Esercizi di Geometria Differenziale

Esercizio 1 Determinare i piani tangenti alla superficie $x^2 + y^2 - z^2 = 1$ nei punti (x, y, 0) e dimostrare che sono tutti paralleli all'asse z.

Esercizio 2 Sia $f: \mathbf{R} \to \mathbf{R}$ una funzione differenziabile; dimostrare che i piani tangenti alla superficie data da $z = x f(\frac{x}{y}), x \neq 0$, passano tutti per l'origine.

Esercizio 3 Dimostrare che tutte le normali ad una superficie di rotazione passano attraverso l'asse z.

Esercizio 4 Un punto critico di una funzione differenziabile $f: S \to \mathbf{R}$ definita su una superficie regolare S è un punto $p \in S$ tale che $df_p = 0$. Sia $f: S \to \mathbf{R}$ definita da $f(p) = |p - p_0|$, per $p_0 \notin S$. Dimostrare che $p \in S$ è un punto critico per f se e soltanto se la retta congiungente p e p_0 è perpendicolare a S in p.

Esercizio 5 Sia $f: S \to \mathbf{R}$ una funzione differenziabile su una superficie regolare connessa S. Dimostrare che se $df_p \equiv 0$ per ogni $p \in S$ allora $f \in C$ costante su S.

Esercizio 6 Dimostrare che se tutte le normali ad una superficie connessa S passano per uno stesso punto la superficie è parte di una sfera.

Esercizio 7 Calcolare la prima forma fondamentale delle seguenti superfici parametriche:

- 1) Cilindro $X(u, v) = (\cos u, \sin u, v);$
- 2) Elicoide $X(u, v) = (v \cos u, v \sin u, au)$ con $a \in \mathbf{R}$, $a \neq 0$;
- 3) Ellissoide $X(u, v) = (a \sin u \cos v, b \sin u \sin v, c \cos u), con a, b, c \in \mathbb{R} \setminus \{0\};$
- 4) Paraboloide ellittico $X(u, v) = (v \cos u, v \sin u, v^2);$
- 5) Paraboloide iperbolico $X(u, v) = (v \cosh u, v \sinh u, v^2)$.

Esercizio 8 Calcolare l'area del Toro.