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Summary, — For an autonomous nearly integrable Hamiltonian system
of n degrees of frecedom with » > 1 it was shown by Poincaré that, in
general, no infegrals of motion exist which are independent of the Hamil-
tonian, This result wag generalized by Formi, who showed that in general
not even single invariant {2n — 1}-dimensional manifolds exist, apart from
constant-energy surfaces. On the other hand, the Kolmogorov-Arnold-
Moger theorem guarantees the existence of n-dimensional invariant tori.

* In this paper we discuss the possible existence of invariant manifolds of
intermediate dimensions and conclude that, apart from very well-defined
exceptions (namely, manifolds of the so-called resonant type and (n + 1)-
dimensional families of n tori with mutually proportional freguencies),
in general such invariant manifolds do not exist,

(*) In 1923 two important papers in analytical dynamics by E. FermI (at that time
22 years old) appeared in this journal. We are glad to publish now thig interesting
paper—a direct sequel of those papers—and with it to pay a fribute to the scope,
the depth and the fertility of Fermi's scientific work. The Editor.
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1. — Introduction,

Consider an integrable Hamiltonian system with # degrees of freedom,
namely a system that, in suitable action-angle variables I, g, is described
by a g-independent Hamiltonian:

1) H(I, ¢) = HYI),

where I = (I, .., I.)e BcR* and ¢ = (p,..,¢,)€ T B being a finite
open ball of R» and T» the n-torus; here p e T* mmply means that any function
of ¢ is supposed to have period 2z in ¢y, ..., . The equations of motion I= 0,
¢ = w(l), where

oH° -oH%
0 = (g4 eeny Op) = | =5y 0eey =o— } = grad H*
( 17 H ) (811 ¥ 2 aIﬂ) g ?

are then trivially integrated, giving I() = I*, ¢(l) = ¢* + w(I*)t i corre-
spondence with the initial data I*, ¢* The nondegeneracy condition
do; ortHe -

det ———=—7#0,

(2) det =7 = or,al,

which ensures that the (angular) frequenmes w can be faken as mdependent
variables in place of the actions I, will also be assumed. '

In this ease one has obviously » independent integrals of motion, for ex-
ample the actions I, ..., I, themselves. Congequently the phase space Bx T»
has a very particular structure: each integral generates a foliation into in-
variant {2n — 1)-dimensional manifolds and, by intersection of them, one then
obtains «finer » foliations into (n - I)-dimensional invariant manifolds with
0<l<n—1. Im particular, for I = 0 one gets a n-torus of the form {I} x T,
while for [ > 0 each of sueh invariant manifolds has the form ¥ x T», where V
is a I-dimensional submanifold of B.

One can say that this class of invariant manifolds is characterized by the
existence of constraints on the actions I only, the angles ¢ remaining free
variables. There exist, however, alto invariant manifolds defined by congtraints
on the angles: for example, the (2% — 2)-dimensional manifold, defined by the
pair of equations '

f(3) gin(m- @) = const,
(4) meo()=0,
where m = (my, ..., Mm,) € Z%, m 7 0, and the dotb denotes the usual scalar

product is trwmlly checked to be invariant. In general (see the appendix),
one can show that, if for an integrable system there exigts an invariant manifold
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defined by constraints on the angleg, then on such & manifold « resonance
relations » of the tiype of (4) have to be satisfied. From this fact two consequences
can be drawn: 1) if » + I is the dimension of such a manifold, then one has
{<tm—1; 2) the set of such manifolds has vanishing Lebesgue measure and,
in partienlar, eannot consiitute a foliation of phase space.

The natural problem then arises to understand what happens of the in-
variant manifolds of the integrable system when a perturbation is added to
the Hamiltonian, so that, for example, H = HYI) + puHYI, ¢), 1 being a
perturbative parameter belonging to a real interval 4 around the origin. In
this connection, one has first the classical negative result of Poinearé (1) ac-
cording to which, under suitable generality and regularity conditions, no
integral of motion (depending smoothly on the perturbative parameter u)
exists which is independent of the Hamiltonian itself. As a consequence, the
only foliation of the phase gpace B X T* into smoothly u-dependent (2n — 1)-
dimenstonal invariant manifolds is the foliation into constant-energy surfaces.
However, this result does not preclude the existence of a particular smoothly
p-dependent (2n — 1)-dimensional invariant manifold distinet from a constant-
energy surface. This possibility was later excluded by Fermi (>4}, under the
same conditions of generality and regularity of Poinearé, but with the ad-
ditional requirement n > 2.

Now the necesgity of this further assumption of Fermi is easily under-
stood on the basis of the Kolmogorov-Arnold-Moser existence theorem (3).
Indeed, according to such a theorem, « many» of the unperturbed »-tori
{I} X T~ give rise to corresponding invariant tori for the perturbed system;
more precisely (see the appendix), the Kolmogorov-Arnold-Moger theorem
allows for the existence of (» - 1)-dimensional invariant manifolds which
have the form V xT#® ¥ being a very special 1-dimensional submanifold of
B c R"; 33 a consequence, for n — 2 actually (2s — 1)-dimensional invariant
manifolds distinet from constant-energy surfaces can exist. This faet, as was
also stressed by CERCIGNANI, may suggest the possibility that nonexistence
theorems of fhe type of Poincaré and Fermi be optimal, in the sense that the
manifolds which cannot be exeluded by considerations based on similar grounds
do actually exist.

() H. Porncart: Les méthodes nouvelles de lo mbeanique celeste, Vol. 1 (Paris, 1892),
Chapt. 5, See also E. T. WerTTaRER: 4 Treatise on the Analytical Dynamies of Par-
ticles and Rigid Bodies (New York, 1944), par. 165,

(?) E. FErMI: Nuove Cimento, 26, 105 (1923).

(") E. FErRMI: Nuove Cimento, 25, 267 (1923); Phys. Z., 24, 261 (1923).

(Y W. UrBanskr: Phys. Z., 25, 47 {1924); E. Furmi: Phys. Z., 25, 166 (1924).

{!) A. N. Kormogorov: Dokl. dkad. Nauk SSSE, 98, 527 (1954); translated in Lec-
ture Notes in Physies, 93, edited by G. Casarr and J. Forp (Berlin, 1979); V. I.
ArwoLp: Russ. Math. Surv., 18, 9 (1963); 18, 85 (1963); J. K, Moszr: Nachr. Akad.
Wiss. Gotlingen, Math-Phys, Kl., 1 (1962),
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From this point of view one is then naturally led to try to extend fhe ar-
guments of Poincaré and Fermi in order to possibly prove the nonexistence of
invariant manifolds of dimension n + I, with 1<li<n—1, for any a>2,
This is indeed the problem studied in the present paper, where we show thatb
(for a generic perturbation) there are 1o smoothly u-dependent invariant
manifolds of dimension # -- { with 1<l <tn— 1 which for wvanishing per-
turbation reduce to manifolds of the form V¥ x T* (V being a I-dimengional sub-
manifold of B ¢ R®), i.¢. reduce to manifolds belonging to the first of the two
classes of invariant manifolds described above for the unperturbed system.

Tn this sense we may then say that our result gemeralizes the results of
Poinearé and Fermi, because the invariant manifolds excluded by them are
also in this class; indeed, by remark 1) made above, any (2n — 1)-dimensional
invariant manifold necessarily belongs to this class. On the other hand, the
existence of invariant manmifolds reducing to manifolds of the second eclass
described above (of resonant type} cannot be excluded in general, as iz well
known and will be recalled, by examples, in the appendix. Thus it appears
that our result fills the gap between the existence theorem of Kelmogorov,
Arnold and Moser and the nonexistence theorems of Poincaré and Fermi.
Tor the problem of the existence of d-dimensional invariant manifolds sup-
porting quasi-periodic motions, with d < =, see ref. (®).

2, — Statement of the theorem.

To begin with, let us give a precise description of the clags of invariant
manifolds §, that we consider as smooth perturbations of a manifold &, of the
form V x T» in order to generalize the Poincaré-Fermi theorem. Now first
of all we recall that any I[-dimensional submanifold ¥V of B can be described
locally by conditions of the form

) U =0, i=1, ., k,

with k = # — I, where F? are smooth functions with the property that

0

oF?
(6) rank o, k.

By possibly restricting the ball B, we can then think of eq. (5) as defined in B.
It is also clear that, by thinking of the functions Iy as defined in Bx T by
trivial extension, the same equations (5) with property (6) define any (n - 1)-
dimensional submanifold of B X T» of the form VX ™.

) J. K. MosEr: Math. dnn., 169, 136 (1967).
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We will then consider, in the spirit of the works of Poincaré and Fermi,
manifolds §, defined by equations of the form

(7) Fi(ps I, ) =10, t=1,..,k,
where ¥, are smooth funetions in 4 X B x T* with the property that

(8) FA0, T, )= FXI), =10, k,

together with (6).
A precige statement of our result iz then given by the following theorem.

Theorem. Consider an autonomous nearly integrable Hamiltonian system
with n > 2 degrees of freedom depending on a parameter g with Hamiltonian
Hu, I, @), where pc Ac R, Ie Bc R, g T», A being a real interval around
the origin, B a finite open ball of R* and T» the n-torus; denote by H%I) the
corresponding unperturbed Hamiltonian, i.e. let

H(0, 1, p) = HYI).

Assume that the Hamiltonian satisfies the conditions of regularity, non-
degeneracy and genericity defined, respeetively, as follows:

a) H be of clags €2 in A XBxT?,

o:H? .
b) detmfy’éo in B.
¢) Let H'(I, g} = (0/ou)H(u, I, ¢}|,, and define the Fourier coefficients
b (me Zy by HY{I, @) == > h.{I)exp [im-¢]; say two coefficients with non-

meZt
vanishing indices m, m' are in the same clags if m'= xm with z < R: then the

genericity condition is that there is at least a nonvanishing coefflcient of H*
in each class.

Congider now, for 1 <<1<n— 1, a family {SH} of (n 4+ 1)-dimensional dif-
ferentiable submanifolds §, of B X T* depending smoothly on the parameter u,
which for 4 = 0 reduce to a manifold of the form ¥V x T=, ¥V being a I-dimen-
gional submanifold of B c R=. Precisely with b =n—1, 1<k < n—1, sup-
pose that §, be defined by

Flu, I,p) =0, i=1,..,k,

where F (g, I, p) are functions that
d) 2 of elags €2 in AXBX T

¢) & g-independent for y—=0, i.e. there exist functions F{(I), i =1,..., &,
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in B with

oF;
ra,nk—,cﬁ =k,

defining VcB by F'(I)=0, i=1,.., %k such that F(0,1I,¢)=T1),
i=1,.., &

Then it is not possible that, for all ue 4, 8, be invariant under the flow
generated by the Hamiltonian H(y, I, ¢).

The same holds for I =1 and | = n— 1 with the additional hypotheses
that

f) in the cage =1 (or k=n—1), on the 1-dimensional manifold
V c B the frequencies wy, ..., w, be not mutually proportional (i.e. for Te V
one does not have o{I) = a(l)w* with a fixed w* and a smooth real function

a(D));

g) in the case I=n-—1 (or k¥ =1), grad F! be not proportional to
o = grad H* on 8y (i.e. 8, do not coincide with a constant-energy surface).

Let us now add some comments. The regurlarity conditions @) and d) are
wealker than the amnalogous analiticity eondifions considered by PoINCARE
and Fermi, while the nondegeneracy and genericity conditions b) and ¢) are
exactly the same. However, as emphasized by PorNcar® himself, condition ¢)
is only @ sufficient one which could be slightly weakened. Finally, a discussion
of the significanee of eondition g) in the case I = n — 1, which was not required
by FurwMI, is deferred to the conclusions.

3. — Proof of the theorem.

i} The heart of the proof of the theorem econsists in showing that the
invariance of §, under the flow generated by H{u, I, ¢), for all ue A, would
require that all the vectors grad 7} (j = 1, ..., k) be proportional to w == grad H°
in an open subset of V c B. This gives a confradiction if % > 1 because the vee-
torg grad ¥ are linearly independent by hypothesis ¢), and if k=1 by hypoth-
esis g). The proof of the proportionality of grad FT and « is obtained by

i
following almost literally a part of Fermi’s arguments.

ii) The condition that §, be invariant under the flow generated by the
given Hamiltonian is expressed by

) {H,F;} =0 on 8, =1y ., K,

where {.,.} denotes the Poisson bracket. In particular, for p =0, eq. (9)
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reduces fo

{10) {H® F}} =0 on &, i=1,..,k,

whieh is evidently satisfied because H° and the F}'s are ¢-independent.
By differentiation of eq. (9) there also follows the « firgt-order condition »

{11) {H*, 3} + {H° F1} =0 on 8y, j=1,.., &,
where
(12) T, ¢ = 2 Ty 1, )

ivts a‘u‘ FAYint Bt | éﬂ;o

Equation (11) looks like the usual first-order condition of the classical perturbation
theory, which is obtained from the equation {H, F,} =0 by derivation with re-
spect to u at u—=0. In fact, in our ecasei ts deduction is a little subtler, because
one hag to take into account the y-dependent constraint ¢ on 8 », i.c. the condi-
tions Fy(u, I, )=0 (j=1, ..., k). However, in virtue of the p-independence of
H® and F}, one has that {H, F;} vanishes identically in B x T» at g = 0, so that,
in the diiferentisl

o = {0 . )
a{H, F,} = —@{H, Fldy +g;(~az {H, F aI, 4+ 3 {H, I} dcp,),

all terms but the first one vanigh at g == 0. On the other hand, by condition e)
# can be taken (together with ¢, ..., ¢, and I of the variables I) as a free va-
rigble and thus from (9) one gets (D/Qu){H, F,} = 0 at g == 0, i.e. eq. (11).

iii} Here we simply write down explicitly eq. (11) in terms of the Fourier
coefficients h,.(I) and f,,(I) of H'(I, p) and F}(I, ), respectively. This is indeed
the point at which use is made of the fact that the angles ¢, ..., ¢, are free
co-ordinates on 8, = V X T=, which excludes the possible congideration of
manifolds of resonant type. Omne has thus, for any § = 1, ..., k, the condition

(13) (m-w)fm— {m-grad F)h, =0, me Z*,
to be satisfied on V. From (13) one then obtaing, on V,
(14) m-grad 7 = 0 whenever meow=0;

in fact, the further condition «if %, == 0», that should be added, tarns out to
be superfluous in virtue of the genericity condition ¢) on the Hamiltonian,
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iv) We finally show that, as a consequence of {14), grad F? is proportional
towforj=1,.., %, in an open subset U of V. To this end, lef us first consider
the ease in which all of the frequencies w,, ..., w, nowhere vanish in ¥, go that
one can there define the functions

w,(I)
(1)

(15) BT} = (s =1,.yn).

We notice, first of all, that in any open subset U c V one at least of the
funetions f_, say 8,,, is strictly nonconstant, i.e. for any I in U there exists I’
arbitrarily close to I such that 8,,(I'} 5= (). Indeed, beeause of condition b),
which ensures that the frequencies w can be taken as independent variables
in a suitable open set 2 c R in place of the actions I = B ¢ R», the conditions
B, =e, (r,s=1,..,n), where the ¢, are counstants, define a 1-dimensional
manifold (precisely a straight line through the origin in the space £ of the
frequencies w); on the other hand, this manifold eannot coincide with U7, in
the case 7> 1 just because of its dimensions, and, in the case I =1, by con-
dition f). Consider then the subset U, dense in U7, wherae f§,(I) takes rational
values. Now, for any Te U there exists a me Z» satisfying the condition
m- = 0 such that m, # 0, m, 7 0, m, = 0 for 4 # 1, 2; by (14) one has then,
for any j,

FYRL, _ Il

0y 0y

(16)

in ¥ and thus, by continuity, also in .
In such a way it is clear that, if all the # - 1 funetions BalT)y Bas(L)y ovy Pruandd)
are noncongtant in U, one gets there

AFYIT, BFYSI,  aFal,

oy Wy - T

namely that grad F7 is proportional to o, for all jy in U. The same conclusion -
is evidently reached if one considers other suitable sets of # — 1 functions
B,.(I), namely any set in which each index appears at least once, for example
the set fus, Bisy Bas ooy fu1,a. On the other hand, it is easy to construct a
suitable set of # — 1 nonconstant functions B..(I} if one at least of such fune-
tions, say fu.(I), is nonconstant; indeed, starting from the set £, fus, o-vy Busns
if, in going from leff to right, 8,, is the first bad funetion, then it suffices to re-
place it by its product with the function immediately on the left, thus obtaining
a new set, and go on.

There remains to congider the possibility that some of the frequencies
Wy een, @y Vanigsh somewhere in ¥, To this end, we remark first of all that
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there exists an open subset W c V where » of the frequencies, say Wy aeey Wy,
never vanigh, while w,,, ..., @, vanish identically. Indeed one at least of
the frequencies, say w,, does not vanish identically in ¥ and thus never vanishes
in a suitable open subset of V. Consider now w,: either it vanishes identically
there, or one can take a smaller open subset where both «, and o, Never vanish,
and so on (one easily sees p = {). Proceeding then as above to obtain the
analog of (16), one gets the parallelism of grad F} and w restricted to the first P
components. Finally, the complete parallelism ig established by remarking
that the last n— p ecomponents of grad F? vanish, as the last components of w,
in-virtue of (14).

Thus we have come to the conclusion that the invariance of S, reguires
the existence of an open subset U c ¥ where grad F}‘ is proportional to o for
J=1,..., k as announced in (i). The theorem is proven.

4. - Concluding remarks.

Geometrically speaking, what we have Proven iy essentially the following:
generically, if a Hamiltonian system admits a smooth mvariant manifold
on which no resonance relation is identically satisfied, then such a manifold is
necessarily the union of purely nonresonant n-tori. But the fact of excluding
all resonant tori immediately prevents the possibility of building up smooth
manifolds of dimensions greater than » + 1, which thus, in general, cannot
exist.

The reader familiar with the original works of Poincars and Fermi will
recognize that our proof exploits the same ideas and techniques of those authors,
making, of course, the necessary extensions. The only difference is in the ugs
we make of the parallelism of grad ¥} with e, for j =1, .y k. In fact, for
k> 1 this already gives a contradiction and leads directly to the conclusion;
instead, in the case ¥ — 1 considered by FERMI, from the proportionality of
grad F? and o = grad H® one ean only conclude that 8, coincides with & con-
stant-energy surface, and this is not a contradietion (unless one introduces
an explicit hypothesis such as 9)}, because it does not preclude the exisfence
of a family {§,} with 8, distinet from 2 constant-energy surface for w7 0.
Thus for & = 1 the proof of Fermi is a litile more eomplicated and requires
considering the funections Fi{u, I, ) at all higher perturbative orders to show
that 8, necessarily coincides with a constant-energy surface even for any
# 7= 0. By the way, analyticity conditions on the Hamiltonian and the in-
variant manifolds are thus required, as was also the case for the theorem
of Poincars. ‘

A reason for reporting here a detailed proof of our theorem and not just
giving a short sketch of it by making reference to Fermi’s work is due to the
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fact that, notwithstandig g correct appreciation of Moser ("), in the scientific
community there ig g widespread Opinion thag Fermi’s work is incorrect.
In fact, in the two first versions of Fermi’s work {*)y the accent wag rather puf
on an application to ergodic theory whieh was not correct (as wag already
remarked by Urpanskr (¢) and acknowledged by FERMT himgelf (). Instead,
the nonexistence of imvariant (2 —- 1)-dimengiong] manifolds, which ig the
only point considered in the Jast baper of Fermi on the subject, appears to be
correct and is, in fact, generalized here.

The point is the following one, FERMT proved that there cannot exist open
invariant gets having smooth manifolds ag boundary however, ag Dointed ount
in rvef. (*); one cannot exelude the existence of Open invariant getg whose

manifold; for g few details see the appendix) is nevertheless the border of its
complement, which js open and invariant, Thig situation, well known today
but difficult to be imagined 60 years ago, comes out from the diephantine con-
dition {A.3) defining in the Space of frequencies the set of the invariant tori,

e

We thank (, CERCIGNANI, C.F. Mavanra ang J.-M. STRELOYN for ugelul
discussions, We algo thank I.. Ommmemia and G. GALTAVOTTT for commu-
nicating us their results on the smooth prime integrals in nearly integrable
Hamiltonian Systems, use of which is made in the appendix,

APPENDTY

This appendix ig devoted first of 511 b0 & discussion of Posgible invariant
manifolds 8, which, for vanishing u, cannot be decomposed a4 S=FxTn
{with the notations of the ini;rodueﬁion). Precisely we make the following two
Points: i) Tt 8, ig invariant for the flow induced by the Hamiltonian go and ig
1ot of the form ¥ % 7", then it iy of Tesonant type, i.e. for any (I, ¢) € 8, there
exisls a nonvanishing me 2= such that Mo} = 0. ii) The hypothesis ) of
our fheorem, namely that g, — VX T, ig necessary, as is shown by counter-
examples. Furthermore, in i) we make S0mMe considerations on the invariant

manifolds whoge exishence ig gnaranteed by fhe Kolmogorov—A:moId-Moser

(") J. K. Moszr: in Topics in Nonlinear Dynamics, edited by 8. Jorya (New York,
N. Y, 1978). See also C. L. Sizagr. Vm’lesu%gen itber Himmel.s-mechanik {Berlin, 1956),
P-201; C. L. Sregrr and J. K. Moszr: Lectures on, Celestial Mechanics (Berlin, Heidelberg
and New York, N, Y., 1971). '
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i} Consider a manifold 8, which is invariant under the flow induced by I e,
if it is not of the form Vx T*, then obviously the angles ¢y, ..., ¢, are not free
co-ordinates on it. Assume now that, if (I*, g*) € 8, and w* — w(I*), then o*
Is nonresonant, ¢.¢. there does not exist m e Z, m 20, such that m-o* — 0.
This contradiets the invariance of 8, under the flow induced by He Indeed,
by a well-known result of the ergodic theory, the orbit issuing from (I*, @*), name-
ly 1(t) = I*, () = (g* 4- @*#) mod 2z, is dense on the torus {I%} % T»; sueh !
torus then belongs to 8,, against the requirement that the angles ¢y, ..., @,
be not all free co-ordinates on §,.

ii) Let us congider the family of Hamiltonians

(A1) Hip, Iy 0) = D418 - Z;Hhm exp [im ]

=1

with k,, independent of I and satisfying h, = b, if m — (y, My, ..., m,) and
m = (—im,, m,, ..., ). Then the (2n — 2)-dimensional manifold 8, defined by

(A.2) g1=0, I,—0 (i.e. with w,(I) = 0)

is firivially checked to be invariant for all 4. On the other hand, H° and 8§,
satisfy all the requirements of the theorem, apart from conrdition ¢), i.e. that 8,
be of the form Vx T,

iii) & is well known that, under suitable regularity hypotheses, for
nearly integrable nondegenerate Hamiltonian systers the Kolmogorov-Arnold-
Moser theorem guarantees the existence of invariant n-tori which are perturba-
tions of the tori I — congt, More precisely, for any sufficiently small 4 there
exists a set of invariant tori, each corresponding to a frequency w satisfying
the diophantine condition

(A.3) [m-w[< Clm» mezZr, ms£0,

with a positive number C, where |m| = [ma| - . + m,|. N ow, in the space £
of the frequencies @, such a set is decomposed into Pieces of straight lines H
indeed, if w* satigfes {A.3), then o — aw®, o being a real number not too dif-
ferent from 1, also satisfies it, This fact suggests that the set of invariant tori
in BXT» be arranged into disjoint sets of invariant (n - 1)-dimensional mani-
folds of the form ¥V x T*, where ¥ is a 1-dimensional submanifold of B, all tori
of each set having mutually proportional frequencies. This ig in agreement
with & recent result (%) of Chierchia and Gallavotii and of Poegchel, aecording
to which, for any sufficiently small s, there exists s smooth function F defined
in an open subset of the phase space B x T* with values in £2 which is invariant
for the initial datg lying on the invariant tori. It we consider then the

" 1-dimensional manifold {ocm*} with « belonging to a suitable real interval and
w* satistying (A.3), the preimage F-uw*] will be an invariant (n + 1)-
dimensional submanifold of BxTr,

© () I Corerenia and G, Gannavorrs: Nuovo Oimento B, &7, 277 (1982); J. Pom-
- 8¢HEL: Differentiadble foliation of dnvariant tori in Homiltonien systems, preprint,
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® RIASSTNTO

Poincaré mostrd che per, un sistexna hamiltoniano autonomo quasi integrabile ad » gradi
di libertd, con n 3> 1, in generale non esisbono integrali del moto indipendenti dal-
Thamiltoniana. Fermi generalizzd poi il risultato mostrando che, in generale, non esi-
stono neppure singole varietd invarianti di dimensione 2n— 1, a parte le superfici di
energia costante, D’altro caniio il teorema di Kolmogorov, Arnold e Moser garantisce
Vesistenza ai tori invarianti di dimensione n. Nel presente lavoro si discute I'eventuale
esistenza di varietd invarianti di dimensione intermedia e si conclude che, a parte ben
definite eccezioni (varieth cosiddette risonanti, e famiglie (n - 1)-dimensionali di »-tori,
con frequenze mutusmente proporzionali}, in generale tali varietd invarianti non esistono.
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