Exercises for the first part

1. Given

$$
f_{1}(z):=\frac{\left(2 z^{2}-1\right)(z+1)}{z^{3}-1}, \quad f_{2}(z)=z^{2}+\frac{1}{z^{2}}, \quad f_{3}(z)=z^{3} /\left(1-z^{2}\right)
$$

a) Write the holomorphic map $F_{i}: \mathbb{P}^{1}(\mathbb{C}) \rightarrow \mathbb{P}^{1}(\mathbb{C})$ corresponding to f_{i} in terms of the homogeneous coordinates $\left(z_{0}: z_{1}\right)$.
b) Compute the degree of F_{i} and its ramification locus.
c) Verify Riemann-Hurwitz formula for F_{i}.
d) Compute the degree of $F_{1} \circ F_{2}$ and its ramification locus.
2. Let X be the projective plane curve of degree d defined by the homogeneous polynomial $F(x, y, z)=$ $x^{d}+y^{d}+z^{d}$. This curve is called the Fermt curve of degree d. Let $\Pi: X \rightarrow \mathbb{P}^{1}(\mathbb{C})$ be given by $\Pi((x: y: z))=(x: y)$.
a) Check that the Fermat curve is smooth and show that Π is a well defined holomorphic map of degree d. Find the ramification and branch loci of Π and use Riemann-Hurwitz formula to compute the genus of the Fermat curve.
c) Find the ramification and the branch loci of the composition $f \circ \Pi$, with f the holomorphic map associated to the polynomial z^{2}.
3. a) Let X and Y be complex tori defined by lattices Λ and Λ^{\prime} respectively, and let $f: X \rightarrow Y$ be the holomorphic map induced by the map $F(z)=a z+b$ with $a \bigwedge \subset \Lambda^{\prime}$. Show that the degree of f is equal to $|\operatorname{det} A|$ where $A \in M_{2}(\mathbb{Z})$ represents $F: \Lambda \rightarrow \bigwedge^{\prime}$.
b) Let F be a nontrivial automorphism of X. Show that if F is not a translation, then F has a fixed point.
4. Let $h(x)$ be a polynomial of degree $2 g+1+e$ (with $e \in\{0,1\}$) having distinct roots and let $U=\left\{(x, y) \in \mathbb{C}^{2} \mid y^{2}=h(x), \quad x \neq 0\right\}$. Let $k(z)=z^{2 g+2} h(1 / z)$ and let $V=\left\{(z, w) \in \mathbb{C}^{2} \mid w^{2}=\right.$ $k(z), \quad z \neq 0\}$. Show that the map $\Phi: U \rightarrow V$ defined by $(z, w)=\left(1 / x, y / x^{g+1}\right)$ is an isomorphism of Riemann surfaces.
5. Let X be a compact Riemann surface that is a degree 3 cover of $\mathbb{P}^{1}(\mathbb{C})$ given by $y^{3}=f(x)$ with $f \in \mathbb{C}[x]$ a polynomial of degree 5 or 6 with distinct zeros.
a) Determine the genus of X and the fiber over $(0: 1) \in \mathbb{P}^{1}(\mathbb{C})$.
b) Generalize to the the case of a compact Riemann surface that is a degree d cover of $\mathbb{P}^{1}(\mathbb{C})$ given by $y^{d}=f(x)$ with $f \in \mathbb{C}[x]$ a polynomial of degree $n d$ or $n d-1$ with distinct zeros.
6. Let X a smooth plane projective curve which is the zero locus of a homogeneous polynomial $F\left(z_{0}, z_{1}, z_{2}\right)=z_{1}^{3} z_{2}-f_{4}\left(z_{0}, z_{2}\right)$ where f_{4} has four distinct zeroes in $\mathbb{P}^{1}(\mathbb{C})$. Compute $g(X)$. Generalize to the case $F\left(z_{0}, z_{1}, z_{2}\right)=z_{1}^{d-1} z_{2}-f_{d}\left(z_{0}, z_{2}\right)$.
7. Let $f: X \rightarrow E$ the holomorphic map beteween RS associated to the homomorphism:

$$
\rho: \pi_{1}(E-P, Q) \rightarrow S_{4}, \quad \rho(\alpha)=(123), \quad \rho(\beta)=(234)
$$

where E is a genus $1 \mathrm{RS}, P \in E$ and $\pi_{1}(E, Q)=<\alpha, \beta \mid[\alpha, \beta]>$. Compute the genus of X.

