Category Theory

July, 14 2016

- 1. Let Sub(Top) be the category whose objects are pairs of topological spaces (X, A) with A subspace of X and morphisms are continuous maps $f: X \to X'$ with $f(A) \subseteq A'$. Show the forgetful functor $U: Sub(Top) \to Top$ given by U(X, A) = X has a left adjoint F and a right adjoint H. Study the algebras of the corresponding monads UF and HU. Is U a monadic functor? Is H a monadic functor?
- 2. Let \mathbf{A} be an abelian category, and H, K subobjects of G.
 - (i) Show that there exist in **A** both the inf $H \wedge K$ and the sup $H \vee K$ in the poset Sub (G) e describe how to construct them.
 - (ii) Denoting with $K/H \wedge K$, $H \vee K/H$ the corresponding quotients (cokernels), show they are isomorphic.
- 3. If I denotes a set, show that the category Set/I, whose objects are functions $\alpha : X \to I$ with codomain I and a morphism $f : \alpha \to \alpha'$ is a function $f : X \to X'$ with $\alpha' f = \alpha$ has a subobject classifier.