ∈ Fa.

Now we can construct the so called Canonical resolution of the sheaf F . Let

C0 := D(F)

and γ : F → C0 the above injection. Let C̃1 := C0/γ(F) be the quotient sheaf
and α0 : C0 → C̃1 the quotient map. Let C1 := D(C̃1) be the (soft) sheaf of
discontinous sections of C̃1. Then we get an injection β0 : C̃1 → C1 as above.
As γ and β are injective and α surjective4 we get the exact sequence

0 F C0 C1

C̃1

γ β0 ◦ α0

α0 β0

By inductively repeating this construction we get exact sequences of the form

Cq−1 Cq Cq+1

C̃q C̃q+1

dq−1

αq−1 βq−1

dq

αq βq

where we have set C̃q+1 = Cq/C̃q, Cq+1 = D(C̃q+1) with the corresponding
projections on the quotient αq and injections βq and we have put dq = βq ◦ αq.
Remark 1.3.5. Suppose F is soft. Then each of the C̃q is soft too. Infact as

0 F C0 C̃1 0
γ α0

is exact then by corollary 1.3.1 follows C̃1 soft. Then induction: exactness of

0 C̃q−1 Cq−1 C̃q 0
β α

with Cq soft and C̃q−1 soft by induction imply C̃q soft.

4remember: this means that they are injective/surjective on the stalks!
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Definition. The resolution of F given by

0 F C0 C1 C2 . . .
γ d0 d1

obtained as above is called the Canonical (soft) resolution of F .

The Canonical resolution defines a complex5 of abelian groups CX as

0 C0(X) C1(X) C2(X) . . .
d0X d1X

Definition. The q-th cohomology group of the sheaf F is the abelian group

Hq(X,F) := Hq(CX) =
ker(dqX)

Im(dq−1
X )

also called q-th cohomology group of X with coefficients in F . In particular

H0(X,F) := ker(d0
X)

Properties of the cohomology groups

Theorem 1.3.1. Let F be a sheaf on X. Then6

H0(X,F) = F(X)

Moreover, if F is soft then for all q > 0

Hq(X,F) = 0

Proof. By Canonical resolution we have 0→ F γ−→ C0 d0−→ C1 exact, thus

0→ F(X)
γX−→ C0(X)

d0X−→ C1(X)

is exact by proposition 1.2.1. Hence γX is injective and

F(X) ' γX(F(X)) = ker(d0
X) = H0(X,F)

Suppose F is soft. By remark 1.3.5 we know that each C̃q is soft and thus

0 C̃q(X) Cq(X) C̃q+1(X) 0
(βq−1)X (αq)X

is exact by proposition 1.3.1. Therefore

Im(dq−1
X ) = Im(βq−1)X = ker(αq)X = Im(dqX)

5In fact dX ◦ dX = 0 follows from proposition 1.2.1 and exactness of

Cq−1 −→ Cq −→ Cq+1

6especially in this context people often write F(X) = Γ(X,F)
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Theorem 1.3.2. Any sheaf morphism f : F → G induces homomorphisms

fq : Hq(X,F) −→ Hq(X,G),

which have the following (functorial) properties:

(a) f0 = fX : F(X)→ G(X)

(b) fq = id if F = G and f = idF

(c) (g ◦ f)q = gq ◦ fq for a sheaf morphism g : G → H

Sketch of the proof. Let’s “align” the two Canonical resolutions as follows

0 F C0
F C1

F C2
F . . .

0 G C0
G C1

G C2
G . . .

d0F d1F

f

d0G d1G

We first construct sheaf morphisms fq : CqF −→ C
q
G . Consider the case q = 0.

C0
F (U) = {s : U −→

⋃
Fa | s(a) ∈ Fa}

C0
F (U) = {t : U −→

⋃
Ga | t(a) ∈ Ga}

f0
U

As f induces a homomorphism fa : Fa → Ga on each stalk we set

f0
U (s) := t, t(a) = fa(s(a))

Therefore the following diagram commutes

0 F C0
F

0 G C0
G

γF

f f0

γG

Thus f0 induces a morphism of sheaves on the quotients

f̃0 : C̃1
F = C0

F/ Im(γF ) −→ C0
G/ Im(γG) = C̃1

G

Similarly, we get that f̃0 induces a morphism f1 : D(C̃1
F )→ D(C̃1

G) which, again

induces a homomorphism f̃1 on the quotients. . . and so on. The morphisms fq

are such that fq+1 ◦ dqF = dqG ◦ fq. Hence they induce homomorphisms fq on
the cohomology groups7 and these satisfy the above functorial properties.

7by fq : Hq(X,F) −→ Hq(X,G), [a] 7−→ [fqX(a)]
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Theorem 1.3.3. For each short exact sequence of sheaves

0→ F f−→ G g−→ H → 0

there exist homomorphisms δq : Hq(X,H) −→ Hq+1(X,F) which induce the
following exact sequence in cohomology

0 H0(X,F) H0(X,G) H0(X,H)

H1(X,F) H1(X,G) H1(X,H)

H2(X,F) H2(X,G) H2(X,H) · · ·

f0 g0

δ0

f1 g1

δ1

f2 g2

Moreover, for each commutative diagram of sheaves with exact rows

0 F G H 0

0 A B C 0

f g

a b c

f ′ g′

then also the following diagram in cohomology is commutative

0 H0(X,F) H0(X,G) H0(X,H) H1(X,F) · · ·

0 H0(X,A) H0(X,B) H0(X, C) H1(X,A) · · ·

f0 g0 δ0

a0 b0 c0 a1

f ′0 g′0 δ1

The proof makes use of the Snake’s Lemma and some usual diagram chas-
ing. We shall see in the next section how the properties from the above three
theorems characterize uniquely the cohomology groups Hq(X,F).

Acyclic resolutions: abstract de Rham Theorem

Soft sheaves have no cohomology (cf. theorem 1.3.1). This property is crucial,
in order to compute the cohomology, as shown in the following theorem.

Definition. A resolution

0 F A0 A1 A2 . . .
γ d0 d1

is called acyclic if Hq(X,Ai) = 0 for all i ≥ 0 and q ≥ 1.

Example. The Canonical resolution is acyclic, as each Ci is soft.
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For a resolution of F as above let AX denote the complex of global sections

F(X) A0(X) A1(X) A2(X) . . .
d0X d1X d2X

Theorem 1.3.4 (abstract de Rham Theorem). Each acyclic resolution of F
computes the sheaf cohomology. Precisely,

Hq(X,F) ' Hq(AX).

Proof. As 0→ F γ−→ A0 d0−→ A1 is exact then by proposition 1.2.1 we get that

0 F(X) A0(X) A1(X) 0
γX d0X

is exact. Therefore γX(F(X)) = ker(d0
X) = H0(AX). On the other hand we

know that H0(X,F) = F(X) and also F(X) = γX(F(X)) as γ is injective.
Thus the theorem is proved for q = 0. We define, for p ≥ 0, the kernel sheaves

Kp := ker(dp)

In particular K0 ' F . Moreover we get short exact sequences for all p

0 Kp Ap Kp+1 0
dp

By theorem 1.3.3 we get homomorphisms δq : Hq(X,Kp+1) −→ Hq+1(X,Kp)
and the induced long exact sequence in cohomology is full of zeroes:

0 H0(X,Kp) H0(X,Ap) H0(X,Kp+1)

H1(X,Kp) 0 H1(X,Kp+1)

H2(X,Kp) 0 H2(X,Kp+1) · · ·

dpX

δ0

δ1

Then δq is an isomorphism for q ≥ 1. As F ' K0, for any q > 1 we get

Hq(X,F) ' Hq(X,K0) ' Hq−1(X,K1) ' · · · ' H1(X,Kq−1)

So it all comes down to compute H1(X,Kp) for any p. From the long exact
cohomology sequence we see that δ0 is surjective. Hence, by algebra

H1(X,Kp) ' H0(X,Kp+1)/ ker δ0

But we know H0(X,Kp+1) ' Kp+1(X) and by exactness ker δ0 = Im dpX . So

H1(X,Kp) ' Kp+1(X)/ Im dpX = ker dp+1
X / Im dpX = Hp+1(AX)

For p = 0 this yields us H1(X,F) ' H1(AX). For q > 1

Hq(X,F) ' H1(X,Kq−1) ' Hq(AX)

Remark 1.3.6. In the proof we used only the properties of the groups Hq(X,F)
and never their explicit definition via Canonical resolution. As a consequence
we see that those properties determine the cohomology groups uniquely.
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1.4 De Rham and Dolbeault theorems

Let X be a smooth manifold and Ep be the sheaf of smooth real p-forms on X.

0 E0 E1 E2 . . .
d d d

where d is the exterior derivative is then an exact sequence of sheaves8. Let EX
denote the associated complex of global sections. We have the de Rham groups

Hq
dR(X) := Hq(EX)

Let R denote the sheaf of locally constant functions on X. That is, the sheaf9

ker(d : E0 −→ E1) ' R

Then we have a resolution of the sheaf R of locally constant functions by

0 R E0 E1 E2 . . .
d d d

We claim that each Ep is soft. Hence the resolution is acyclic and we find

Hq(X,R) ' Hq
dR(X)

This result is generally known as the de Rham theorem.

Proof. We show that Ep is soft, i.e. any section on a closed subset K ⊂ X
admits a global extension. Let ω|K ∈ Ep(K) with representative ω ∈ Ep(U),
where U ⊃ K is open. Let {ψU , ψ} be a partition of unity subordinate to the
covering X = U ∪ (X \K). Thus ψU , ψ : X → [0, 1] are smooth, Supp(ψU ) ⊂ U ,
Supp(ψ) ⊂ (X \K) and ψU (a) + ψ(a) = 1 for all a ∈ X. Then ψUω ∈ Ep(U).

Ep(X) 3 ω̃(a) :=

{
ψU (a)ω(a) a ∈ U
0 a /∈ U

We note that K ⊂ X \ Supp(ψ) =: V which is open and such that ψU (a) = 1
for all a ∈ V . Hence K ⊂W := U ∩ V is open and ω̃|W = ω|W .

In a similar fashion we can consider the sheaf Ωp of holomorphic p-forms on
a complex manifold X. Let Ap,q be the sheaf of smooth (p, q)-forms on X. As
for the case of Ep one proves that the Ap,q are soft. The “∂̄-Poincaré lemma”
guarantees that the following is an exact sequence of sheaves

0 Ωp Ap,0 Ap,1 Ap,2 . . .
∂̄ ∂̄ ∂̄

Which is therefore an acyclic resolution of Ωp. Hence the groups Hq(X,Ωp) can
be computed in terms of (p, q)-forms ∂̄-closed modulo (p, q)-forms ∂̄-exact10.
This result is generally known as the Dolbeault theorem.

8in fact on the stalks clearly Im(dpa) ⊂ ker(dp+1
a ). Conversely, given ωa ∈ ker(dp+1

a ) with
representative ω ∈ Ep+1(U), by Poincaré lemma there is a ∈ V ⊂ U with V diffeomorphic to
a ball such that ω|V = dη, some η ∈ Ep(V ). So ωa = dpaηa ∈ Im(dpa)

9f : X → R with 0 = df =
∑ ∂f

∂xi
dxi implies ∂f

∂xi
= 0 for all i. So locally f ≡ λ ∈ R

10in particular Hq(X,Ωp) = 0 if q > dimCX since in this case Ap,q = 0
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1.5 Sheaves and Algebraic Topology

We denote by ∆q ⊂ Rq+1 the standard q-simplex

∆q = {(t0, . . . , tq) ∈ Rq+1 : ti ≥ 0, t0 + · · ·+ tq = 1}

A singular q-simplex of a topological space X is a continous map

σ : ∆q −→ X

If X is also a smooth manifold then σ is said to be smooth if it extends smoothly
on an open neighborhood of ∆q. One then defines the group Cq(X) of singular
q-chains as the free abelian group generated by the set of q-simplices of X. In
other words a q-chain c ∈ Cq(X) is a finite formal sum c =

∑
niσi where the ni

are integers and the σi are q-simplices. Similarly one defines the group Cq(X)∞
of smooth q-chains. Note that if σ is a q-simplex then its restriction σ|ti=0 is a
(q − 1)-simplex11. Thus one defines a homomorphism d : Cq(X)→ Cq−1(X) as

d(σ) =

q∑
i=0

(−1)iσ|ti=0

for each q-simplex σ ∈ Cq(X) and then extending linearly to all of Cq(X). One
easily checks that d ◦ d = 0 and so we define the q-th singular homology group

Hq(X,Z) =
ker(d : Cq(X)→ Cq−1(X))

Im(d : Cq+1(X)→ Cq(X))

Since each open subset U ⊂ X is a topological space, with the above construc-
tion we similarly get the groups Cq(U), by considering q-simplices σ : ∆q → U .

Let now G be an abelian group. We define the groups12

Cq(U) := homZ(Cq(U), G)

Note that if V ⊂ U is open then Cq(V ) ⊂ Cq(U) as σ : ∆q → V ⊂ U . Therefore
if f ∈ Cq(U) the inclusion Cq(V ) ↪→ Cq(U) defines a restriction

Cq(V ) Cq(U)

G

ρUV (f) f

In other words U 7→ Cq(U) is a presheaf of abelian groups on X. Let Cq denote
the sheaf generated by this presheaf, called the sheaf of singular q-chains with
coefficients in G. There is a sheaf morphism δ : Cq → Cq+1 defined as

Cq+1(U) Cq(U)

G

dU

δU (f) f

11as ∆q ∩ {ti = 0} ' ∆q−1
12and similarly Cq(U)∞ in the case of a smooth manifold
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Thus δ ◦ δ = 0. Let G also denote the sheaf of locally constant functions on X
with values in the group G. If X is a manifold then

0 G C0 C1 C2 . . .
δ δ δ

is an acyclic resolution. The associated sheaf cohomology groups Hq(X,G) are
thus isomorphic to the singular cohomology groups of X with coefficients in G

Hq(X,G) ' Hq
Sing(X,G) =

ker(δX : Cq(X)→ Cq+1(X))

Im(δX : Cq−1(X)→ Cq(X))

Suppose now X is a smooth manifold. In the special case G = R we have
already seen Hq(X,R) ' Hq

dR(X). What happens is that there another acyclic
resolution for R, namely

0 R C0
∞ C1

∞ C2
∞ . . .

δ δ δ

Therefore we obtain the following isomorphism

Hq
dR(X) ' Hq

Sing(X,R)

which we explain as follows. By definition Hq
dR(X) = Hq(EX) where EX is the

complex of global differential q-forms on X. So the question is: how do we get
a smooth q-cochain from a differential q-form on X? There we go:

IqU : Eq(U) −→ Cq∞(U), ω 7−→ IqU (ω)

is the homomorphism defined by the linear map13

IqU (ω) =

[
σ 7−→

∫
∆q

σ∗ω

]
∈ hom (Cq(U),R)

so we get a morphism Iq : Eq → Cq∞ which induces the isomorphism above.

13note that the integral is well defined as ∆q is compact!
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Chapter 2

Holomorphic vector bundles

Definition. Let X be a complex manifold. A holomorphic vector bundle of
rank r on X is a complex manifold E together with a surjective holomorphic
map p : E → X, such that:

• Each fiber Ex = p−1(x) is a complex vector space of dimension r.

• There is an open covering X =
⋃
Uα and a family of bioholomorphisms

ψα : p−1(Uα) ' Uα × Cr

which commute with the projections on Uα, and such that the induced
restrictions on the fibers Ex ' Cr are linear (hence isomorphisms).

p−1(Uα) Uα × Cr

Uα

ψα

'

p

We sum up this situation by saying that E is locally trivial. The maps ψα are
called trivializations of the bundle. A trivial bundle is a globally trivial one,
E ' X×Cr. A holomorphic vector bundle of rank r = 1 is called a line bundle.

Let E be a (holomorphic) vector bundle of rank r on X. Fixing x ∈ X the
family of trivializations defines a family of isomorphisms gαβ(x) : Cr → Cr by

ψα ◦ ψ−1
β : (Uα ∩ Uβ)× Cr −→ (Uα ∩ Uβ)× Cr

(x, v) 7−→ (x, gαβ(x) · v)

called transition functions. The map x 7→ gαβ(x) is holomorphic. The transition
functions are thus invertible matrices gαβ(x) ∈ Gl(r,C). We have

gαα = I, gαβ = g−1
βα , gαγ = gαβgβγ

A family of transition functions as above, together with the open cover {Uα} of
X determines uniquely1 the vector bundle E. Hence we’ll write

E ←→ {Uα, gαβ}
1idea: set E :=

⊔
(Uα × Cr)/ ∼ where (x, v) ∼ (x,w) ⇐⇒ v = gαβ(x)w
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2.1 Holomorphic sections

Definition. A holomorphic map s : X → E that preserves the fibers of the
vector bundle (i.e. p(s(x)) = x) is called section. Sometimes a section is only
defined locally s : U → E and is then called a local section.

For any vector bundle E there always exists a global section: the so called
zero section x 7→ 0 ∈ Ex. For each open U ⊂ X, the set of sections U → E is
naturally a complex vector space, and we denote it by

Γ(U,E) = {holomorphic sections s : U → E}.

In particular we have the space of global sections Γ(X,E).
Let E ←→ (Uα, gαβ) and s ∈ Γ(X,E). For any x ∈ Uα we must have

ψα(s(x)) = (x, sα(x)),

where sα : Uα → Cr is holomorphic. If x ∈ Uα ∩Uβ then ψβ(s(x)) = (x, sβ(x)),{
ψα ◦ ψ−1

β (x, sβ(x)) = (x, sα(x))

ψα ◦ ψ−1
β (x, sβ(x)) = (x, gαβ(x)sβ(x)).

Hence any section s ∈ Γ(X,E) defines a collection {Uα, sα : Uα → Cr}, where
sα are holomorphic maps which under a change of charts satisfy

sα(x) = gαβ(x)sβ(x).

Conversely, a collection as such, determines uniquely a section s ∈ Γ(X,E).
Indeed, for any x ∈ Uα we can define

s(x) := ψ−1
α (x, sα(x)),

which is independent of the choice of charts: if x ∈ Uα ∩ Uβ then

ψ−1
α (x, sα(x)) = ψ−1

α (x, gαβ(x)sβ(x))

= ψ−1
α (ψα ◦ ψ−1

β (x, sβ(x)))

= ψ−1
β (x, sβ(x)).

Therefore, for a section s ∈ Γ(X,E) we’ll write

s←→ {Uα, sα : Uα → Cr, sα(x) = gαβ(x)sβ(x)}

and call this the local description of s. This is very useful. More often, instead
of working with a global section s it is easier to use its local description.

p−1(Uα) Uα × Cr

Uα

ψα

s

id×sα
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2.2 Line bundles

We first construct two line bundles on Pn. Let’s begin with L(1).

L(1) := Pn+1 \ {(0 : . . . : 0 : 1)}

The map p : L(1) → Pn, (x0 : . . . : xn+1) 7→ (x0 : . . . : xn) is then well
defined and holomorphic. Suppose x, y ∈ L(1) belong to the same fiber, that is
p(x) = p(y). Then x = (x0 : . . . : xn : t) and y = (x0 : . . . : xn : s) for some
t, s ∈ C. Hence x, y belong to the same line in Pn+1, namely

λx+ µy = (x0 : . . . : xn : λs+ µt)

and this gives the structure of a one-dimensional complex vector space on each
fiber. We see the geometrical meaning of the map p as the projection of this
lines in Pn+1 on points in Pn. Let {Uj} be the standard cover of Pn. Define

ψj : p−1(Uj) −→ Uj × C, x 7−→ (p(x), xn+1

xj
)

then ψj ◦ ψ−1
k ((x0 : . . . : xn), z) = ((x0 : . . . : xn), xkxj z). Hence we have found

L(1)←→ {Uj , gjk(x) = xk
xj
}

We now construct the so called tautological line bundle L(−1) on Pn. By
viewing Pn as the set of lines ` through the origin of Cn+1 we naturally obtain
a line bundle: it suffices to identify each point ` ∈ Pn with the 1-dimensional
complex vector space that the line ` itself represents when viewed as a linear
subspace of Cn+1. More precisely

L(−1) := {(`, z) ∈ Pn × Cn+1 : z ∈ `}

and the natural projection on the first factor π : L(−1)→ Pn, (`, z) 7→ ` defines
this line bundle. Again on the standard cover {Uj} of Pn we have trivializations

φj : π−1(Uj) −→ Uj × C, (`, z) 7−→ (`, zj)

which also provide L(−1) with local charts2. The tautological bundle L(−1) is
thus endowed with a complex structure of dimension n + 1. Let’s find out its
transition functions. Let ` = (x0 : . . . : xn) ∈ Uj ∩ Uk, so xj , xk 6= 0. Then

φj ◦ φ−1
k (`, zk) = (`, zj)

and zj , zk are coordinates on a common line `, so that zj = λxj and zk = λxk
for some λ ∈ C. Hence zj = λxkxk xj =

xj
xk
zk = hjk(`)zk. We have found

L(−1)←→ {Uj , hjk(`) =
xj
xk
}

Remark 2.2.1. In a trivial bundle there always exists a global section with no
zeros. By this we mean a section s : X → E such that s(x) 6= 0 for all x ∈ X.
For, if E ' X ×Cr then for any non zero vector w ∈ Cr there always exists the
constant section x 7→ w ∈ Ex. This simple remark can become very useful to
show that a vector bundle is not the trivial bundle: if we are able to show that
each global section admits a zero we’re done!

2by composing φj with the charts of Pn on the first component Uj
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Let’s begin with L(−1). Its only global section is the zero section.

Fact. The only global section on L(−1) is the zero section. In symbols

Γ(Pn, L(−1)) = 0

Proof. Let s : Pn → L(−1) be a holomorphic section. For any ` ∈ Pn we
have s(`) = (`, z`) for some z` ∈ Cn+1 lying on the line `. Thus ` 7→ z` is a
holomorphic map Pn → Cn+1. By the maximum principle this map must be
constant, so z` ≡ w ∈ Cn+1. On the other hand s is fiber preserving, so w ∈ `
for each line ` through the origin of Cn+1. Hence w = 0.

Remark 2.2.2. Let’s motivate the notation L(−1) for the tautological bundle.
Take a local section s ∈ Γ(U,L(−1)). Then s(`) = (`, z`) for each ` ∈ U . Let

$ : Cn+1 \ {0} −→ Pn

denote the usual projection. Say ` = [x] for some x ∈ $−1(U). Since z` ∈ `
we get z` = λx for some λ = λs(x) ∈ C. So each local section s determines a
holomorphic function

λs : $−1(U) −→ C

which must be homogeneus of degree −1. In fact our construction has to be
independent of the choice of x, so λs(µx)µx = λs(x)x for any µ ∈ C∗, that is

λs(µx) = µ−1λs(x)

Let’s now take a look at the global sections of L(1), that is, the vector space

Γ(Pn, L(1)) = {s : Pn −→ L(1) : s holomorphic, p ◦ s = idPn}

First note that each homogeneus coordinate xj on Pn defines a section: the map

xj : (x0 : . . . : xn) 7→ (x0 : . . . : xn : xj)

It can be showed that these form a basis for Γ(Pn, L(1)), so that any global
section s of L(1) is of the form

s : (x0 : . . . : xn) 7→ (x0 : . . . : xn : a0x0 + · · ·+ anxn)

for some coefficients aj ∈ C. Note that the image of s is a hyperplane in Pn+1

s(Pn) = {(x0 : . . . : xn+1) ∈ Pn+1 : a0x0 + · · ·+ anxn − xn+1 = 0}

which doesn’t contain the point (0 : . . . : 0 : 1). We now want to find out the
local description of s. We see that

ψj(s(x)) =

(
x,

∑
aixi
xj

)
with the given trivializations ψj on the standard covering {Uj} of Pn. Hence

sj(x) =

n∑
i=0

ai
xi
xj

and one can check that the desired relation sj(x) = gjk(x)sk(x) actually holds.
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Definition. Let E ←→ {Uα, gαβ} be a vector bundle of rank r on X. We define
the dual bundle E∗ as the vector bundle of rank r given by

E∗ ←→ {Uα, tg−1
αβ}

In the case of a line bundle L, since tg−1
αβ = g−1

αβ we use the notation L−1 = L∗.

Remark 2.2.3. We take transpose inverses instead of just inverses because

(AB)−1 = B−1A−1 and t(AB) = tB tA

As we have seen before L(1)−1 = L(−1). Also, we noted that the tautological
bundle L(−1) is not trivial, since its only global section is the zero section. More
generally, for any line bundle L→ X on a compact manifold X there is a strong
result which characterizes global sections of L and of its dual.

Proposition 2.2.1. Let L → X be a holomorphic line bundle on a compact
manifold X. Suppose s ∈ Γ(X,L) is not the zero section. Then either one of
the following holds:

• L ' X × C is the trivial bundle and s has no zeros.

• Γ(X,L−1) = 0 and the section s admits at least one zero.

Proof. Let L ↔ {Uα, gαβ}, L−1 ↔ {Uα, g−1
αβ} and s ↔ {Uα, sα}. Suppose

t ∈ Γ(X,L−1) have local description t↔ {Uα, tα}. Then{
sα(x) = gαβ(x)sβ(x)

tα(x) = g−1
αβ (x)tβ(x)

Hence sα(x)tα(x) = sβ(x)tβ(x) for all x ∈ Uα ∩Uβ and for all α, β. We glue all
this pieces and get a holomorphic function f : X → C such that f |Uα = sαtα.
Since X is compact, by the maximum principle f ≡ c ∈ C.

(i) c 6= 0. Then sα(x) 6= 0 for all x ∈ Uα for all α. Hence s(x) 6= 0 on all X.
Then (x, λ) 7→ λs(x) is a holomorphic and invertible map X × C→ L.

(ii) c = 0. By hypothesis there is some point in X where s is not zero. Hence
there is an open subset of X where s is not zero. Then it must be t ≡ 0 on
this open subset. Since t is holomorphic it follows t ≡ 0 everywhere. Hence
Γ(X,L−1) = 0, which implies that L is cannot be the trivial bundle3. Thus
s must have a zero: if it were nowhere vanishing then (x, λ) 7→ λs(x) would
be a biolomorphism X × C→ L as in (i). Absurd.

We have already noted that the rank r trivial bundle always admits a
nowhere vanishing section. From the proof of the preceding proposition we
see that in the case of line bundles the viceversa holds as well: if s is a nowhere
vanishing section then (x, λ) 7→ λs(x) is a trivialization X × C → L. The
compactness of X in this argument plays no role. Let’s summarize this.

Fact. A line bundle is trivial if and only if it has a nowhere vanishing section.

3because the dual of the trivial bundle is a trivial bundle
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There are many ways to construct new vector bundles from a given one.
The dual bundle is an example. Virtually, any canonical construction in linear
algebra gives rise to a geometric version for holomorphic vector bundles. We’ll
see more examples in the following. Now, let L←→ {Uα, gαβ} be a line bundle.
An idea is to take powers of g: for any integer k define

L⊗k ←→ {Uα, gkαβ}

In particular L⊗−1 = L−1 and L0 ' X × C. Suppose s ∈ Γ(X,L) with local
description s←→ {Uα, sα : Uα → C}. Then for any k > 0

sk ←→ {Uα, skα : Uα → C}

is a section of L⊗k. In fact (sα)k = (gαβsβ)k = gkαβs
k
β

Example. Let L(k) := L(1)⊗k. If k > 0 the k-th power of the first homogeneus
coordinate xk0 defines a section of L(k). Each point of the form (0 : x1 : . . . : xn)
is a zero of xk0 . More generally,

(x0 : . . . : xn) 7→ (x0 : . . . : xn : f(x0, . . . , xn))

where f is a homogeneus polynomial of degree k is a global section of L(k).

Projective embeddings and line bundles

Let X be a complex manifolds that admits an embedding i : X ↪→ Pn. Identi-
fying X = i(X) for simplicity of notation, we get a line bundle on X

L(1)|X L(1)

X Pn

psj xj

i

by restriction of L(1) to X. Precisely L(1)|X = p−1(i(X)). Each section xj of
L(1) gives a section sj of L(1)|X by restriction: sj = xj|X . Now, these sections
sj in some sense define the embedding: if x ∈ X then intuitively4

i(x) = (x0 : . . . : xn) = “(s0(x) : . . . : sn(x))”

Viceversa, let p : L → X be a line bundle on a complex manifold X with
some sections s0, . . . , sn ∈ Γ(X,L) such that their base locus is empty, i.e.

∅ = {x ∈ X : s0(x) = 0, . . . , sn(x) = 0}

Then we can define a holomorphic map φ : X −→ Pn as follows. Suppose
L←→ {Uα, gαβ} and sj ←→ {Uα, sjα : Uα → C, sjα(x) = gαβ(x)sjβ(x)}.

φ(x) = (s0α(x) : . . . : snα(x)) for x ∈ Uα

is then a well defined5 holomorphic map X → Pn. If φ is an embedding L is
called a very ample bundle.

4sj(x) ∈ p−1(x) and not in C, that’s why we put quotation marks
5(s0α(x) : . . . : snα(x)) = (gαβ(x)s0β(x) : . . . : gαβ(x)snβ(x)) = (s0β(x) : . . . : snβ(x))
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2.3 More examples

Higher rank vector bundles are in general much more difficult objects to con-
struct than line bundles. One of the most important ones that exists on any
complex manifold X is the holomorphic tangent bundle TX, of rank r = dimX.

The holomorphic Tangent bundle TX

Let X be a n-dimensional complex manifold. We define

TX :=
⊔
a∈X

T 1,0
a X

the projection maps the fiber T 1,0
a X to a ∈ X. Let (Uα, zα = (z1

α, . . . , z
n
α))

be an atlas on X. The bundle trivializations are easily defined as follows. Let
θ ∈ T 1,0

a X. Then there is a vector v ∈ Cn which represents the coefficients of θ
on the basis of T 1,0

a X. Hence we set

ψα : TUα −→ Uα × Cn

θ =

n∑
j=1

vj
∂

∂zjα
(a) 7−→ (a, v) (θ ∈ T 1,0

a X)

Let’s find ψβ(ψ−1
α (a, v)) = ψβ(θ) on Uα ∩ Uβ in terms of zα,zβ . Let

∂

∂zjα
=

n∑
k=1

ck
∂

∂zkβ

so that
∂zkβ

∂zjα
= ck. Then θ =

∑
wk

∂
∂zkβ

where wk =
∑
j vj

∂zkβ

∂zjα
. So ψβ(θ) = (a,w),

w =

[
∂zkβ

∂zjα

]
· v = gβα(a) · v

Hence the transition functions for the tangent bundle are given by the complex
Jacobian matrix of the chart change Gαβ = zα ◦ z−1

β , that is

gαβ(a) =

[
∂zkα

∂zjβ

]
= JCGαβ(zβ(a)) ∈ Gl(n,C)

Example (tangent bundle on the torus). Let X = Cn/Λ be a n-dimensional
torus. Then Gαβ(u) = zα ◦ z−1

β (u) = u+ ω for some ω = ωαβ ∈ Λ. Thus

JCGαβ ≡
∂(uj + ωj)

∂uk
≡ I

Hence TX ' X × Cn is the trivial bundle!

Example (tangent bundle on P1). On X = P1 let z0(x0 : x1) = x1/x0 = u and
z1(x0 : x1) = −x0/x1 = −1/u. Then G10 : u 7→ −1/u and JCG10 = (x0/x1)2,

i.e. TP1 ' L(2)

This is not surprising: it can in fact be shown that any line bundle on Pn is
isomorphic to some L(k).
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The holomorphic Cotangent bundle T ∗X

We define the holomorphic cotangent bundle T ∗X, also denoted ΩX , as

T ∗X :=
⊔
a∈X

(T ∗aX)1,0

the projection maps the fiber (T ∗aX)1,0 to a ∈ X. Let (Uα, zα = (z1
α, . . . , z

n
α))

be an atlas on X. The bundle trivializations are easily defined as follows. Let
ωa ∈ (T ∗aX)1,0. Then there is a vector v ∈ Cn which represents the coefficients
of ωa on the basis of (T ∗aX)1,0. Hence we set

ψα : T ∗Uα −→ Uα × Cn

ωa =

n∑
j=1

vj(dz
j
α)a 7−→ (a, v)

Let’s find ψβ(ψ−1
α (a, v)) = ψβ(ωa) on Uα ∩ Uβ in terms of zα,zβ . Let

dzjα =

n∑
k=1

ckdz
k
β on Uα ∩ Uβ

The coefficients ck are then obtained by applying dzjα to ∂
∂zkβ

. Thus

ck = dzjα(∂/∂zkβ) =
∂zjα
∂zkβ

Then ωa =
∑
wkdz

k
β where wk =

∑
j vj

∂zjα
∂zkβ

. So ψβ(ωa) = (a,w), where

w =

[
∂zjα
∂zkβ

]
· v = tg−1

βα · v

where gαβ(a) = JCGαβ(zβ(a)) and Gαβ = zα ◦ z−1
β . Therefore

TX ←→ {Uα, gαβ} ⇐⇒ T ∗X ←→ {Uα, tg−1
αβ}

In other words, the cotangent bundle is the dual bundle of the tangent bundle:

T ∗X = (TX)∗

The Canonical line bundle ωX

Let’s denote with ΩX = T ∗X the holomorphic cotangent bundle on X. For any
0 ≤ p ≤ n we can consider the vector bundle on X given by the p-th exterior
power of the cotangent bundle. That is, the bundle of holomorphic p-forms
ΩpX :=

∧p
ΩX . By this we mean the bundle on X whose fibers are canonically

isomorphic to the p-th exterior power of the cotangent space. More precisely,

ΩpX :=
⊔
a∈X

p∧
(T ∗aX)1,0

In the case p = n this is denoted by ωX = ΩnX and it is called the canonical line
bundle on X. The canonical bundle is described in a particularly nice form.
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Definition. Let E ←→ {Uα, gαβ} be a holomorphic vector bundle on X. The
determinant bundle is the line bundle defined as

detE ←→ {Uα,det gαβ : Uα ∩ Uβ −→ C∗}

The canonical line bundle is the determinant bundle of the cotangent bundle

ωX = det ΩX

Its transition functions are thus the complex Jacobian of the chart changes. The
bundle trivializations in local coordinates take the form

ψα : ωX |Uα −→ Uα × C
λ(dz1

α ∧ · · · ∧ dznα)a 7−→ (a, λ)

Example (torus). Let X be a n-dimensional torus. Then

• TX ' X × Cn as we’ve seen. So TX ←→ {X, I = id ∈ Gl(n,C)}

• ΩX ' X × Cn since tI−1 = I

• ωX ' X × C since det I = 1

Proposition 2.3.1. The canonical line bundle of Pn turns out to be

ωPn ' L(−n− 1)

Proof. Let X = Pn with the standard covering {Uj}. Consider a n-form η on
Uα ∩ U0. We write η in affine coordinates on Uα ' Cn as

ηx = (−1)αλ(x)du0 ∧ · · · ∧ d̂uα ∧ · · · ∧ dun
ψα7−→ (x, λ(x))

where u0 = x0/xα, . . . , ûα, . . . , un = xn/xα on Uα. Let’s compute gαβ for β = 0.
Let s1 = x1/x0, . . . , sn = xn/x0 be affine coordinates on U0. Then

s1 = u1

u0

...

sα = 1
u0

...

sn = un
u0

=⇒



ds1 = d
(
u1

u0

)
= 1

u0
du1 − u1

u2
0
du0

...

dsα = − 1
u2
0
du0

...

dsn = d
(
un
u0

)
= 1

u0
dun − un

u2
0
du0

Therefore

ηx = (−1)0λ(x)ds1 ∧ · · · ∧ · · · ∧ dsn

= λ(x)
(

1
u0
du1 − u1

u2
0
du0

)
∧ · · · ∧

(
− 1
u2
0
du0

)
∧ · · · ∧

(
1
u0
dun − un

u2
0
du0

)
= (−1)αλ(x) 1

un+1
0

du0 ∧ · · · ∧ d̂uα ∧ · · · ∧ dun
ψα7−→

(
x, 1

un+1
0

λ(x)
)

Hence we see that

gα0(x0 : . . . : xn) =
1

un+1
0

=

(
xα
x0

)n+1

and gαβ = gα0g0β = gα0g
−1
β0 = (xα/xβ)n+1, the same of L(−n− 1).
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2.4 Morphisms and Quotient bundles

Let pE : E → X and pF : F → X be vector bundles of rank e and f on X.

Definition. A holomorphic map Φ : E → F such that

• it commutes with the projections: pF ◦ Φ = pE

• it is linear on the fibers: Φx : Ex → Fx

• it has constant rank: rk(Φx) is independent of x ∈ X

is called vector bundle morphism, or simply morphism.

Remark 2.4.1. We require Φ to have constant rank to avoid situations like the
following: X = C and E = F = C2 are both the trivial bundle, Φ(z, v) = (z, zv).
Then Φz : v 7→ zv and rk(Φ0) = 0, rk(Φz) = 1 if z 6= 0.

Remark 2.4.2. We can always assume that two vector bundles E and F on X
are defined with two families of trivializations on the same covering X =

⋃
Uα.

This is done by restriction: for any x ∈ X we can find two open neighborhoods
Ux, Vx of x and trivializations E|Ux ' Ux × Ce and F |Vx ' Vx × Cf . Hence we
can restrict both trivializations to Wx = Ux ∩ Vx and get

E|Wx 'Wx × Ce, F |Wx 'Wx × Cf

Suppose E ←→ {Uα, gαβ} and F ←→ {Uα, hαβ} and Φ : E → F is a
morphism. Let ψα and ϑα be the trivializations of E and F respectively. Then
there is a map that makes the following diagram commute

E|Uα F |Uα

Uα × Ce Uα × Cf

Φ

ψα ϑα

This map Uα × Ce → Uα × Cf has to be the identity on the first component
and a linear map on the second one, that is (x, v) 7→ (x,Φα(x) · v) where

Φα : Uα −→Mf×e(C)

is a holomorphic map (since the diagram above commutes) and satisfies

Φα(x) = hαβ(x)Φβ(x)gβα(x)

for all x ∈ Uα ∩ Uβ . In fact, since the diagram above commutes we get

(x,Φα(x)v) = ϑα ◦ Φ ◦ ψ−1
α (x, v)

= ϑα ◦ ϑ−1
β ◦ ϑβ ◦ Φ ◦ ψ−1

β ◦ ψβ ◦ ψ
−1
α (x, v)

= ϑα ◦ ϑ−1
β (x,Φβ(x)gβα(x)v)

= (x, hαβ(x)Φβ(x)gβα(x)v)
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Hence for a vector bundle morphism Φ : E → F we’ll write

Φ←→ {Φα : Uα −→Mf×e(C) : Φα(x) = hαβ(x)Φβ(x)gβα(x)}

since a morphism Φ is uniquely determined by this collection of matrix-valued
holomorphic maps Φα satisfying the above gluing conditions.

Suppose now e = rkE ≤ rkF = f . It turns out that an injective vector
bundle morphism Φ : E → F behaves like an inclusion in the following sense.

Proposition 2.4.1. If Φ : E → F is injective then there are trivializations
ψα : E|Uα ' Uα × Ce and ϑα : F |Uα ' Uα × Cf such that

ϑα ◦ Φ ◦ ψ−1
α : (x, (v1, . . . , ve)) 7−→ (x, (v1, . . . , ve, 0, . . . , 0))

In other words, for all x ∈ Uα,

Φα(x) =

(
Ie
0

)
Proof. Let a ∈ V ⊂ X and let ψ, ϑ̃ be trivializations on E|V , F |V . Hence

ϑ̃ ◦ Φ ◦ ψ−1 : (x, v) 7−→ (x,ΦV (x)v)

where ΦV (x) : Ce → Cf is a linear map of rank e, since Φ is injective by
hypothesis. Up to a permutation of the basis of Cf we can suppose ΦV (x) to
have the first e rows linearly independent, that is

ΦV (x) =

(
M(x)
N(x)

)
where M(x) : Ce → Ce and detM(a) 6= 0. Thus there is a small neighborhood
U ⊂ V of a where detM(x) 6= 0 for all x ∈ U . We can define now a matrix-
valued function k : U → Gl(f,C) that will adjust ΦV (x) to the desired form:

k(x) =

(
M(x)−1 0

−N(x)M(x)−1 If−e

)
so that, for all x ∈ U , the matrix k(x)ΦV (x) is of the form we want (that one
of Φα(x) in the statement). Then we define a new trivialization ϑ of F |U as the
old ϑ̃ followed by multiplication by k(x) on the second component, so that

ϑα ◦ Φ ◦ ψ−1
α : (x, v) 7→ (x, k(x)ΦV (x)) = (x, (v1, . . . , ve, 0, . . . , 0))

Using this special trivializations as in the proposition we can construct tran-
sition functions of a particularly nice form.

Corollary 2.4.1. If Φ : E → F is injective then there are transition functions
E ←→ {Uα, gαβ} and F ←→ {Uα, hαβ} such that

hαβ =

(
gαβ ?
0 kαβ

)
for certain matrix-valued functions kαβ holomorphic on Uα.
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Proof. Just use the nice trivializations ψα and ϑα granted by the above propo-
sition, so that ϑα ◦ Φ ◦ ψ−1

α : (x, v) 7−→ (x, (v, 0)). Hence

(x, hαβ(x)

(
v
0

)
) = ϑα ◦ ϑ−1

β (x, (v, 0)) = ϑα ◦ ϑ−1
β ◦ ϑβ ◦ Φ ◦ ψ−1

β (x, v)

= ϑα ◦ Φ ◦ ψ−1
α ◦ ψα ◦ ψ−1

β (x, v) = ϑα ◦ Φ ◦ ψ−1
α (x, gαβ(x)v)

= (x,

(
gαβ(x)v

0

)
)

and from this follows that the matrix hαβ(x) is of the desired form

hαβ(x) =

(
gαβ(x) ?

0 kαβ(x)

)
Remark 2.4.3. Since the hαβ are transition functions of F and thus must satisfy
hαα = I, hβα = h−1

αβ and the cocycle condition hαβhβγ = hαγ , it follows that
also the kαβ in the corollary satisfy the same properties. Hence they can be
taken to be the transition maps of a vector bundle on X.

Definition. If Φ : E → F is an injective morphism we define the quotient
bundle F/E as the vector bundle with transition maps

F/E ←→ {Uα, kαβ : Uαβ → Cf−e}

where the kαβ are those found as in corollary 2.4.1 above.

Remark 2.4.4. Note that dethαβ = det gαβ det kαβ . This means that the tran-
sition maps of the line bundle detF are simply the product of the ones of E
and F/E. Hence we write

detF = detE ⊗ detF/E

We denote it with ⊗ instead of just a dot, because more generally we can define
a bundle by taking tensor product of the matrices that represent transition
functions. In the case of line bundles the tensor product of scalars is just the
regular product. Just as an example, for 2× 2 square matrices we have(

a11 a12

a21 a22

)
⊗
(
b11 b12

b21 b22

)
=

(
a11B a12B
a21B a22B

)

=


a11b11 a11b12 a12b11 a12b12

a11b21 a11b22 a12b21 a12b22

a21b11 a21b12 a22b11 a22b12

a21b21 a21b22 a22b21 a22b22


Remark 2.4.5. To be more precise we should write F/Φ(E) instead of F/E but
that’d be a heavy and useless notation. Since Φ : E → F is an injection we
think of E as a subbundle of F . We can also schematize this situation by writing
a short exact sequence of holomorphic vector bundles

0 −→ E
Φ−→ F −→ F/E −→ 0

where the map F → F/E is the projection on the quotient. Once we trivialize
locally F |Uα ' Uα×Cf and (F/E)|Uα ' Uα×Cf−e, this projection is given by
(x, (ve, vf−e)) 7→ (x, vf−e). It is a surjective morphism.
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2.5 Operations between vector bundles

We can define several operations on the set of holomorphic vector bundles on
a complex manifold X. We have already encountered some of them and we’ll
repeat those here for convenience. Let E ←→ {Uα, gαβ} and F ←→ {Uα, hαβ}
be vector bundles on X of rank e and f respectively. We may define the following
vector bundles on X:

(i) The direct sum bundle E⊕F whose fiber over x ∈ X is canonically isomor-
phic to the direct sum Ex ⊕ Fx as complex vector spaces. Its description
with transition function is given by

E ⊕ F ←→
{
Uα,

(
gαβ 0
0 hαβ

)}
(ii) The tensor product bundle E ⊗ F whose fiber over x ∈ X is canonically

isomorphic to the tensor product Ex ⊗ Fx. Its transition functions

E ⊗ F ←→ {Uα, gαβ ⊗ hαβ}

(iii) The k-th exterior power bundle
∧k

E whose fiber over x is canonically

isomorphic to
∧k

Ex, where 0 ≤ k ≤ e. The special case k = e is called
determinant line bundle detE =

∧e
E since it is a line bundle and its

transition functions are given by

detE ←→ {Uα,det gαβ}

(iv) The dual bundle E∗ whose fiber over x is canonically isomorphic to the
dual vector space (Ex)∗.

E∗ ←→ {Uα, tg−1
αβ}

(v) The Hom-bundle Hom(E,F ) whose fiber over x is canonically isomorphic
to Hom(Ex, Fx). It is an important vector bundle because there is a 1:1
correspondence between its sections and morphisms E → F . In symbols

{Φ : E → F} 1:1←→ Γ(X,Hom(E,F ))

The dual bundle is then just a special case of hom-bundle:

Hom(E,X × C) ' E∗

Also, there is a relation between the operations of hom-bundle, dual bundle
and tensor product. There is in fact a canonical vector bundle isomorphism

Hom(E,F ) ' E∗ ⊗ F

(vi) If E is a holomorphic subbundle of F , i.e. there is a holomorphic injection
E ↪→ F (as discussed in the previous section) then we can define the
quotient bundle F/E. Its fibers are canonically isomorphic to Fx/Ex.

(vii) More generally, if Φ : E → F is a morphism, one can define ker(Φ) and
coker(Φ) as the vector bundles on X whose fibers on x are canonically
isomorphic to ker(Φx) and coker(Φx) respectively.
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2.6 Normal bundle and Adjunction

Let Y,X be complex manifold and f : Y → X a holomorphic map. Suppose
E ←→ {Uα, gαβ} is a holomorphic vector bundle on X. Then f induces a
holomorphic vector bundle f∗E on Y by composition.

Definition. The pullback bundle f∗E is by definition the vector bundle

f∗E ←→ {f−1(Uα), gαβ ◦ f}

Its fiber on y ∈ Y is isomorphic to the fiber Ef(y). If i : Y ↪→ X is a complex
submanifold we call E|Y := i∗E the restriction of the bundle E to Y . Its
transition maps are then simply the restrictions of the gαβ ,

E|Y ←→ {Y ∩ Uα, gαβ |Y ∩Uαβ}

Let n = dimX and i : Y ↪→ X be an m-dimensional submanifold of X.
Let’s consider the restriction of the tangent bundle TX|Y . The linear tangent
map di is then an injective morphism of vector bundles

di : TY ↪→ TX|Y

Thus, we can take the quotient bundle which takes a special name.

Definition. The normal bundle NY/X is the vector bundle defined by

NY/X =
TX|Y
TY

which is a quotient bundle on Y , the cokernel of the natural injection given by
di : TY −→ TX|Y . The short exact sequence of vector bundles associated to it
is called the normal bundle sequence

0 −→ TY −→ TX|Y −→ NY/X −→ 0

As noted in the remark 2.4.4 we see that

det(TX|Y ) = det(TY )⊗ det(NY/X)

On the other hand, if TX ←→ {Uα, gαβ} then det(gαβ |Y ) = det(gαβ)|Y , so that
det(TX|Y ) = det(TX)|Y . If we substitute this in the above equation and take
its dual we get

ωX |Y = ωY ⊗ det(NY/X)−1

We like better to isolate ωY in this equation. Since they are line bundles, we
can cancel out the term det(NY/X)−1 simply taking the tensor product with
detNY/X on both sides. What we get is the so called adjunction formula

ωY = ωX |Y ⊗ det(NY/X)

Example. Let Pn ↪→ Pn+1, x 7→ (x : 0). We know ωPn+1 = LPn+1(−n − 2)
and ωPn = LPn(−n − 1). The transition functions of LPn+1(−n − 2) are then
gjk = (xj/xk)n+2. Thus ωPn+1 |Pn is obtained by restriction of the gjk’s. Thus

ωPn = ωPn+1 |Pn ⊗ det(NPn/Pn+1) = ωPn+1 |Pn ⊗NPn/Pn+1

so that the transition maps of NPn/Pn+1 are
(xj/xk)n+1

(xj/xk)n+2 = (xk/xj), that is

NPn/Pn+1 ' L(1)
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2.7 The line bundle of a hypersurface

Throughout this section we denote by X a n-dimensional complex manifold and
by Y ⊂ X a submanifold of X of codimension 1, that is

dimY = dimX − 1

Then around any a ∈ Y there is a local chart (U, z = (z1, . . . , zn)) such that

Y ∩ U = {x ∈ U : zn(x) = 0}

For this reason Y is also called analytic hypersurface of X. The goal of this
section is to show that hypersurfaces are always given by the zero locus of a
holomorphic global section of a “unique” line bundle LY on X.

Definition. A local equation for Y is a pair (U, f) where U ⊂ X is open and
f : U → C is a holomorphic function such that

(i) Y ∩ U = {x ∈ U : f(x) = 0}

(ii) if g ∈ O(U) and g(Y ∩ U) = 0 then g = hf for some h ∈ O(U)

Lemma. (U, zn) as above is a local equation for Y .

Proof. Let g ∈ O(U) and g(Y ∩ U) = 0. Let z = (z1, . . . , zn) : U → Cn be
local charts of X as above. Around any a ∈ Y ∩ U we can find a neighborhood
Va ⊂ U where g = g(z) can be expanded as a convergent power series and

g(z) =
∑

aj1...jn(z1 − z1(a))j1 · · · (zn − zn(a))jn

= g0 + g1zn + g2z
2
n + g3z

3
n + . . .

where gk is holomorphic on Va and gk = gk(z1, . . . , zn−1) since zn(a) = 0.
Moreover g0 = g0(z1, . . . , zn−1) is zero on all of Va. In fact it must be zero on
Va ∩ Y because g ≡ 0 and zn ≡ 0 on Y ∩ Va. On the other hand

(z1, . . . , zn−1) : Y ∩ U −→ Cn−1

is a local chart of Y hence it sends Y ∩U onto an open subset of Cn+1 on which
g0 ≡ 0. Thus g0(z1, . . . , zn−1) is zero on all of Va. So g = hzn where

h =

∞∑
k=1

gk(z1, . . . , zn−1)zk−1
n

which is holomorphic on Va. Now we have to somehow extend h to all of U .
First we repeat this construction on each a ∈ Y ∩ U and find ha. On Va ∩ Vb
we then have g = hazn = hbzn. Thus (ha − hb)zn ≡ 0 on Va ∩ Vb. However zn
is zero only on Y ∩ Va ∩ Vb and so it follows ha ≡ hb on Va ∩ Vb. So on all of

V =
⋃

a∈Y ∩U
Va

we have an holomorphic function h such that g = hzn. Now on U \ V we have
zn 6= 0. Thus we simply define h to be the holomorphic function g/zn.
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Remark 2.7.1. There always exists a covering X =
⋃
Uα with (Uα, fα) local

equations for Y . In fact around any point a ∈ Y we have (U, zn) by the lemma.
Whereas for any a ∈ X \ Y the pair (X \ Y, f ≡ 1) is a local equation for Y .

Lemma. Suppose (U1, f1), (U2, f2) are two local equations for Y ⊂ X. Then
the ratio f1/f2 is holomorphic and has no zeros on U1 ∩ U2.

Proof. By definition on U12 = U1 ∩U2 we have f1 = hf2 and f2 = gf1 for some
functions h, g holomorphic on U12. Hence (1− hg)f1 ≡ 0 on U12. But f1 is not
identically zero on U2, so h(x)g(x) = 1 for all x ∈ U12. Therefore h, g are non
zero, i.e. h, g ∈ O∗(U12). This means that if f1 = hf2 has a zero on U12 then this
point is also a zero of f2 and for both of the same order; thus on those points
it is well defined their ratio f1(x)/f2(x) = h(x) ∈ C∗. All the other points are
not zeroes neither for f1 nor f2. Therefore f1/f2 ∈ O∗(U12), as claimed.

Remark 2.7.2. Moreover, if (U, f) is a local equation for Y then from (ii) in
the definition it follows that each zero of f is of order one. For, suppose that
x ∈ U ∩ Y is a zero of order greater than one. Then, modulo a chart change we
can describe f using the last coordinate zn and locally around x we can write
f as zn 7→ zkn with k ≥ 2. But also zn is a local equation for Y , and there can
be no holomorphic function h on this neighborhood such that zn = hf .

Let now X =
⋃
Uα be a covering of X with local equations (Uα, fα) for Y .

By the last lemma we then have a family of holomorphic non zero functions

gαβ :=
fα
fβ

: Uαβ −→ C∗

where Uαβ = Uα∩Uβ . Moreover, this maps clearly satisfy the glueing conditions

gαα = 1, gβα = g−1
αβ , gαβgβγ = gαγ

Thus they define a holomorphic line bundle on X, namely

LY ←→ {Uα, gαβ}

Remark 2.7.3. As such, this definition seems to depend on the choice of the
local equations for Y . Whereas the special form of gαβ = fα/fβ makes it a well
defined bundle. For, suppose there exist two line bundles L,M on X such that

L←→ {Uα, gαβ = fα/fβ}, M ←→ {Uα, lαβ = hα/hβ}

then we can define a line bundle isomorphism Φ : L→M by

Φ←→ {Uα,Φα = hα/fα : Uα → C∗}

in fact Φα = hα/fα = (hα/hβ)(hβ/fβ)(fβ/fα) = lαβΦβgβα and Φα is nowhere
zero by the lemma. So Φα has rank 1 everywhere, i.e. it is an isomorphism.

If we look at the line bundle LY on X and take its restriction to Y we get
a line bundle on Y . Consider now the normal bundle on Y ↪→ X,

NY/X = (TX|Y )/(TY )

It has rank rk(NY/X) = Codim(Y ) = 1, so it is a line bundle on Y in our case.
It turns out that NY/X is just the restriction of LY to Y .
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Theorem 2.7.1. NY/X = LY |Y

Proof. Recall that for a quotient bundle F/E we have detF = detE⊗ detF/E
or, equivalently, detF/E = detF ⊗ (detE)−1. In our case F/E = NY/X is a
line bundle (so detF/E = F/E), F = TX|Y and E = TY , so we get

NY/X = detTX|Y ⊗ (detTY )−1

Let (Uα, z
α) be local charts of X such that (Uα, z

α
n ) are local equations for

Y ⊂
⋃
Uα. Then {Y ∩ Uα, (zα1 , . . . , z

α
n−1)} is an atlas of Y , so

TY ←→

{
Uα ∩ Y, gαβ =

[
∂zαk

∂zβl

]
, k, l = 1, . . . , n− 1

}

TX|Y ←→

{
Uα ∩ Y, Gαβ =

[
∂zαk

∂zβl

]
, k, l = 1, . . . , n

}

LY ←→
{
Uα, hαβ =

zαn

zβn

}
Let’s compute the last row of Gαβ (so k = n) evaluating in y ∈ Y ∩ Uαβ

∂zαn

∂zβl
(y) =

∂hαβ

∂zβl
(y)zβn(y) + hαβ(y)

∂zβn

∂zβl
(y) = δnlhαβ(y)

where6 we have used zαn = hαβz
β
n and zβn(y) = 0. In other words

Gαβ =

(
gαβ ∗
0 hαβ

)
so that det(Gαβ |Y ) = (det gαβ) · hαβ , that is

detTX|Y = detTY ⊗ LY |Y

and substituting this in the above expression for NY/X we obtain the thesis.

By the adjunction formula we get the following expression for ωY .

Corollary 2.7.1. ωY = (ωX ⊗ LY )|Y

We finally get to the main result of this section.

Theorem 2.7.2. Let Y ⊂ X be a hypersurface. Then

(i) There is a global section s ∈ Γ(X,LY ) such that Y = {x ∈ X : s(x) = 0}.

(ii) There is a covering X =
⋃
Uα where s ←→ {Uα, sα : Uα → C} such that

each (Uα, sα) is a local equation for Y .

(iii) If L is any line bundle on X with a global section s ∈ Γ(X,L) which gives
a family of local equations for Y , then L = LY .

6δnl is the Kronecker delta
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Proof. Let (Uα, fα) be local equations for Y . Then LY ←→ {Uα, gαβ = fα/fβ}
and a global section s of LY must have local descriptions sα : Uα → C such
that sα = gαβsβ . This obviously works perfect with sα = fα = gαβfβ , so

s←→ {Uα, fα}

is a global section of LY and clearly Y = {x ∈ X : s(x) = 0} since the local
descriptions of s are local equations for Y . Now, if L ←→ {Uα, kαβ} is a line
bundle on X with a global section s←→ {sα : Uα → C, sα = kαβsβ} such that
(Uα, sα) are local equations for Y then we can write kαβ = sα/sβ on Uαβ , so

LY ←→ {Uα, kαβ}

Example (algebraic varieties). Let X = Pn and F ∈ C[x0, . . . , xn] be a homo-
geneus polynomial of degree d. Assume that the dehomogenized polynomials

fj(u1, . . . , un) := F (x0

xj
, . . . , 1, . . . , xnxj )

for all j = 0, . . . , n are such that rk JC(fj) = 1 for all u ∈ Cn with fj(u) = 0.

Y = {x ∈ Pn : F (x) = 0}

is then a hypersurface of Pn with local equations (Uj , fj), on the standard cov-
ering of Pn. As we have seen F defines a global section of L(d). Thus

LY = L(d)

by theorem 2.7.2 above. By corollary 2.7.1 and proposition 2.3.1 we have

ωY = (ωPn ⊗ LY )|Y
= (L(−n− 1)⊗ L(d))|Y
= L(d− n− 1)|Y

Example (plane cubics). As a particular case of the last example, take d = 3
and n = 2, so Y is a cubic in P2. Recall that L(0) is the trivial bundle. Then

ωY = L(0)|Y = (P2 × C)|Y = Y × C

hence the canonical line bundle of a plane cubic curve is trivial.

Definition. A complex manifold X with trivial canonical line bundle

ωX ' X × C,

is called Calabi-Yau manifold.
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Chapter 3

Line bundles

3.1 Picard group

Let X be a complex manifold and L ←→ {Uα, gαβ}, M ←→ {Uα, hαβ} two
holomorphic line bundles on X. Suppose they are isomorphic: there exists a
morphism φ : L→M of rank 1, so that φ←→ {Uα, φα : Uα → C∗} and we can
write locally φα = hαβφβgβα or, in this case, hαβ = (φα/φβ)gαβ . So

L 'M ⇐⇒ hαβ =
φα
φβ
gαβ

for a family of holomorphic functions φα : Uα → C∗. The picard group of a
complex manifold X is the set of isomorphism classes of line bundles on X,

Pic(X) = {line bundles on X}/ '

It has a natural group structure under the tensor product operation ⊗ between
line bundles. The neutral element is the trivial bundle X × C and the inverse
of a line bundle L is then given by its dual L−1. The picard group is one of the
most important invariants of a complex manifold.

Example. L(d) ∈ Pic(Pn) for all d ∈ Z. By definition L(d)⊗ L(k) = L(d+ k)
and L(d)−1 = L(−d). So there is a subgroup of Pic(Pn) given by

{L(d) : d ∈ Z} ' Z

We will prove that this subgroup is actually the whole Pic(Pn).

Let O∗ be the sheaf of holomorphic non vanishing functions on X, that is

O∗(U) = {holomorphic g : U −→ C∗}

We consider it as a sheaf of abelian groups on X under multiplication. Note
that for a line bundle L←→ {Uα, gαβ} we have gαβ ∈ O∗(Uαβ).

Notation. Most often we just write O instead of OX (same with O∗ = O∗X)
when it is clear from the context which underlying complex manifold X we are
considering. In the same fashion we will often write Hq(F) in place of Hq(X,F)
for the cohomology groups of some sheaf F on X.
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Theorem 3.1.1. There is a group isomorphism Pic(X) ' H1(X,O∗)

This can be proved in different ways. A proof by means of Čech cohomology
is given in the appendix A.2. Another way is to use the canonical resolution.
The latter is harder but we still give a sketch of the map:

Sketch of the map. Let C0 := D(O∗) be the sheaf of discontinous sections of O∗.
Since C0 is soft Hq(X, C0) = 0 for all q ≥ 1. So we have an exact sequence

0 −→ O∗ ψ−→ C0 φ−→ Q −→ 0

where Q = C0/O∗ is the quotient sheaf and φ is the quotient map. This leads
to a long exact sequence in cohomology

0 −→ H0(O∗) ψX−→ H0(C0)
φX−→ H0(Q)

δ−→ H1(O∗) −→ H1(C0) = 0

Hence δ is surjective. Let c ∈ H1(O∗) and c = δ(g) for some g ∈ H0(Q). Since
φ : C0 → Q is surjective there is an open covering X =

⋃
Uα such that

g|Uα = φUα(gα)

for some gα ∈ C0(Uα). Let Uαβ = Uα ∩ Uβ . Then

φUαβ
(
(gα|Uαβ ) · (gβ|Uαβ )−1

)
= φUαβ (gα|Uαβ ) · φUαβ (gβ|Uαβ )−1

= φUα(gα)|Uαβ · φUβ (gβ)−1
|Uαβ

= g|Uαβ · g
−1
|Uαβ = 1

Hence (gα|Uαβ ) · (gβ|Uαβ )−1 ∈ ker(φUαβ ) = Im(ψUαβ ). Thus there exist functions
gαβ ∈ O∗(Uαβ) such that gαβ = (gα|Uαβ ) · (gβ|Uαβ )−1. One then checks that

gαα = 1, g−1
βα = gαβ , gαβgβγ = gαγ

thus we can define a line bundle L←→ {Uα, gαβ}. One then has to check that
L does not depend on the choices of the covering {Uα}, of g ∈ H0(Q) and on
the choice of the gαβ ∈ O∗(Uαβ). So it depends only on c ∈ H1(O∗). Now it
comes the most difficult part of the proof: to show that the map

H1(O∗) −→ Pic(X), c 7−→ L

is linear and bijective, so it is an isomorphism of abelian groups.

3.2 Exponential sequence and Néron-Severi group

The exponential sequence is the main tool for determining H1(X,O∗) = Pic(X).
Consider Z as a sheaf of locally constant functions on X. We have an obvious
injection j : Z ↪→ O. Also, between the sheaves of holomorphic functions O and
of holomorphic invertible functions O∗ on X we have a morphism given by

exp : O −→ O∗, expU : f 7−→ e2iπf
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Remark 3.2.1. exp is surjective: let a ∈ X and ga ∈ O∗a with representative
g ∈ O∗(U). Then on a small ball around a the function f := 1

2iπ log(g) exists
and g = expU (f), so ga = expa(fa).

As a consequence we get the following short exact sequence of sheaves on X

0 Z O O∗ 0
j exp

which is called the exponential sequence of X. By theorem 1.3.3 this induces a
long exact sequence in cohomology. We will make the following assumptions:

• X connected (so H0(X,Z) = Z).

• X compact (so H0(X,O) = C and H0(X,O∗) = C∗).

Then we get

0 Z C C∗

H1(X,Z) H1(X,O) Pic(X)

H2(X,Z) H2(X,O) H2(X,O∗) · · ·

e0

δ0

j1 e1

δ1

j2 e2

and e0 : z 7→ e2iπz is surjective. Hence Im(e0) = C∗ = ker(δ0) by exactness.
Then 0 = Im(δ0) = ker(j1). So j1 is an injection and we may define the quotient

Pic0(X) :=
H1(X,O)

H1(X,Z)
.

By exactness Im(j1) = ker(e1), which leads to

Pic0(X) =
H1(X,O)

Im(j1)
=
H1(X,O)

ker(e1)
' Im(e1).

In other words we have an inclusion of groups Pic0(X) ↪→ Pic(X). Now define

NS(X) := Im(δ1) ⊂ H2(X,Z),

called the Néron-Severi group of X (note that it is discrete). Thus

0 Pic0(X) Pic(X) NS(X) 0
δ1

is a short exact sequence. Note that NS(X) = ker(j2) by exactness.
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The case of projective varieties

The group Pic0(X) carries a complex structure. If X ↪→ PN it turns out that

• Pic0(X) is a complex torus (hard to show). Therefore

• H1(X,O) = Cg, some integer g ≥ 0.

• H1(X,Z) = Z2g.

• H1(X,Z) ⊂ H1(X,O) is a lattice (as H1(X,O) = H1(X,Z)⊗Z R).

• NS(X) = Zρ ⊕ T , with T a finite group (torsion).

ρ ≥ 1 is the Picard number of X and depends on the complex structure of X.

Example. If X ⊂ P2 is a cubic curve then X ' C/Λ, so X ' Pic0(X).

3.3 Basic properties of Hq(X,Z) and Hq(X,O)

As we have seen in section 1.5 the groups Hq(X,Z) are nothing but the singular
cohomology groups Hq

Sing(X,Z). Since X is compact, we know that the latter
decomposes into free and a torsion part and so we can write

Hq(X,Z) ' Zbq ⊕ Tq,

where the integer bq ≥ 0 is called the q-th Betti number of X and Tq is a finite
group. By the universal coefficients theorem one gets T1 = 0 and1

Hq(X,Z)⊗Z R = Hq(X,R) = Hq
dR(X) ' Rbq .

where we have used the de Rham theorem in the second equality. Hence the
Betti numbers are completely determined by the de Rham cohomology of X,
which therefore determines the free part of Hq(X,Z). Then, a useful way to
study the free part of Hq(X,Z) is to embed it in the de Rham groups as:

Hq
dR(X,Z) := Im{Hq(X,Z) −→ Hq

dR(X)} ' Zbq .

Equivalently, we can give it the following explicit description:

Hq
dR(X,Z) = {[ω] ∈ Hq

dR(X) :

∫
Y

ω ∈ Z for all Y ∈ Kq(X)},

where Kq(X) = {compact real submanifolds Y ⊂ X of dimension q}.

We now investigate Hq(X,O). As O = Ω0, we have

Hq(X,O) = Hq(X,Ω0) =
{(0, q)-forms ∂̄-closed}
{(0, q)-forms ∂̄-exact}

' Cpq ,

for some integers pq ≥ 0. The second equality follows by Dolbeault theorem,
while the last one by the fact that X is assumed to be compact. In particular,
as there are no (0, q)-forms on X when q > dim(X), we get the vanishing:

Hq(X,O) = 0 if q > dim(X).

1tensoring with R kills the torsion part!
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Example (Riemann Surfaces). Let X be a compact connected complex manifold
of dimension 1. Then H2(O) = 0, so NS(X) = H2(Z). Topologically X is a
compact orientable surface of genus g. By singular cohomology H1(Z) = Z2g

and H2(Z) = Z. So H2
dR(X) = R (also from orientability). So b1 = 2g and

b2 = 1. One proves that H1(O) = Cg, so Pic0(X) = Cg/Z2g is a torus.

0 Cg/Z2g Pic(X) Z 0
δ

Example (complex projective space). Let X = Pn. Then

Hq(Pn,Z) =

{
0 q odd

Z q even
Hq

dR(Pn) =

{
0 q odd

R q even

One can prove that Hq(Pn,O) = 0 for all q ≥ 1. Hence

Pic(Pn) ' H2(Pn,Z) ' Z.

From what we said above it follows that Pic(Pn) = {L(d) : d ∈ Z}.

Consequence. Let Y ⊂ Pn be an analytic hypersurface (codimension 1 sub-
manifold). Then Y is algebraic. In fact as we know LY ' L(d) for some d ∈ Z,
and there exists a global section sY such that Y is the zero locus of sY . However
it can be proved that the global sections of L(d) are (isomorphic to) homogeneous
polynomials of degree d for d ≥ 0, while there are no nontrivial global sections
for d < 0. Thus sY ↔ F homogeneous polynomial of degree d and Y = Z(F ).
More generally we get Chow’s lemma: if Y ⊂ Pn is a compact submanifold then
it is an algebraic variety, i.e. there exists homogeneous polynomials Fi such that

Y = {x ∈ Pn : Fi(x) = 0 ∀i}

3.4 The first Chern class of a line bundle

Now that we know the basic facts about H1(X,O), the natural next step for
studying the Picard group is to investigate the boundary map δ := δ1 in the
long exact cohomology sequence induced by the exponential sequence. That is,

δ : Pic(X) = H1(X,O∗) −→ H2(X,Z).

Essentially, the first Chern class of a line bundle will be its image under δ.

Smooth sections of a line bundle

Suppose p : L→ X is a holomorphic line bundle on X. Once an open covering
X =

⋃
Uα is fixed we get trivializations ψα : L|Uα ' Uα × C and

L←→ {Uα, gαβ : Uαβ −→ C∗}

Being L and X complex manifold they have in particular a smooth (or C∞)
structure. So instead of the holomorphic sections of L we can consider the
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smooth sections: smooth maps s : U → L such that p ◦ s = idU where U ⊂ X
is open. We denote by A0

L the sheaf on X of the smooth sections of L.

A0
L(U) = {s : U −→ L, s ∈ C∞, p ◦ s = idU}

Over each Uα we define the holomorphic section sα by

sα : Uα −→ L|Uα sα(x) := ψ−1
α (x, 1). (3.1)

Remark 3.4.1. Notice that sα(x) = ψ−1
β ◦ ψβ ◦ ψ−1

α (x, 1) = ψ−1
β (x, gβα(x)) and

as ψβ is linear this equals gβα(x)ψ−1
β (x, 1) = gβα(x)sβ(x). We get the identity

sα(x) = gβα(x)sβ(x). (3.2)

Warning: (can cause confusion) the sα are sections, not local descriptions!

Now, if U ⊂ Uα and s ∈ A0
L(U) then ψα(s(x)) = (x, f(x)) = (x, f(x) · 1) for

some smooth f : U → C. Therefore, we can write s locally (i.e. x ∈ U) as

s(x) = f(x)sα(x), (3.3)

where the scalar product is taken in Lx. This local form will be useful later.

Connections of line bundles and curvature 2-forms

For a ∈ X we consider the complexified tangent space

TaXC := TaX ⊗R C,

and denote its dual by T ∗aXC. So we have a vector bundle on X

k∧
T ∗XC :=

⊔
a∈X

(
k∧
T ∗aXC

)
,

whose smooth sections live in the sheaf Ak, defined by

Ak(U) = {smooth complex-valued k-forms on U}.

In particular, for k = 0 we get

A0(U) = {f : U −→ C smooth}.

Recall that if E ↔ {Uα, hαβ} is a rank r vector bundle on X then

L⊗ E ←→ {Uα, gαβhαβ}

is a rank r vector bundle on X. We define the following sheaf.

Definition. AkL is the sheaf of smooth sections of
(∧k

T ∗XC

)
⊗ L

Remark 3.4.2. A section in AkL(Uα) has the form

ω ⊗ s = ω ⊗ (f · sα) = f · (ω ⊗ sα) = (f · ω)⊗ sα

with ω ∈ Ak(Uα) and f smooth on Uα. In other words, elements in AkL(Uα)
can be written as ωα ⊗ sα for some ωα ∈ Ak(Uα).
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Remark 3.4.3. Note that
∧0

T ∗XC is the trivial bundle so when k = 0 the
general definition of AkL is coherent with the one of A0

L given before.

Definition. A connection on L is a sheaf homomorphism

∇ : A0
L −→ A1

L,

which satisfies the Leibniz rule: for all f ∈ A0(U) and s ∈ A0
L(U),

∇(fs) = df ⊗ s+ f∇s,

where we simply denoted ∇ = ∇U .

Remarkably, every line bundle L admits a connection! It is convenient to
postpone the proof of this fact and just assume it for the moment.

Suppose ∇ is a connection on L. We can extend it to ∇ : AkL → A
k+1
L by

∇(ω ⊗ s) := dω ⊗ s+ (−1)kω ⊗∇s (3.4)

The term ω ⊗∇s needs a bit of explanation: if ∇s = η ⊗ s for some η, then

ω ⊗∇s = ω ⊗ (η ⊗ s) = (ω ∧ η)⊗ s.

A useful remark: for f ∈ A0(U) and ψ ∈ AkL(U) an easy calculation shows

∇(fψ) = df ⊗ ψ + f∇ψ. (3.5)

Therefore the Leibniz rule gets extended.
A sheaf morphism φ : A0

L −→ AkL is called A0-linear if for all smooth
functions f ∈ A0(U) and for all smooth bundle sections s ∈ A0

L(U),

φU (fs) = fφU (s).

The importance of this property is due to the following fact:

Lemma. Let φ : A0
L −→ AkL be a A0-linear morphism. Then there exists a

global smooth k-form ω ∈ Ak(X) such that for all smooth sections s ∈ A0
L(U),

φU (s) = ω ⊗ s.

Definition. The curvature F∇ of a connection ∇ on L is by definition

F∇ := ∇ ◦∇ : A0
L −→ A2

L.

A calculation shows that F∇ is A0-linear. Hence there exists some global 2-form
Θ∇ ∈ A2(X), called the curvature 2-form of L, with

F∇(s) = Θ∇ ⊗ s.

We are almost there. Our initial goal was to understand the image

δ(L) ∈ H2(X,Z) ↪→ H2(X,Z)⊗ R = H2
dR(X).

In other words we want an element in H2
dR(X,Z). So far, starting from L we

produced Θ∇ ∈ A2(X). The first step is to show that Θ∇ is closed, and therefore
defines a class in the de Rham group of C-valued 2-forms, that is

[Θ∇] ∈ H2
dR(X)C =

ker{d : A2(X)→ A3(X)}
Im{d : A1(X)→ A2(X)}

.
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Moreover, our definition seems to depend on the choice of the connection ∇.
This is not the case, essentially because the space of connections on L is some-
thing like an affine space on the space of global 1-forms. More precisely, let
∇,∇′ be two connections on L. By the Leibniz rule we see that ∇ − ∇′ is
A0-linear. Therefore, by the lemma, there exists a global 1-form ω ∈ A1(X)
such that for all smooth bundle sections s ∈ A0

L(U),

(∇−∇′)(s) = ω ⊗ s. (3.6)

Theorem 3.4.1. Let ∇,∇′ be two connections on L. Then

• Θ∇ is closed. In particular Θ∇ defines a class [Θ∇] ∈ H2
dR(X)C

• [Θ∇] = [Θ∇′ ]

Proof. We show that Θ∇ is locally exact, hence closed. Fix an open covering
{Uα} on X and consider the sections sα as in 3.1. By remark 3.4.2 we have
∇sα = ωα ⊗ sα for some ωα ∈ A1(Uα). We show that Θ∇|Uα = dωα. Indeed,

Θ∇|Uα ⊗ sα = ∇2sα = ∇(ωα ⊗ sα) = dωα ⊗ sα + (−1)1ωα ⊗∇sα
= dωα ⊗ sα − (ωα ⊗ (ωα ⊗ sα))

= dωα ⊗ sα − (ωα ∧ ωα)⊗ sα
= dωα ⊗ sα.

Now, let ∇′ be another connection. Let ω ∈ A1(X) be as in 3.6. Then,

Θ∇ ⊗ s = ∇2s = ∇(∇′s+ ω ⊗ s)
= (∇′ + ω)(∇′s+ ω ⊗ s)
= (∇′)2s+∇′(ω ⊗ s) + ω ⊗∇′s+ ω ⊗ (ω ⊗ s)
= (∇′)2s+ dω ⊗ s+ (−1)1ω ⊗∇′s+ ω ⊗ (∇′s)
= Θ∇′ ⊗ s+ dω ⊗ s
= (Θ∇′ + dω)⊗ s, whichconcludestheproof.

Hence Θ∇ = Θ∇′ + dω.

Now we have a well defined class [Θ∇] ∈ H2
dR(X)C. We want a real form.

Definition. The first Chern class of L is by definition,

c1(L) =
i

2π
[Θ∇].

Hermitian metrics

We aim to show that c1(L) is a real 2-form, that is c1(L) ∈ H2
dR(X). We do

so by means of Hermitian metrics. This is particularly nice since we also get
an explicit local expression for c1(L). Moreover, we will pay off a debt: the
existence of a connection on any line bundle. Let p : L→ X be a line bundle.

Definition. A Hermitian metric h on L is a scalar product h(a) on each fiber
La ' C which depends smoothly on a ∈ X. In other words, if s, t are smooth
sections of L, the function a 7→ h(a)(s(a), t(a)) is smooth.
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Fix {Uα} with local nowhere vanishing sections sα as in 3.1. We define

hα : Uα −→ R+ a 7−→ hα(a) = h(a)(sα(a), sα(a)) > 0.

For two smooth sections of L, say s = fsα and t = gsα (cf. 3.3), we get2

h(a)(s(a), t(a)) = f(a)g(a)hα(a).

Hence the collection of functions hα determines the metric h uniquely!

Lemma. Any line bundle admits a Hermitian metric.

Proof. Let {ρα} be a smooth partition of unity subordinate to the open covering
{Uα} of X. Locally on each Uα we have the metric h̃α(x)(s(x), t(x)) = f(x)g(x)
where s = fsα and t = gsα. Then h :=

∑
ραh̃α defines a metric on L, i.e.

h(x)(s(x), t(x)) :=
∑
α

ρα(x)h̃α(x)(s(x), t(x)).

Let ∇ be a connection on L↔ {Uα, gαβ}. By remark 3.4.2, ∇sα = ωα⊗sα,
for some ωα ∈ A1(Uα). The point is that the data {ωα} completely determines
the connection: indeed, any smooth bundle section s can be written locally as
s = fsα, therefore knowing ∇sα determines ∇s (by the Leibniz rule). The
collection {ωα} then has to satisfy some gluing conditions on the intersections
Uαβ . As the gαβ are holomorphic3, we have ∂̄gαβ = 0. We have

ωα ⊗ sα = ∇sα = ∇(gβαsβ) = dgβα ⊗ sβ + gβα∇sβ
= ∂gβα ⊗ gαβsα + gβα(ωβ ⊗ sβ)

= gαβ∂gβα ⊗ sα + gβαgαβ(ωβ ⊗ sα)

= (gαβ∂gβα + ωβ)⊗ sα.

Thus, the gluing condition for the ωα’s is the following:

ωα = g−1
βα∂gβα + ωβ . (3.7)

Theorem 3.4.2. Let L be a line bundle on X with a Hermitian metric h. Then

(a) There exists a connection ∇ on L induced by h, determined by

ωα = h−1
α ∂hα

(b) The local expression for c1(L) is given by

i

2π
Θ∇|Uα =

1

2iπ
∂∂̄ log hα

(c) c1(L) ∈ H2
dR(X). In other words c1(L) is a real 2-form of type (1, 1).

2recall that an Hermitian scalar product satisfies h(az, bw) = abh(z, w)
3recall the decomposition d = (∂ + ∂̄) : A0 −→ A1 = A1,0 ⊕A0,1
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Proof. (a) we need to show that ωα := h−1
α ∂hα satisfies 3.7. This is achieved

by using 0 = (∂̄gβα) = ∂(gβα) and the following expression

hα = h(sα, sα) = h(gβαsβ , gβαsβ) = gβαgβαhβ .

(b) recall that Θ∇ is locally exact and equals dωα (cf. proof of theorem 3.4.1).
Now, dωα = (∂ + ∂̄)(h−1

α ∂hα) and

∂(h−1
α ∂hα) = −h−2

α ∂hα ∧ ∂hα + h−1
α ∂2hα = 0.

Hence Θ∇|Uα = ∂̄(h−1
α ∂hα) = ∂̄(∂ log hα). Recalling ∂∂̄ = −∂̄∂ and dividing by

−2iπ leads to the statement of (b).
(c) Let f = log hα : Uα → R, a real function. Locally

c1(L) =
1

2iπ
∂∂̄f =

1

2iπ

∑ ∂2f

∂zj∂z̄k
dzj ∧ dz̄k.

Since f̄ = f , we get c1(L) = (−1)(−1)c1(L) = c1(L), which proves (c).

By means of Čech cohomology, one can prove

δ(L) = −c1(L).

3.5 The fundamental class of a hypersurface

This section is a short digression. Let Y ⊂ X be a compact submanifold of
codimension 1. We have a line bundle LY ∈ Pic(X) (cf. section 2.7), hence a
class c1(LY ) ∈ H2

dR(X) (notice that Y has real codimension 2). Here we want
to discuss another procedure to get the map Y 7→ c1(LY ). Let n = dimCX.

There is a well-defined R-linear map4

H2n−2
dR (X) −→ R, [ω] 7−→

∫
Y

ω.

In other words, the operator
∫
Y

is an element in the dual H2n−2
dR (X)∨. Since X

is a compact orientable manifold, by Poincaré duality we have a perfect pairing

Hk
dR(X)×H2n−k

dR (X) −→ R, ([v], [ω]) 7−→
∫
X

v ∧ ω.

Thus, any element in H2n−k
dR (X)∨ is of the form [ω] 7→

∫
X
v∧ω for some unique

class [v] ∈ Hk
dR(X). In our particular case,

∫
Y
∈ H2n−2

dR (X)∨ is given by∫
Y

ω =

∫
X

θY ∧ ω,

for some unique class [θY ] ∈ H2
dR(X), called the fundamental class of Y . One

can show that [θY ] = c1(L).

4it is well-defined by Stoke’s theorem:
∫
Y ω =

∫
Y (ω + dη), where

∫
Y dη = 0.
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Chapter 4

Kähler manifolds

4.1 The Fubini-Study 2-form on Pn

We consider the case X = Pn, with its standard covering {Uα}.

Definition. The Fubini-Study 2-form ωFS on Pn is the 2-form given locally by

ωFS|Uα =
1

2iπ
∂∂̄ log

(
xαxα

x0x0 + · · ·+ xnxn

)
.

It is tempting to split the logarithm into a difference, but the numerator and
denominator are not homogeneous functions (their ratio does)! What we can
do is to pull back ωFS by π : Cn+1 \ {0} → Pn and then split:1

π∗(ωFS|Uα) =
1

2iπ
∂∂̄ log

(
zαzα∑
zjzj

)
=

1

2iπ
∂∂̄
(

log zα + log zα − log
(∑

zjzj

))
=

i

2π
∂∂̄ log

(∑
zjzj

)
=: ω̃FS.

We call ω̃FS the Fubini-Study 2-form on the punctured space Cn+1 \ {0}.

This is not random. The Fubini-Study 2-form is related to the Chern class
of a very important line bundle on Pn: the hyperplane bundle p : L(1) → Pn
(cf. section 2.2). The construction is as follows.

On each fiber L(1)a = {(x0 : . . . : xn : sa)| sa ∈ C} ' C, we define

h(a) ((x0 : . . . : xn : sa), (x0 : . . . : xn : ta)) =
sata

x0x0 + · · ·+ xnxn
.

This yields a Hermitian metric h on L(1). Recall

ψα : L(1)|Uα −→ Uα × C, (x0 : . . . : xn+1) 7−→
(

(x0 : . . . : xn), xn+1

xα

)
For a ∈ Uα we then have the nowhere vanishing section sα defined as

sα(a) = ψ−1
α (a, 1) = (x0 : . . . : xn : xα).

1recall: ∂̄ log z = 0 (holomorphic), ∂ log z = 0 (antiholomorphic) and ∂∂̄ = −∂̄∂
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Let ∇ be the connection defined by h. By theorem 3.4.2, we get

i

2π
Θ∇|Uα =

1

2iπ
∂∂̄ log h(sα, sα)

=
1

2iπ
∂∂̄ log

(
xαxα

x0x0 + · · ·+ xnxn

)
= ωFS|Uα .

Therefore ωFS is a representative of the first Chern class of L(1) (in particular
it is d-closed). However, its importance goes beyond this. The Fubini-Study
2-form brings much more informations than expected.

Lemma. ωFS is not d-exact. Hence its class is non-zero in H2
dR(Pn).

Proof. Assume by contradiction ωFS = dη with η ∈ E1(Pn). By Stokes’ theorem∫
Z

ωFS =

∫
Z

dη =

∫
∂Z

η = 0,

for any Z ⊂ Pn compact of real dimension 2 (in fact Z is an algebraic subvariety
of Pn, therefore ∂Z is empty). Let Z be the line parametrized by

ϕ : C −→ Pn, ϕ(z) = (1 : z : 0 : . . . : 0) ∈ U0 ⊂ Pn.

In other words Z = P1 = ϕ(C) ∪ (0 : 1 : 0 : . . . : 0). We claim that
∫
Z
ωFS = 1.

ϕ∗(ωFS|U0
) =

1

2iπ
∂∂̄ log

(
1

1 + zz̄

)
=

i

2π
∂∂̄ log(1 + zz̄)

=
i

2π
∂

(
1

1 + zz̄
zdz̄

)
(∂̄(zz̄) = zdz̄)

=
i

2π

(
−1

(1 + zz̄)2
z̄dz ∧ zdz̄ +

1

1 + zz̄
dz ∧ dz̄

)
=

i

2π

1

(1 + zz̄)2
dz ∧ dz̄

Using polar coordinates we get∫
Z

ωFS =

∫
C

i

2π

1

(1 + zz̄)2
dz ∧ dz̄ =

1

π

∫ ∞
0

∫ 2π

0

rdrdϑ

(1 + r2)2
= 1

4.2 Riemannian metrics and Kähler manifolds

Recall the usual identification of a complex manifold X with its underlying real
manifold, which we still denote by X. Given local holomorphic coordinates
z = (z1, . . . , zn), with zj = xj + iyj , we identify

(z1, . . . , zn)←→ (x1, . . . , xn, y1, . . . , yn).

For tangent vectors v ∈ TX we identify

v =
∑

aj
∂

∂xj
+ bj

∂

∂yj
(∈ TX)

=
∑

(aj + ibj)
∂

∂zj
+ (aj − ibj)

∂

∂z̄j
(∈ T 1,0 ⊕ T 0,1).
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This yields a natural inclusion TX ↪→ TX ⊗ C = T 1,0 ⊕ T 0,1. Recall the
definition of the “complex structure” endomorphism

J : TX −→ TX,
∂

∂xj
7−→ ∂

∂yj
,

∂

∂yj
7−→ − ∂

∂xj
,

whose eigenspaces are T 1,0 (with eigenvalue i) and T 0,1 (with eigenvalue −i).
Often, J is denoted by the letter i, since J2 = − id.

Remark 4.2.1. A 2-form ω on X is such that

ω(v, w) = ω(Jv, Jw) (4.1)

(at each point, for each v, w) if and only if ω is of type (1, 1). Indeed, if ω is of
type (1, 1), i.e. locally ω =

∑
fjkdzj ∧ dz̄k, then ω(v, w) =

∑
fjk(vjw̄k −wj v̄k).

Since Jv = iv and Jw = iw, we get 4.1. Conversely, suppose 4.1 holds. We
can split ω = ω2,0 + ω1,1 + ω0,2. Let ω2,0 =

∑
gjkdzj ∧ dzk. Therefore we get

ω2,0(v, w) =
∑
gjk(vjwk−wjvk), so ω2,0(Jv, Jw) = i2ω2,0(v, w) = −ω2,0(v, w).

Thus ω2,0 = 0. Similarly one finds ω0,2 = 0. Hence ω is of (1, 1) type.

Definition. A Riemannian metric g on a differentiable manifold X is a family
of positive definite inner products on each tangent space

gp : TpX × TpX −→ R, (v, w) 7−→ gp(v, w).

Precisely, each gp is a symmetric, positive definite, R-bilinear form on TpX. A
Kähler manifold is a complex manifold X with a Riemannian metric g such that

(i) g preserves the complex structure, i.e. g(v, w) = g(Jv, Jw).

(ii) dω = 0, where ω is the 2-form defined by

ω(v, w) := g(v,−Jw).

Such a g is called a Kähler metric, and ω a Kähler form. Notice that

g(v, w) = g(v,−J2w) = ω(v, Jw).

Proposition 4.2.1. The Fubini-Study form is positive, in the following sense:
for each non-zero tangent vector v ∈ TPn we have ωFS(v, Jv) > 0.

One can prove this by observing that ω̃FS is invariant under the unitary
transformations of Cn+1 (transformations which preserves the inner product),
and so it suffices to check positivity at one point p ∈ Pn. For example, a direct
computation at p = (1 : 0 : · · · : 0) is easy.

Corollary 4.2.1. Pn has a Riemannian metric, defined by

g(v, w) := ωFS(v, Jw).

Moreover, Pn is a Kähler manifold.
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Proof. Linearity is obvious, and g is positive definite by the proposition. We
only need to show that g is symmetric. Since ωFS is of type (1, 1),

g(w, v) = ωFS(w, Jv) (4.2.1)

= ωFS(Jw, J2v) (J2 = − id)

= ωFS(Jw,−v) (ω(a, b) = −ω(b, a))

= −ωFS(−v, Jw)

= ωFS(v, Jw) = g(v, w)

Finally, ωFS is d-closed, for it defines a class in cohomology, the first Chern class
of L(1), as we have seen. Also, we clearly have g(v, w) = g(Jv, Jw). Hence Pn
is a Kähler manifold, as claimed.

4.3 Kodaira embedding theorem

Let g be a Kähler metric on Pn, and ω the related Kähler form. Given a complex
submanifold Y ↪→ Pn (i.e. a smooth projective variety), we get a Kähler form
on Y (just restrict g to TY ). Precisely, let ω|Y = f∗ω, where f : Y → Pn is
an embedding2. Thus, any smooth projective variety is a Kähler manifold. The
converse is false. We will see the example of complex tori of dimension 2, which
are all Kähler, though some do not admit any projective embedding.

Remark 4.3.1. If X is a Kähler manifold, any Kähler 2-form ω is not d-exact (we
have seen it for ωFS). Hence its class is non-trivial in H2

dR(X). More generally,
one has [ωk] 6= 0 in H2k

dR(X), where ωk = ω ∧ · · · ∧ ω (obviously k ≤ dimCX).

Recall

H2
dR(X,Z) = {[ω] ∈ H2

dR(X) :

∫
Y

ω ∈ Z for all Y ∈ K2(X)},

where K2(X) is the set of compact (real) 2-dimensional submanifolds of X.

Definition. An element [ω] ∈ H2
dR(X,Z) such that ω is a Kähler form, is called

an integral Kähler class.

The importance of this concept is evident, in light of the following remarkable
result, proved in the 60’s by Kodaira.

Theorem 4.3.1. Let X be a compact complex manifold. Then X is projective
(i.e. X ↪→ PN ) if and only if it admits an integral Kähler class.

Given a compact complex manifold X and an integral Kähler class [ω], the
idea of the proof is to show that [ω] = c1(L), for some line bundle L ∈ Pic(X),
which is ample, in the sense that for some k ∈ N the global sections of L⊗k

define an immersion ϕ : X ↪→ PN .

2moreover c1(L(1)|Y ) = [f∗ωFS]
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4.4 Lefschetz (1, 1) theorem

Let X be a compact Kähler manifold. By Hodge theory, one can prove that there
exists the following orthogonal decomposition, called Hodge decomposition,

H2(X,C) = H2,0(X)⊕H1,1(X)⊕H0,2(X).

We denote by π0,2 : H2(X,C)→ H0,2(X) the projection on this third factor.
Moreover, one has an isomorphism (Hodge duality)

Hp,q(X) ' Hq,p(X).

Hence, given ω ∈ H2
dR(X) ⊂ H2(X,C), we can split it as

ω = ω2,0 + ω1,1 + ω0,2

where ωp,q ∈ Hp,q(X), with ω2,0 = ω0,2 and less interestingly, ω1,1 = ω1,1. In
particular, we get ker(π0,2) = H1,1(X). We have the commutative diagram

H2
dR(X,Z) H2

dR(X) H2
dR(X,C)

Pic(X) H2(X,Z) H2(X,OX) H0,2(X)

c1

δ ε '

ε′ π0,2

where the isomorphism on the bottom-right is a particular case of Dolbeault
theorem (since Ω0

X ' OX), the map c1 is the first Chern class and the maps δ
and ε arise from the exponential sequence. Therefore, ε′ is interpreted as the
restriction of π0,2 to H2

dR(X). Thus, ker(ε′) = H2
dR(X) ∩H1,1(X). Recall that

by definition ker(ε) = Im(δ) =: NS(X), the Néron-Severi group of X. By the
commutativity of the diagram we get the following fundamental result, known
as the Lefschetz theorem on (1, 1)-classes:

NS(X) ' H2
dR(X,Z) ∩H1,1(X).

The Hodge conjecture

Let Y ⊂ X be a compact complex submanifold of codimension p. Then we
can define a fundamental class [θY ] ∈ H2p

dR(X), in an analogous way as we did
for the case p = 1. We have discussed the fact that, when p = 1, we have
[θY ] = c1(LY ) ∈ H2

dR(Y,Z). Moreover, if X is a compact Kähler manifold, the
Lefschetz (1, 1) theorem is equivalent to the fact that

H2
dR(X,Q) ∩H1,1(X)

is generated by the classes [θY ] of codimension 1 submanifolds Y ⊂ X. The
Hodge conjecture aims at a generalization of this result, with a stronger hypoth-
esis: let X be a complex projective manifold. Then3

H2p
dR(X,Q) ∩Hp,p(X)

is generated by the classes [θY ] of codimension p submanifolds Y ⊂ X. This is
one of the major unsolved problems in mathematics.

3notice: we take coefficients in Q here. The case p = 1, by Lefschetz (1, 1), is indeed valid
with integer coefficients. However, there is no hope to generalize this if we restrict to Z
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4.5 Complex tori and abelian varieties

A complex torus is by definition a quotient

X = V/Γ,

where V ' Cn is a complex n-dimensional vector space and Γ ' Z2n is a lattice
in V , i.e. a discrete subgroup of V which R-spans the whole V ' R2n. In other
words Γ⊗Z R = V , so there exists a Z-basis e1, . . . , e2n ∈ V for Γ,

Γ = Ze1 ⊕ · · · ⊕ Ze2n

V = Re1 ⊕ · · · ⊕ Re2n

As a differentiable manifold, we then have a diffeomorphism

X ' (R/Z)
2n

= (S1)2n

where S1 is the circle. Hence, the topology of X is fixed, and quite simple
to understand. However, complex torus X can admit several (non-equivalent)
complex structures, and the situation is extremely rich from this point of view.

Topology

We need to recall the following result (which is valid in a more general setting).

Theorem 4.5.1 (Künneth formula). Let M,N be real compact manifolds. Then

Hk(M ×N,Z) '
⊕
p+q=k

Hp(M,Z)⊗Hq(N,Z).

When we take coefficients in R, the isomorphism is given by⊕
p+q=k

Hp
dR(M)⊗Hq

dR(N) −→ Hk
dR(M ×N)

[ω]⊗ [η] 7−→ [π∗Mω ∧ π∗Nη]

where πM and πN are the projections from M ×N onto the two factors.

Recall H0
dR(S1) = R and H1

dR(S1) = Rdx, where we fix the generator dx to
be a 1-form on S1 which integrates to 1, so that H1

dR(S1,Z) = Zdx.
When X = (S1)2n, we get by Künneth formula

Hk
dR(X) =

⊕
a1+···+a2n=k

Ha1
dR(S1)⊗ · · · ⊗Ha2n

dR (S1).

We need to simplify the notation. Given a1, . . . , a2n ∈ {0, 1} such that
∑
ai = k,

we let i1 < . . . < ik be such that aij = 1, for j = 1, . . . , k. Then, we denote
by dxI := dxi1 ∧ . . . ∧ dxik . Thus Ha1

dR(S1) ⊗ · · · ⊗ Ha2n
dR (S1) = RdxI , where

the generator dxI is the k-form with components dxi = π∗i dx, where πi is the
projection X → S1 (i-th factor), and dx the generator of H1

dR(S1). Hence,

Hk
dR(X) =

⊕
#I=k

RdxI
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so that any class [ω] ∈ Hk
dR(X) has a representative ω =

∑
cIdxI , with cI ∈ R

constants (on each point of X). Therefore ω is completely determined by its
values on the tangent space at the origin T0X × · · · × T0X. However, X has
trivial tangent bundle TX = X × R2n. Consequently, by V ' T0X, we have

Hk
dR(X) ' Altk(V,R),

where Altk(V,R) is the vector space of alternating k-linear maps V×· · ·×V → R.
Similarly, since dx is also a generator of H1

dR(S1,Z), one has

Hk
dR(X,Z) =

⊕
#I=k

ZdxI ' Altk(Γ,Z).

where Altk(Γ,Z) is the vector space of alternating k-linear maps Γ×· · ·×Γ→ Z.
Notice that each f ∈ Altk(Γ,Z) extends R-linearly to a form f̃ ∈ Altk(V,R).

Then, we can define a k-form on X by ωf (p)(v1, . . . , vk) := f̃(v1, . . . , vk) for
each p ∈ X, for vectors vi ∈ TpX ' V . In particular, dωf = 0.

Kähler structure and Néron-Severi group

We consider a complex torus X = V/Γ. Given two tangent vectors

v =
∑

aj
∂

∂xj
+ bj

∂

∂yj
=
∑

vj
∂

∂zj
+ v̄j

∂

∂z̄j
(vj = aj + ibj)

w =
∑

cj
∂

∂xj
+ dj

∂

∂yj
=
∑

wj
∂

∂zj
+ w̄j

∂

∂z̄j
(wj = cc + idj),

we define g to be the standard inner product of v and w, by

g(v, w) := <(
∑

vjw̄j) =

n∑
j=1

(ajcj + bjdj).

Hence, g is independent of the point of tangency of v, w. Moreover, we see that
g(iv, iw) = g(v, w). Also, the 2-form defined by

ω(v, w) = g(v,−iw) = <(i
∑

vjw̄j),

is also independent of x0 ∈ X. Hence dω = 0. Therefore any complex torus is
Kähler. Since X is also compact, we have the Hodge decomposition

H1(X,C) = H1,0(X)⊕H0,1(X)

= (

n⊕
j=1

Cdzj)⊕ (

n⊕
j=1

Cdz̄j).

More generally, one has Hk(X,C) =
⊕

p+q=kH
p,q(X), where

Hp,q(X) =
⊕

#I=p
#J=q

CdzI ∧ dz̄J .
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In particular, by Lefschetz (1, 1) theorem we get NS(X) = H2
dR(X,Z)∩H1,1(X).

Let ω ∈ NS(X). Then, for some coefficients mij ∈ Z and akl ∈ R we have two
expressions for ω,

ω =
∑

1≤i<j≤2n

mijdxi ∧ dxj ∈ H2
dR(X,Z),

ω =

n∑
k,l=1

akldzk ∧ z̄l ∈ H1,1(X).

The fact that these two expression must equate, suggests that we find a relation
between a Z-basis of Γ and a C-basis of V . As a matter of fact, one can show
that for the “generic” complex torus X, one has NS(X) = 0.

An example

Let V = C2 and consider Γ = Ze1 ⊕ Ze2 ⊕ Ze3 ⊕ Ze4, where

e1 =

(
1
0

)
e2 =

(
0
1

)
e3 =

(
a
b

)
e4 =

(
c
d

)
Then, Γ is a lattice (i.e. the ei’s form a R-basis) if and only if

det=
(
a c
b d

)
6= 0,

where = denotes the imaginary part of the matrix. We have

H1(X,Z) = Zdx1 ⊕ · · · ⊕ Zdx4,

where dxj : TpX = V → R, is the dual basis dxj(
∑
tkek) = tj (notice tk ∈ R).

We want to find a relation between the dxi, dxj and the dzk, dz̄l.

Line bundles on a complex torus

Abelian varieties
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Appendix A

Additional topics

A.1 Line bundles on Pn

If we are given a vector bundle E on a complex manifold X then we get a sheaf
FE on X by considering the sections of the vector bundle:

FE(U) := Γ(U,E) = {s : U → E holomorphic, s(a) ∈ Ea}

On Pn we constructed the line bundles L(d) for any integer d. Recall

L(d)←→ {Ui, gij(x) = (
xj
xi

)d}

where {Ui} is the standard covering of Pn. Let d > 0. Any f ∈ C[x0, . . . , xn]d,
homogeneous polynomial of degree d defines a global section f ∈ FL(d)(Pn) by

(x0 : . . . : xn) 7→ (x0 : . . . : xn : f(x0, . . . , xn))

Recall that a section s ∈ FL(d)(U) is completely determined by its local descrip-
tions si ∈ FL(d)(Ui ∩ U) such that

sj(x) =

(
xk
xj

)d
sk(x)

Let π : Cn+1 \ {0} → Pn be the usual projection. We define a sheaf O(d) on
Pn as follows. Let U ⊂ Pn open. We set1

O(d)(U) := {f : π−1(U)→ C holomorphic, f(tz) = tdf(z)}

The restrictions for V ⊂ U are the natural restrictions of functions. The local
identity axiom is clearly satisfied2. The existence of gluings is also clear as they
are holomorphic functions. We only need to check that a gluing is homogeneous.
If z ∈ π−1(U) and t ∈ C∗ then z ∈ π−1(Vj) for some j and tz ∈ π−1(Vj) so

f(tz) = fj(tz) = tdfj(z) = tdf(z)

Proposition A.1.1. The sheaves FL(d) and O(d) are isomorphic.

1notice that if z ∈ π−1(U) then tz ∈ π−1(U) for all t ∈ C∗
2noticing that if U =

⋃
Vi then π−1(U) =

⋃
π−1(Vi)
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Proof. The morphism φ : FL(d) → O(d) given by φU : FL(d)(U)→ O(d)(U)

φU (s) = f : π−1(U)→ C

f(z) := zdj sj(π(z)) where z = (z1, . . . , zn) ∈ π−1(U ∩ Uj)

(i) φU is well defined: if z ∈ π−1(U ∩ Uj ∩ Uk) then

f(z) = zdj sj(π(z)) = zdj ·
zdk
zdj
· sk(π(z)) = zdksk(π(z))

(ii) f is holomorphic as it is a composition of holomorphic maps.

(iii) f is homogeneous: if z ∈ π−1(U ∩ Uj) then tz ∈ π−1(U ∩ Uj) and

f(tz) = (tzj)
dsj(π(tz)) = tdzdj sj(π(z)) = tdf(z)

Consider now ψ : O(d) −→ FL(d) given by

ψU : (f : π−1(U)→ C) 7−→ s = {Uj , sj}

sj(π(z)) := 1
zdj
f(z) where π(z) ∈ Uj

Does this actually define a section s? We have to check that the gluing conditions
hold: if z ∈ π−1(U ∩ Uj ∩ Uk) then

zdksk(π(z)) = f(z) = zdj sj(π(z))

hence sj(π(z)) = (zdk/z
d
j ) · sk(π(z)). Clearly ψ and φ are mutual inverses.

A.2 Čech cohomology

Given a complex manifold X and a sheaf F (of abelian groups, or OX -modules),
we can talk about the cohomology groups Hp(X,F). In particular, if E is a
holomorphic vector bundle on X, we can define the p-th cohomology group
Hp(X,E) := Hp(X,F), where F is the sheaf of sections of E. One way to
compute this groups is by means of a good resolution for F . However, this
might be hard. Čech cohomology3 becomes then a good tool for this purposes.
In this paragraph, we use the following notation and assumptions:

(i) X is a topological space with an open covering U = {Uj}j∈J , where J is
some ordered set of indices. If σ ⊂ J is a finite subset, we denote by

Uσ =
⋂
j∈σ

Uj .

If |σ| = p+ 1 and its elements are ordered as j0 < · · · < jp we denote by

σk = σ \ {jk}

(ii) F is a sheaf of abelian groups on X.

3historically the first version of sheaf cohomology to be defined
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For any positive integer p we define

Cp(U ,F) :=
∏

|σ|=p+1

F(Uσ).

For g ∈ Cp(U ,F) and |σ| = p + 1 we write g(σ) for the σth component of g.
We define d : Cp(U ,F)→ Cp+1(U ,F) as follows. Let |σ| = p+ 2. We set

(dg)(σ) =

p+1∑
k=0

(−1)kg(σk)|Uσ

It is then an easy exercise to see that d2 = 0. So d defines a differential.

Definition. The p-th Čech cohomology group of F with respect to U is

Ȟ(U ,F) =
ker(dp)

Im(dp−1)

We are not completely happy with this construction because of the depen-
dency of the group on the covering U . We redress this by taking a direct limit.
Suppose V = {Vk} is a refinement of U . Then each Vk ⊂ Uj for some j = j(k)
and if g ∈ Cp(U ,F) we can use restrictions of F on each g(σ) ∈ F(Uσ) to get a
“restriction” of g, i.e. a map sending g to an element in Cp(V ,F). This induces
a morphism Ȟp(U ,F) −→ Ȟp(V ,F), called restriction, and the composition
of such restrictions is again a restriction Ȟp(U ,F)→ Ȟp(V ,F)→ Ȟp(W ,F).
Thus, we can take the direct limit of this construction. We define

Ȟp(X,F) := lim−→ Ȟp(U ,F)

as the p-th Čech cohomology group of F on the space X.

Proposition A.2.1. For any covering U of X there exists a natural map4

Ȟp(U ,F) → Hp(X,F) for any p ≥ 0. In other words there exists a unique
morphism Ȟp(X,F)→ Hp(X,F) that makes the following diagram commute

Ȟp(U ,F) Ȟp(V ,F)

Ȟp(X,F)

Hp(X,F)

∃!

Fact. If X is a complex manifold then the map is an isomorphism for p = 1

Ȟ1(X,F) ' H1(X,F)

4functorial in F
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The isomorphism Pic(X) ' Ȟ1(X,O∗)
Let X be a compact connected complex manifold and consider the sheaf

F = O∗

of invertible holomorphic functions on X. Let U = {Uα} be an open covering
of X. As X is compact we can suppose α ∈ A where A is finite and therefore
orderable. We will write Uαβ = Uα∩Uβ . Let’s look at Ȟ1(U ,O∗). By definition

C1(U ,O∗) =
∏
α<β

O∗(Uαβ)

So an element g ∈ C1(U ,O∗) is a collection of holomorphic invertible functions

g = {gαβ}, gαβ : Uαβ −→ C∗

We want g = {gαβ} to represent a class in Ȟ1(U ,O∗) so we impose dg = 0.
This means dg(σ) = 0 for all σ = {α, β, γ} with α < β < γ. So we get

0 = (dg)(σ) =

2∑
k=0

(−1)kg(σk)|Uαβγ = (gβγ − gαγ + gαβ)|Uαβγ

So gαβ + gβγ = gαγ for all α, β, γ. But this is in additive notation, whereas the
sheaf O∗ is multiplicative. Hence the correct notation of this condition becomes

gαβ · gβγ = gαγ

Which is exactly the cocycle condition defining the line bundle L↔ {Uα, gαβ}.
This correspondence is clearly surjective: every line bundle is represented by
some class in Ȟ1 as above. To prove that it is an isomorphism onto Pic(X) we
have to show the following: if L↔ {gαβ} = g and L↔ {hαβ} = h, then5

L 'M ⇐⇒ [g] = [h] ∈ Ȟ1(U ,O∗)

However we know that L and M are isomorphic if and only if there exists a
family of invertible holomorphic functions fα ∈ O∗(Uα) such that for all α, β

gαβ
hαβ

=
fβ
fα

For f = {fα} ∈ C0(U ,O∗) we write this condition in additive notation and get

gαβ − hαβ = fβ − fα = df(σ) for all σ = {α, β}, α < β

which is equivalent to g − h = df , that is [g] = [h].
The last remark is to note that this construction depends on the fixed open

covering U on both sides: for the line bundles, which we have identified with
their cocycles (depending on U ) and on the other side on the group Ȟ1(U ,O∗).
By taking the direct limit on the open coverings we get rid of this dependency:

Ȟ1(X,O∗) ' Pic(X)

5the identification of line bundles with their cocycles is made with respect to the fixed U
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A.3 Divisors and the Picard group

Let Y ⊂ X be an analytic hypersurface. Then Y defines a line bundle on X,

LY ←→ {Uα, gαβ = fα/fβ}

with (Uα, fα) local equations for Y and there exists sY ∈ Γ(X,LY ) such that

Y = {x ∈ X : sY (x) = 0}

Moreover, sY ←→ {sα : Uα → C, sα = gαβsβ} with sα local equations for Y .

Definition. A divisor on X is a finite formal sum∑
Y

nY Y

where nY ∈ Z and the Y ’s are hypersurfaces of X. Thus the set Div(X) of all
divisors on X is the free abelian group generated by the hypersurfaces of X.

Let L be a line bundle on X and s, t ∈ Γ(X,L) with t not the zero section.
Let s, t have local descriptions sα, tα on some covering {Uα} of X. Then

f(x) :=
sα(x)

tα(x)
, x ∈ Uα

is a meromorphic function on X. It is well defined for, if x ∈ Uαβ then

sα(x)

tα(x)
=
gαβ(x)sβ(x)

gαβ(x)tβ(x)
=
sβ(x)

tβ(x)

where the gαβ are the transition maps of L. Thus

f ∈M(X) = {meromorphic functions X → C}

with a small abuse of notation we will write f = s/t.
Let now Y, Z be hypersurfaces of X. Then we have the sections sY and sZ

like above and we can consider the meromorphic function f = sY /sZ on X.
Now, f vanishes at (almost all) points of Y , with simple zeroes. Also it has
simple poles at (almost all) points of Z. For this reason we consider Y, Z as
“points” and say that f has a zero of order one on Y (nY = 1) and that f has
a pole of order one on Z (nZ = −1). We can now associate a divisor to f by

(f) := nY Y + nZZ = Y − Z ∈ Div(X)

More generally, let f ∈ M(X). Suppose there exists a point y ∈ Y around
which there is a neighborhood where we can write f = h · gnY , where g is a
local equation for Y and h is a non vanishing holomorphic function on this
neighborhood. One shows that nY does not depend on g nor on y. For all
hypersurfaces Y for which this happens we then have an integer nY associated
to f . We can thus define the divisor of f as

(f) :=
∑
Y

nY Y ∈ Div(X)
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Let M∗(X) be the set of non vanishing meromorphic functions on X. We
define the subgroup of principal divisors of Div(X) as

P (X) = {D ∈ Div(X) : ∃f ∈M∗(X) such that D = (f)}

Yes, but. . . what about Pic(X)? First note that there is a group homomorphism

ϕ : Div(X) −→ Pic(X)

D =
∑
Y

nY Y 7−→ LD :=
⊗
Y

(L⊗nYY )

At this stage one should wonder whether (and when) ϕ is injective/surjective.

ker(ϕ) = {D ∈ Div(X) : LD ' X × C}.

Assuming X compact, it is possible to show that ker(ϕ) = P (X). Thus, we
have an injection Div(X)/P (X) ↪→ Pic(X). What happens is that: if X ↪→ PN
then this is an isomorphism (i.e. ϕ surjective),

Pic(X) ' Div(X)

P (X)
.
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