Geometria Algebrica


La Geometria Algebrica si occupa dello studio delle varietà definite come luoghi di zeri di equazioni polinomiali. Si tratta di un tema che ha attraversato tutta la storia della Matematica, a partire da Descartes a Newton, con notevoli contributi da parte della Scuola italiana. Negli ultimi decenni ha avuto un impetuoso sviluppo anche grazie all'introduzione di nuove tecniche: dai metodi topologici alla teoria dei fasci, dallo studio delle varietà astratte alla teoria degli schemi.

La Geometria Algebrica è strettamente connessa con molte altre aree della matematica: l'Analisi Complessa in una o più variabili, l'Algebra Commutativa, la Topologia, la Geometria Differenziale. Questo ne fa uno dei campi di ricerca più ricchi e variegati nell'ambito della matematica contemporanea, con applicazioni che spaziano dalla Fisica Teorica alla Teoria dei Codici, alla Filogenetica, alla Computer Vision e alla Robotica.

Esami consigliati per il settore di Geometria Algebrica dell'Orientamento Geometrico:

Primo semestre: Varietà Complesse
Geometria Algebrica Proiettiva
Topologia Algebrica
Geometria degli Schemi
Secondo semestre: Geometria Complessa
Superfici Algebriche

Nel curriculum suggerito, i corsi di Varietà Complesse e di Geometria Complessa vanno considerati come corsi di base che descrivono le principali proprietà delle strutture differenziabili e complesse soggiacenti alle varietà algebriche definite sul campo complesso. Entrambi i corsi richiedono una conoscenza di base (definizioni e prime proprietà) delle teorie delle varietà differenziabili reali (A) e delle funzioni di una variabile complessa (B). Gli studenti possono far riferimento al corso di Geometria 4 per l'argomento A. Per l'argomento B, gli studenti possono avvalersi del corso di Analisi Complessa o delle lezioni preliminari del tutor del corso di Varietà Complesse. I due corsi possono essere seguiti in modo indipendente. Varietà Complesse fornisce un'introduzione generale che comprende anche la teoria dei fasci, dei fibrati vettoriali e la loro coomologia. Tali nozioni sono utilizzate anche nel corso di Superifici Algebriche. Il corso di Geometria Complessa si occupa delle superfici di Riemann compatte, che sono varietà complesse di dimensione 1.

Il corso di Topologia Algebrica fornisce gli strumenti per studiarne le proprietà topologiche globali. Con il corso di Geometria Algebrica Proiettiva si prende familiarità con i metodi propri della Geometria Algebrica, anche attraverso lo studio di numerosi esempi classici. Il corso di Superfici Algebriche ha carattere monografico, particolarmente raccomandato agli studenti che indendano proseguire lo studio della Geometria Algebrica anche nell'ambito di un dottorato. Il corso di Geometria degli Schemi fornisce un'introduzione alla teoria degli schemi ed alla coomologia di fasci definiti su di essi. Il concetto di schema è stato introdotto da Grothendieck con l'intento di fornire il formalismo necessario per affrontare alcuni problemi centrali per la Geometria Algebrica. Uno schema è una vasta generalizzazione del concetto di varietà topologica e algebrica. Gli schemi appaiono in modo naturale nello studio di problemi di moduli.

Il corso di Geometria 5 è consigliato per tutti gli studenti che intendano seguire l'orientamento geometrico. Il corso di Algebra commutativa è particolarmente indicato per gli studenti che intendano orientare i propri studi nell'ambito della geometria algebrica. Geometria differenziale offre agli studenti la possibilità di ampliare la propria cultura nell'ambito della geometria.

Molti dei corsi menzionati sopra sono parte del progetto Algant.

Docenti

Alberto Alzati,
Marina Bertolini,
Gilberto Bini,
Elisabetta Colombo,
Anna Gori,
Antonio Lanteri,
Diego Matessi,
Paolo Stellari,
Bert van Geemen,
Cristina Turrini.

Titoli recenti di tesi di Laurea assegnate:

L'elenco delle tesi di laurea assegnate è reperibile alla pagina web.






















































Contacts

Dipartimento di Matematica "F. Enriques"
Università degli Studi di Milano
Via Cesare Saldini 50
20133 Milano - Italy
Email: mail











Design downloaded from Zeroweb.org: Free website templates, layouts, and tools.