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On the Direct Construction of Formal Integrals
of a Hamiltonian System Near an Equilibrium Point.
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Sunte. — In questo lavoro viene data una soluzione parziale ad un problema
sollevato da Cherry sulla possibilita di compiere una costruzione formale
di integrali del moto per un sistema autonomo hamiltoniano intorno ad
un punto di equilibrio.

1. — We consider the well known problem of constructing
formal integrals for an autonomous hamiltonian system of n degrees
of freedom about an equilibrium point [1]-[5] (}). A real hamil-
tonian H(g, p), ¢€ R*, p € R" is given, such that H= H, - H, + ...,
where H, is a homogeneous polynomial of degree r in the variables

and in particular H,=}> (p} + o}¢)), 0, >0 (I=1,..,n). The
=1

problem is then to find a consistent and constructive procedure to
determine » independent formal integrals ¢» (I=1, ..., n), i.e. power
series ¢V = @ + ¥ + ... for which questions of convergence are
ignored, such that (¢», H)= 0, where (-,-) is the Poisson bracket
and the equality has the natural formal sense. One can choose
P = (p; + ] ¢;) so that the integrals ¢ are nonlinear generali-
zations of the normal modes of system H,.

This problem is of interest in many fields of mathematical
physics and astronomy. Our reason of interest was its connection
with the foundations of statistical mechanics [6].

Technically we found available two main ways of constructing
the formal integrals. The first one, typically considered by BIRK-
HOFF [3] and GUSTAVSON [5], consists in performing a sequence of

(*) For a general review see A. D. BRJuNoO, Analytical form of differ-
ential equations, Trans. Moscow Math. Soc., 25 (1971), pp. 131-288.
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canonical transformations such that the hamiltonian is brought at
any order to a so-called normal form,—i.e. that of being independent
of the new coordinates—; the new momenta are then found to be
integrals as a byproduct. This procedure, which can be called an
indirect one, has a certain disadvantage as it requires to perform
at every stage an inversion which can be cumbersome in practice ().
This disadvantage is not shared by the second method, of WHIT-
TAKER [1], CHERRY [2], and CoNTOPOULOS [4], in which reference is
always made to the original variables and the integrals are built
in a direct way.

On the other hand the situation is different for what concerns
the available theorems on the possibility of performing the construe-
tion, where the first method seems to be in a better position. In
particular by this method it has been proven [5] that » —r formal
integrals can be constructed if there are r, and only r», independent

resonance relations, i.e. relations of the form > m,w;= 0, my, ..., M,
=1

integers, generalizing the analogous result of BIRKHOFF [3] for the
nonresonant case r= 0. The situation for the direct method is
instead the following. Even in the nonresonant case a difficulty
appears for the possible presence of certain « critical terms », which
will be discussed in section 2. Now, in the words of CHERRY [2a],
« Whittaker makes no esplicit mention of the difficulty arising from
the possible presence of critical terms, the satisfactory treatment
of which is vital to establishing the validity of the process ». Cherry
himself is «not able to find a direct general proof that the coeffi-
cients of the critical terms vanish, though the verification for the
first few such terms is given », but he can at least afford that « this
fundamental point is established in an indirect manner ». A direct
proof of the possibility of the direct construction has been given
only by Contopoulos [4a¢]. An analogous but somehow more com-
plicated situation obtains also for the resonant case [2b], [40]. How-
ever, even in the nonresonant case, the proof given by Contopoulos
is more involved than that of Birkhoff and Gustavson and in addi-
tion it does not have the generality of the latter, a point which
will be discussed below. The situation is still worse for the resonant
case.

It then seemed to be worthwhile to look for a proof of the result
of Contopoulos which would be comparable in simplicity to that of
Birkhoff and Gustavson, and indeed we were able to find one, for

(2) See however A. DEPRIT, Oanonical transformations depending on a
small parameter, Celestial Mech., 1 (1969), pp. 12-30.
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the nonresonant case and for a large class of hamiltonians including
those considered by Contopoulos. Such a proof constitutes the con-
tent of the present note.

@ __

2. — The equation (¢v, H)= 0, ¢¥ = L(p; + w;qj) is equivalent
to the infinite system of equations

r—2

(1) S (@l Hyd =0 r=2,3, ...

5=0

It is convenient to introduce the linear space S the elements of
which are the real polynomials of any order in the variables ¢, p,
and to define there the linear operator D by Df= (f, Hy), f€S.
The linear subspaces of 8, R(D) and N (D), the range and the nucleus
of D, are defined as usual: R(D) is the image of 8 by .D and N(D)
is the inverse image of the null vector 0, N(D)= {fe S: Df = 0}.
The system of equations (1) can then be written in the form Dgl = 0,
which is already solved, and

w ___
Do, = vy, ,

2) n_ 1)
Yr = g(HZwLS’ (Pr—a)

r=3,4,..

so that at any order r the unknown ¢ is put into evidence and the
right hand side " is known.

It is evident that eq. (2) cannot be satisfied if »® has a (non
null) component in N(D); the (non null) vectors of N(D) are then
the «critical terms » referred to above, « the satisfactory treatment
of which is vital to establishing the validity of the process». In
other words, more explicitly, the problem considered here is that
of proving that y® belongs to R(D). The explicit construction of
the solution is then standard.

The characterization of the nucleus N(D), which corresponds to
finding the general solution of the first equation of system (1) is
a classical problem (3): N(D) coincides with the subspace of vec-
tors f of S which, as functions of ¢, p, depend only on p; + w; ¢

(I =1,...,n) i.e. are functions of ¢ . This, by the way, justifies the

(3) See for example H. PoiNcARE, Les Méthodes Nowvelles de la Méca-
nique COéleste, Paris, 1892, tome I, sec. 82, p. 236; or E. T. WHITTAKER,
ref. [1b], page 382; or T. M. CHERRY, ref. [2a], page 326.
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choice made for the first term of the series ¢ (I=1,...,n). In
addition, one easily proves (¢) R(D)UN(D)= S8, R(D)NND)=0
so that every vector f of § can be uniquely decomposed as f=
=f+7, fe R(D), {'e N(D).

Let us now define a vector f € S as being even if the corresponding
polynomial f(q, p) is even in the momenta p, i.e. f(q, p) = (¢, —p)
and analogously as being odd if it is f(g, p) = —f(q, —p); the
subspaces of 8, §, and S_, of the even and the odd vectors are
then defined and every vector f of S can be uniquely decomposed
as f=f, +f, f,e8,, f.eS_, sothat S=8,US8_, §,NnS_=0.

The following properties are easily proven:

a) The Poisson bracket of vectors of the same parity is odd;
the Poisson bracket of vectors of different parity is even;

b) Inthe nonresonant caseitis N(D)cS,,i.e. the nucleus N(D)
is constitued of even functions;

¢) The Poisson bracket of vectors of the same parity belongs
to R(D), the range of D.

Indeed the proof of @) is immediate; b) is a conseguence of the
characterization given above for N (D), and ¢) follows from a) and b).

Assume now that H is even, H = H_, and for themoment re-
strict the search for solutions of eq. (1) to even vectors ¢ = @.
Then, if the quantities @Y, (s=1, ..., —1) have been determined
and are even, which is true for r=3, by property ¢) one has
9 € R(D); the solution ¢ of eq. (2) is then uniquely defined in the
range R(D) and is obviously even, so that the absence of the un-
wanted critical terms is proven by induction. The restriction made
above that ¢ should be a priori even may be shown to be irrelevant,
because ¢ turns out to be necessarily even. Indeed, if one lets
PV = ¢’ + ¢%, then eq. (2) decomposes into two equations for ¢,
and ¢ respectively, which turn out to be separated if H_= 0;
oneis then reduced to the previous situation and the uniqueness of the
solution ¢ =0, r>2, i.e. ¥ =0, immediately follows by pro-
perty b).

We have then proved the following

THEOREM. — Assume the real hamiltonian H(q, p), q, p € R, to be

o formal series H= H,+ Hy -+ ... with Hy= Y }p} + 0} ¢}) and H,

i=1

(4) This property is obviously true of any linear operator that can be
diagonalized, as is the case for D. See for example ref. [5a], page 676,
or ref. [5b], page 10,
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a homogeneous polynomial of degree r in the variables, and let it satisfy
the conditions of being:

i) even in the momenta, i.c. H(q, p)= H(q, — p),

n
ii) nonresonant, i.e. > m;w;=0, My, ..., m, integers, implies
i=1
my= ...= m,= 0.
Then there exist n formal even integrals ¢V = @@ 4 @@ L ... with
P =3p; +olg) (1=1,..,n), the components of which in the

range B(D) are uniquely defined (3).

By ¢ we will designate precisely those unique formal integrals
with ¢ = §(p] + w}¢}) which have null component in the nu-
cleus N(D), apart from ¢, and we could call them the «funda-
mental integrals ».

We remark that the condition that H be even is satisfied for
a system of material points interacting through a potential inde-
pendent of the velocities, for which it is H(g, p)= T(q, p) + V(q),
T being the kinetic energy and V the potential energy, which is
indeed the case considered by Contopoulos. Our proof is
then more general than his, but still less general than the indirect
one of Birkhoff, which is independent of the parity of H. The
generalization of our result to the case of any H, a problem which
was overlooked by Whittaker, Cherry and Contopoulos, would con-
scitute, in our opinion, a relevant step towards the generalization
of the direct method to the resonant case.

3. — Let us close by pointing out some properties of the formal
integrals.

i) The fundamental integrals ¢ are in involution, i.e. one
has (¢, ¢®)=0 (I, k=1,...,n). The dynamical system
characterized by the given hamiltonian is then formally
integrable (¢).

ii) Any formal integral ¢ (in particular the hamiltonian H)
can be expressed as a power series in the fundamental

(°) More generally, one could prove that given ¢ € N(D), there exists
a corresponding even formal integral ¢, the component of which in the
range R(D) is uniquely defined.

(%) See ref. [10], page 323 and V. I. ARNOL'D - A. AvEz, Problémes
ergodiques de la Mécanique Classique, Paris, 1967.
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integrals. Thus # is the maximum number of independent
formal integrals (7).

iii) One can determine # integrals ¢© (I= 1, ..., n), which are

n
still in involution, such that H = > ¢,

I=1

All these properties are obviously true at order 2 and can be

proved at any order by induction [7]. Cherry proves i) indirectly
and ii) just up to order 6. Property iii) is immediate.

(") If the origin had been an ordinary point of the Hamilton equa-

tions, instead of a point of equilibrium, there would have been 2n —1
formal integrals developable about it. See T. M. CHERRY, Proc. Cambridge
Philos. Soc., 22 (1924), pp. 273-285.
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