Geometria 2

Homework del 16 maggio 2011 Risoluzione

1) DirL è generato dai vettori $u_1 = [-1,1,0,1]_T$ e $u_2 = [1,0,1,1]_T$, mentre ℓ ha equazioni parametriche

(1)
$$x = 1 + t, \quad y = 2 - t, \quad z = 2t, \quad w = 1.$$

- a) La matrice che ha per colonne u_1, u_2 e $v = [1, -1, 2, 0]_T$ ha rango 3, quindi $\ell \not\subset L$ e $\ell \not\mid L$.
- b) Gli iperpiani contenenti L sono quelli del fascio di sostegno L, che hanno equazione

(2)
$$\lambda x + (\lambda + \mu)y + (\mu - \lambda)z - \mu w - 4\lambda = 0$$

al variare di $(\lambda : \mu)$. Notato che $\ell \parallel H$ se e solo se $\ell \cap H = \emptyset$, il valore di $(\lambda : \mu)$ che definisce H risulta essere quello per cui l'equazione risolvente del sistema tra (1) e (2) non fornisce alcun valore reale come soluzione per t. Ciò accade per $(\lambda : \mu) = (1 : 2)$. Dunque H ha equazione cartesiana x + 3y + z - 2w - 4 = 0.

- c) La distanza cercata è quella di un qualunque punto di ℓ , ad es. A, dall'iperpiano H. Applicando la formula appropriata si ottiene il valore $1/\sqrt{15}$.
- 2) a) I) Sia $\ell \cap \pi = \emptyset$. Allora $S = \langle \ell, \pi \rangle = \mathbf{P}^4$ per cui $A \in S$ e si hanno i casi seguenti: I-1) $A \notin \ell \cup \pi$; I-2) $A \in \ell$; I-3) $A \in \pi$. II) Sia $\ell \cap \pi$ un punto, diciamo B. Allora S è un iperpiano (Grassmann) e si hanno i casi seguenti: II-1) $A \notin S$; II-2) $A \in S \setminus (\ell \cup \pi)$; II-3), $A \in \ell \setminus \{B\}$; II-4) $A \in \pi \setminus \{B\}$; II-5) A = B. Nel primo $\langle A, \ell, \pi \rangle$ è tutto \mathbf{P}^4 mentre negli altri è l'iperpiano S. III) Sia infine $\ell \subset \pi$. Allora $S = \pi$ e si danno tre casi: III-1) $A \notin \pi$; III-2) $A \in \pi \setminus \ell$; III-3) $A \in \ell$. Nel primo $\langle A, \ell, \pi \rangle$ è un iperpiano, negli altri coincide con il piano π . Infine, per ciascuno dei casi elencati, va osservato che due configurazioni nella stessa classe sono proiettivamente equivalenti in base al teorema fondamentale della geometria proiettiva.
 - b) I punti di ℓ e quelli di π hanno coordinate omogenee (a:0:b:b:b) e $(\lambda:\mu:\nu:\mu:\nu)$ rispettivamente. Dunque $\ell\cap\pi$ è il punto B=(1:0:0:0:0). Chiaramente $B\neq A$. Inoltre $A\not\in S$ perché la matrice

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 2 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$

ha caratteristica massima. Ne viene che dim $\langle A, \ell, \pi \rangle = 4$.

- c) Si ricade dunque nella configurazione II-1).
- 3) Parametrizzando Λ con (a:b:a:c:d:a) e ℓ con $(\alpha:\alpha:0:\beta:\beta:0)$ rispettivamente, si osserva che $\Lambda \cap \ell$ è il punto A = (0:0:0:1:1:0). Affinchè nello spazio affine complementare di un iperpiano Π (non contenente nessuno dei due sottospazi) la traccia di ℓ risulti parallela a quella di Λ , basta dunque che Π contenga A. L'iperpiano di equazione $x_6 = 0$ non va bene, dato che contiene ℓ ; così pure l'iperpiano di equazione $x_1 x_6 = 0$ non va bene, dato che contiene Λ . Ma come iperpiano Π si può scegliere ad es. quello di equazione $x_2 x_6 = 0$, dato che esso taglia ℓ in A e Λ lungo il piano (a:a:a:c:d:a).