Category Theory

January 14, 2014

- 1. Let \mathbb{C} be a category with finite limits and \mathbb{L} be a localization of \mathbb{C} , with $J : \mathbb{L} \to \mathbb{C}$ representing the inclusion functor and $L : \mathbb{C} \to \mathbb{L}$ its left adjoint.
 - (i) Show that \mathbb{L} has finite limits.
 - (ii) Show that terminal objects in \mathbb{C} and \mathbb{L} are isomorphic.
 - (iii) Show that, if \mathbb{C} has a subobject classifier, the same happens for \mathbb{L} .
- 2. Let \mathbb{C} be a pointed category with finite limits. Show that given a commutative diagram

if it is a pullback then the restriction of h to the kernels of k and g is an isomorphism.

Is it the vice versa true?

3. The forgetful functor $U : \text{Top} \to \text{Set}$ from the category of topological spaces to the category of sets is a left adjoint. If $I : \text{Set} \to \text{Top}$ denotes its right adjoint, describe the category of the algebras of the associated monad T = IU.