Category Theory

January 20, 2016

- 1. Let Alg(1) be the category whose objects are sets with a unary operation, with no axioms, and morphisms are functions which preserve such an operation. Show that the assignment $F(X) = (X \times \mathbb{N}, \lambda)$, where $\lambda(x, n) = (x, n + 1)$, gives rise to a functor $F : Set \to Alg(1)$ which is a left adjoint. Then describe the free algebras of the associated monad on Set.
- 2. By definition an object P in an abelian category \mathbb{C} is said to be projective if, for any epimorphism $e: M \to N$ and any arrow $f: P \to N$, there exists an arrow $\tilde{f}: P \to M$ such that $e\tilde{f} = f$

Show that an object P is projective if and only if in any sequence

$$0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} P \longrightarrow 0$$

with f monomorphism and $g=\operatorname{coker}(f)$, g is a split epimorphism.

- 3. Let \mathbb{C} be a cartesian closed category, and let T be a terminal object in \mathbb{C} . Show that, for any C in $Ob(\mathbb{C})$, C^T is isomorphic to C.
- 4. Let \mathbb{C} be a small regular category.

Show that the collection $T(C) = \{S | S \text{ sieve on } C \text{ which contains at least a reg$ $ular epimorphism with codomain } C \}$ for any C in \mathbb{C} is a Grothendieck topology on \mathbb{C} .