Category Theory

January 20, 2015

- 1. Let \mathbb{C} be an elementary topos and let \mathbb{B} be a coreflective subcategory of \mathbb{C} , closed under the formation of finite limits in \mathbb{C} . Is \mathbb{B} still an elementary topos?
- 2. Let

be a pushout diagram in any category \mathbb{C} .

- (i) Show that if k is a regular epimorphism, so is g.
- (ii) Show in case \mathbb{C} is abelian, that if k is a monomorphism, so is g.
- 3. Given a group G, let Set^G be the category of G-sets. For any G-set X, let $\Pi(X)$ denote the set of orbits of X.
 - (i) Show that Π gives rise to a functor $\pi : Set^G \to Set$.
 - (ii) Is Π a left adjoint? If so, find a right adjoint $G : Set \to Set^G$ and then describe the algebras of the associated monad $G\Pi$.