CONVEX FUNCTIONS OF ONE REAL VARIABLE

In what follows, \(I \subset \mathbb{R} \) will be a nondegenerate interval, and \(f : I \to \mathbb{R} \) a (finite) convex function.

For \(x, y \in I, x \neq y \), we denote by \(Q(x, y) \) the correspondent difference quotient:
\[
Q(x, y) = \frac{f(y) - f(x)}{y - x}.
\]

Lemma 0.1. Let \(I, f \) be as above, and \(x, y, z \in I \). Then
\[
x < y < z \implies Q(x, y) \leq Q(x, z) \leq Q(y, z).
\]
In other words, the difference quotient \(Q(\cdot, \cdot) \) is nondecreasing in each of the two variables.

Proof. Since \(f \) is convex, the point \(P_2 := (y, f(y)) \) lies below (or on) the segment with endpoints \(P_1 := (x, f(x)) \) and \(P_3 := (z, f(z)) \), we have the following inequalities for slopes
\[
\text{slope}(P_1P_2) \leq \text{slope}(P_1P_3) \leq \text{slope}(P_2P_3),
\]
which are equivalent to the required inequalities for difference quotients.

For completeness, let us give a formal proof, too. Write \(y \) as a convex combination \(y = \frac{z-y}{z-x}x + \frac{y-x}{z-x} \). Then, by convexity,
\[
(1) \quad f(y) \leq \frac{z-y}{z-x}f(x) + \frac{y-x}{z-x}f(z).
\]
Subtracting \(f(x) \) from both sides of (1), we get
\[
f(y) - f(x) \leq \frac{z-y}{z-x} [f(z) - f(x)]
\]
which gives the first inequality. Subtracting \(\frac{y-x}{z-x}f(z) + \frac{z-y}{z-x}f(y) \) from both sides of (1), we get
\[
\frac{y-x}{z-x} [f(y) - f(z)] \leq \frac{z-y}{z-x} [f(x) - f(y)]
\]
which gives the second inequality. \(\square \)

Theorem 0.2 (behaviour at interior points). Let \(I \subset \mathbb{R} \) be an open interval, \(f : I \to \mathbb{R} \) a convex function.

(a) For each \(x \in I \), both one-sided derivatives \(f'_+(x), f'_-(x) \) exist and are finite.
(b) \(f \) is Lipschitz on each compact interval \([a,b] \subset I\). (In particular, \(f \) is continuous on \(I \).)
(c) If \(x, y \in I, x < y \), then \(f'_+(x) \leq f'_+(y) \leq f'_-(y) \leq f'_+(y) \). (In particular, \(f'_+ \) and \(f'_- \) are nondecreasing on \(I \).)
(d) \(f'_+ \) is right-continuous, \(f'_- \) is left continuous.
(e) The set of nondifferentiability points of \(f \) is at most countable.

Proof. (a) Let \(x \in I \). Fix \(\delta > 0 \) such that \(x \pm \delta \in I \). Then, by Lemma 0.1, we have \(Q(x - \delta, x) \leq Q(x, x + h) \) whenever \(h \in (0, \delta) \). Since the function \(h \mapsto Q(x, x + h) \) is nondecreasing on \((0, \delta)\), it admits a limit for \(h \to 0^+ \), and
\[
Q(x - \delta, x) = \lim_{h \to 0^+} Q(x, x + h) = \inf_{0 < h < \delta} Q(x, x + h).
\]
Hence $f'_+(x)$ is finite. The proof for $f'_-(x)$ is analogous.

(b) Let $x,y \in [a,b]$, $x < y$. Let $\delta > 0$ be such that $a + \delta < y$ and $b - \delta > x$. For each $h \in (0, \delta)$, we have by Lemma 0.1

$$Q(a, a + h) \leq Q(x, y) \leq Q(b - h, b).$$

Passing to limits for $h \to 0^+$, we get

$$f'_+(a) \leq Q(x, y) \leq f'_-(b).$$

Consequently, $|f(y) - f(x)| \leq L|y - x|$ where $L = \max\{|f'_+(a)|, |f'_-(b)|\}$.

(c) Fix $\delta > 0$ such that $x - \delta \in I$, $y + \delta \in I$ and $x + \delta < y - \delta$. By Lemma 0.1,

$$Q(x - h, x) \leq Q(x, x + h) \leq Q(y - h, x) \leq Q(y, y + h) \quad (0 < h < \delta).$$

Pass to limits for $h \to 0^+$.

(d) Fix $x_0 \in I$. Let $y \in I$ be such that $y > x_0$. Lemma 0.1 implies that, for each $x \in (x_0, y)$,

$$f'_+(x) \leq Q(x, y).$$

Passing to limit for $x \to (x_0)^+$, we get

$$\lim_{x \to (x_0)^+} f'_+(x) \leq Q(x_0, y)$$

(the limit on the left-hand side exists since f'_+ is nondecreasing). Passing to limit for $y \to (x_0)^+$, we obtain

$$\lim_{x \to (x_0)^+} f'_+(x) \leq f'_+(x_0).$$

The other inequality follows immediately from (c).

(e) Let N_f be the set of nondifferentiability points of f. Then

$$N_f = \{x \in I : f'_-(x) < f'_+(x)\}.$$

Observe that (c) implies that the (nonempty) open intervals $J_x := \big(f'_-(x), f'_+(x)\big)$ ($x \in N_f$) are pairwise disjoint. Since each of them contains a rational number, they are at most countably many.

\textbf{Corollary 0.3.} Let I, f be as in the previous theorem. Then, for each $x \in I$,

\begin{align*}
 f'_+(x) &= \lim_{y \to x^+} f'_-(y), & f'_-(x) &= \lim_{y \to x^-} f'_+(y).
\end{align*}

\textbf{Proof.} The first formula follows from Theorem 0.2(c,d), since for $y > x$ we have $f'_+(x) \leq f'_-(y) \leq f'_+(y)$. The second formula is analogous. \hfill \Box

\textbf{Corollary 0.4.} Let I, f be as in Theorem 0.2. Then, for each $a, b \in I$,

$$f(b) - f(a) = (L) \int_a^b f'(x) \, dx = (R) \int_a^b f'_+(x) \, dx = (R) \int_a^b f'_-(x) \, dx$$

(the letters “L, R” indicate that the integral is intended in the Lebesgue or Riemann sense).
Proof. Let $a < b$. By Theorem 0.2(b), f is Lipschitz on $[a,b]$. Since Lipschitz functions are absolutely continuous, the first equality follows from a well known result of Real Analysis. The other two equalities are clear for Lebesgue integrals, since $f'_+(x) = f'(x)$ except a countable set N_f. Observe that the last two integrals exist also in the Riemann sense, since the one-sided derivatives f'_\pm are bounded and monotone on $[a,b]$. \hfill \qed

Proposition 0.5 (behaviour at endpoints). Let $I = [a,b]$, $f : I \to \mathbb{R}$ a convex function.

(a) f is upper-semicontinuous, but not necessarily continuous, at a (from the right) and at b (from the left).

(b) f is bounded on $[a,b]$.

(c) $f'_+(a)$ exists in $[-\infty, +\infty)$, and $f'_-(b)$ exists in $(-\infty, +\infty]$.

(d) If f is right-continuous at a, then $f'_+(a) = \lim_{x \to a^+} f'_+(x) = \lim_{x \to a^+} f'_-(x)$.

If f is left-continuous at b, then $f'_-(b) = \lim_{x \to b^-} f'_-(x) = \lim_{x \to b^-} f'_+(x)$.

(e) If $f'_+(a) > -\infty$, then f is Lipschitz on $[a,c]$ whenever $a < c < b$. (In particular, f is right-continuous at a.)

If $f'_-(b) < +\infty$, then f is Lipschitz on $[c,b]$ whenever $a < c < b$. (In particular, f is left-continuous at b.)

Proof. (a) We have to prove that $f(a) \geq \limsup_{x \to a^+} f(x)$. Fix an arbitrary $c \in (a,b)$ and observe that

$$
\limsup_{x \to a^+} f(x) = \limsup_{x \to a^+} (1-t)a + tc \leq \limsup_{t \to 0^+} [(1-t)f(a) + tf(c)] = f(a).
$$

To see that f need not be continuous at a, consider the function $f(a) = 1$, $f(x) = 0$ for $x \in (a,b)$.

(b) For each $x \in (a,b)$, $f'_+(a) \leq Q(a,x)$; thus $f(x) \geq f(a) + f'_+(a)(x - a) \geq f(a) - |f'_-(a)|(b-a)$. Consequently, f is lower bounded on $[a,b]$. If $x = (1-t)a + tb$ with $t \in [0,1]$, then $f(x) \leq (1-t)f(a) + tf(b) \leq \max\{f(a), f(b)\}$.

(c) can be proved in the same way as Theorem 0.2(a); (d) can be proved in the same way as Theorem 0.2(d) and Corollary 0.3; (e) can be proved in the same way as Theorem 0.2(b). \hfill \qed

Exercise 0.6. Let $f : [a,b] \to \mathbb{R}$ be a continuous convex function. Then $f(b) - f(a) = (L) \int_a^b f'(x) \, dx = (R) \int_a^b f'_+(x) \, dx = (R) \int_a^b f'_-(x) \, dx$.

Subdifferential. Let $I \subset \mathbb{R}$ be an open interval, and $f : I \to \mathbb{R}$ a convex function. Given $x_0 \in I$, each non-vertical line passing through the point $(x_0, f(x_0))$ is of the form $y = f(x_0) + m(x-x_0)$. Thus the following definition defines \(\partial f(x_0) \) as the set of all angular coefficients m for which the corresponding line lies under (in the weak sense) the (epi)graph of f. By 2^E we denote the set of all subsets of a set E.

Definition 0.7. Let I, f, x_0 be as above. The **subdifferential** of f at x_0 is the set $\partial f(x_0) = \{ m \in \mathbb{R} : f(x) \geq f(x_0) + m(x - x_0) \text{ whenever } x \in I \}$.

Any \(m \in \partial f(x_0) \) is called a subgradient of \(f \) at \(x_0 \).

The multivalued mapping \(\partial f : I \to 2^{\mathbb{R}} \), \(x \mapsto \partial f(x) \), is called the subdifferential mapping (or just the subdifferential) of the function \(f \).

Proposition 0.8. Let \(I \subset \mathbb{R} \) be an open interval, \(f : I \to \mathbb{R} \) a convex function, \(x_0 \in I \). Then

\[
\partial f(x_0) = [f'_-(x_0), f'_+(x_0)].
\]

Proof. The formula is geometrically clear. However, we give also a formal proof. Let \(m \in \partial f(x_0) \). Let \(\delta > 0 \) be such that \(x_0 \pm \delta \in I \). An elementary calculation shows that, for any \(h \in (0, \delta) \), we have \(Q(x_0 - h, x_0) \leq m \leq Q(x_0, x_0 + h) \). Passing to limits for \(h \to 0^+ \), we get \(f'_-(x_0) \leq m \leq f'_+(x_0) \).

Now, let \(m \in [f'_-(x_0), f'_+(x_0)] \). Fix \(x \in I \). If \(x > x_0 \), we have \(Q(x_0, x) \geq f'_+(x_0) \geq m \), and this immediately implies \(f(x) \geq m(x - x_0) \). If \(x < x_0 \), we have \(Q(x, x_0) \leq f'_-(x_0) \leq m \), which implies \(f(x) \geq m(x - x_0) \) again. Thus \(m \in \partial f(x_0) \). \(\square \)

We say that a function \(\varphi : I \to \mathbb{R} \) is a single-valued selection of \(\partial f \) if \(\varphi(x) \in \partial f(x) \) for each \(x \in I \).

Corollary 0.9. Let \(I, f, x_0 \) be as in Proposition 0.8. Then the following assertions are equivalent:

(i) \(f \) is differentiable at \(x_0 \);
(ii) \(\partial f(x_0) \) is a singleton;
(iii) \(\partial f \) admits a single-valued selection which is continuous at \(x_0 \).

Proof. Exercise, based on Proposition 0.8, Theorem 0.2(d), and Corollary 0.3. \(\square \)

Second-order differentiability. We would like to define second-order differentiability for convex functions which are not necessarily everywhere differentiable. There are several possibilities to do that. The following theorem shows that they are all equivalent.

Theorem 0.10. Let \(I \subset \mathbb{R} \) be an open interval, \(f : I \to \mathbb{R} \) a convex function, \(x_0 \in I \), \(\Delta \in \mathbb{R} \). Then the following assertions are equivalent.

(i) \(f \) is differentiable at \(x_0 \) and, denoting by \(D_1 \) the set of differentiability points of \(f \) in \(I \), one has

\[
\lim_{x \to x_0 \atop x \in D_1} \frac{f'(x) - f'(x_0)}{x - x_0} = \Delta.
\]

(ii) \(f'_+ \) is differentiable at \(x_0 \) with \((f'_+)'(x_0) = \Delta \).

(iii) \(f'_- \) is differentiable at \(x_0 \) with \((f'_-)')(x_0) = \Delta \).

(iv) Some single-valued selection \(\varphi \) of \(\partial f \) is differentiable at \(x_0 \) with \(\varphi'(x_0) = \Delta \).

(v) Each single-valued selection \(\varphi \) of \(\partial f \) is differentiable at \(x_0 \) with \(\varphi'(x_0) = \Delta \).

(vi) \(f \) is differentiable at \(x_0 \) and

\[
f(x_0 + h) = f(x_0) + f'(x_0)h + \Delta \frac{h^2}{2} + o(h^2) \quad (\text{as } h \to 0).
\]
Moreover, $\Delta \geq 0$ in this case.

Proof.

(i) \Rightarrow (ii). For $x_0 + h \in I$, that is $h \in I \setminus x_0$, define

$$\omega(h) = f'_+(x_0 + h) - f'(x_0) - \Delta h.$$ (2)

We have that $\lim_{h \rightarrow 0^+} h \in D_1 - x_0 \frac{\omega(h)}{h} = 0$ by (1). We want to prove that $\omega(h) = o(h)$ as $h \rightarrow 0$. For each $0 \neq h \in D_1 - x_0$ choose $s_h \in (h, h + h^2) \cap (D_1 - x_0)$ and $s'_h \in (h - h^2, h) \cap (D_1 - x_0)$. Notice that $f'_+(s'_h) \leq f'_+(h) \leq f'_+(s_h)$. Consequently, for $I - x_0 \ni h > 0$ we have

$$\frac{\omega(h)}{h} \leq \frac{\omega(s_h) + \Delta(s_h - h)}{h} = \frac{\omega(s_h)}{h} + \Delta \left(\frac{s_h}{h} - 1 \right) \rightarrow 0 \text{ as } h \rightarrow 0^+,$$

and also

$$\frac{\omega(h)}{h} \geq \frac{\omega(s'_h) + \Delta(s'_h - h)}{h} = \frac{\omega(s'_h)}{h} + \Delta \left(\frac{s'_h}{h} - 1 \right) \rightarrow 0 \text{ as } h \rightarrow 0^+.$$

The same with inverse inequalities holds for $I - x_0 \ni h < 0$. This proves (ii).

Analogously we obtain the implication (i) \Rightarrow (iii).

(ii) \Rightarrow (vi). f'_+ is continuous at x_0, hence

$$f'_+(x_0) = \lim_{x \rightarrow x_0^+} f'_+(x) = \lim_{x \rightarrow x_0^+} f'_+(x) = f'_+(x_0)$$

and f is differentiable at x_0. Now, let ω be the function from (2). Then $\omega(0) = 0$, $\omega(h) = o(h)$ as $h \rightarrow 0$ (in particular, ω is continuous at 0), and ω is Riemann-integrable on each compact interval contained in $I - x_0$. Using Corollary 0.4, we get

$$f(x_0 + h) - f(x_0) = \int_{x_0}^{x_0 + h} f'(x) \, dx = f'(x_0) h + \Delta \frac{h^2}{2} + \int_{0}^{h} \omega(t) \, dt.$$ (3)

Notice that the last integral is $o(h^2)$ by the De L’Hôpital rule. In the same way, (iii) \Rightarrow (vi) holds.

(vii) \Rightarrow (v). By substracting an affine function, we can suppose that $f(x_0) = f'(x_0) = 0$. In this case, $f(x_0 + h) = \Delta \frac{h^2}{2} + o(h^2)$ for $h \rightarrow 0$; and $\varphi(x_0) = 0$. Thus, for each $\varepsilon \in (0, 1)$,

$$\limsup_{h \rightarrow 0^+} \frac{\varphi(x_0 + h) - \varphi(x_0)}{h} = \limsup_{h \rightarrow 0^+} \frac{f'_+(x_0 + h)}{h} \leq \limsup_{h \rightarrow 0^+} \frac{Q(x_0 + h, x_0 + h + \varepsilon h)}{h}$$

$$= \limsup_{h \rightarrow 0^+} \frac{1}{\varepsilon h^2} \left[f(x_0 + h + \varepsilon h) - f(x_0 + h) \right]$$

$$= \limsup_{h \rightarrow 0^+} \frac{1}{\varepsilon h^2} \left[\Delta h^2 (1 + \varepsilon)^2 - 1 \right] + o(h^2)$$

$$= \limsup_{h \rightarrow 0^+} \left[\frac{\Delta (2 + \varepsilon)}{2} + o(1) \right] = \Delta \left(1 + \frac{\varepsilon}{2} \right).$$
In a similar way, we obtain
\[
\liminf_{h \to 0^+} \frac{\varphi(x_0 + h) - \varphi(x_0)}{h} \geq \liminf_{h \to 0^+} \frac{f'(x_0 + h)}{h} \geq \liminf_{h \to 0^+} \frac{Q(x_0 + h - \varepsilon h, x_0 + h)}{h} = \Delta \left(1 - \frac{\varepsilon}{2}\right).
\]
By arbitrariness of \(\varepsilon\), \(\varphi'_+(x_0) = \Delta\). In a completely analogous way, one obtains that \(\varphi'_-(x_0) = \Delta\).

The implication \((v) \Rightarrow (iv)\) is obvious. Moreover, \((iv) \Rightarrow (i)\) is immediate since \(\varphi(x) = f'(x)\) for each \(x \in D_1\).

Finally, \(\Delta \geq 0\) since it is the derivative at \(x_0\) of the nondecreasing function \(f'_+\). \(\square\)

Observation 0.11. Let \(I \subset \mathbb{R}\) be an open interval, \(f : I \to \mathbb{R}\) a differentiable (not necessarily convex) function, \(x_0 \in I\). If \(f\) is twice differentiable at \(x_0\), then the condition \((vi)\) of Theorem 0.10 holds (with \(\Delta = f''(x_0)\)). However, the vice-versa is not necessarily true (consider the function \(f(x) = x^3\sin(1/x), f(0) = 0\), at \(x_0 = 0\)). On the other hand, Theorem 0.10 implies that the vice-versa holds for convex functions.

Definition 0.12. Let \(I \subset \mathbb{R}\) be an open interval. A convex function \(f\) on \(I\) is said to be **twice differentiable** at a point \(x_0 \in I\) if the equivalent conditions \((i)-(vi)\) in Theorem 0.10 are satisfied.

As a corollary, we obtain the following important result.

Theorem 0.13. Every convex function on an open interval \(I \subset \mathbb{R}\) is twice differentiable almost everywhere (with respect to the Lebesgue measure).

Proof. The nondecreasing function \(f'_+\) is differentiable almost everywhere by a well known Lebesgue’s theorem in Real Analysis. \(\square\)