Category Theory

February 25, 2015

1. Let \mathbb{C} be a category with finite sums. Given a fixed object C in \mathbb{C}, for any other object X, let $T(X)=X+C, \eta_{X}: X \rightarrow X+C$ be the canonical arrow into the sum and $\mu_{X}: X+C+C \rightarrow X+C$ be $1_{X}+\nabla_{C}$, where $\nabla_{C}=\left[1_{C}, 1_{C}\right]$ is the codiagonal of C.
(i) Show that the above assignments give rise to a monad (T, η, μ) on \mathbb{C}.
(ii) Describe the category of the algebras for such a monad in the case $\mathbb{C}=S e t$ and $C=1$, the terminal object.
2. Let

be a morphism of exact sequences in an abelian category \mathbb{C} Show that α is an isomorphism.
3. Let \mathbb{C} be a small category with pullbacks.
(i) Show that the collection of all non-empty sieves on objects of \mathbb{C} is a Grothendieck topology
(ii) Show that in case of $\mathbb{C}=\bullet \rightrightarrows \bullet$ the above assertion is not true.
4. (Just if you want to do it!) Let \mathbb{C} be a category with a subobject classifier $t: 1 \rightarrow \Omega$. If A is a suboject of B, and B is a subobject of X, so that A is also a suboject of X, how are related the characteristic arrows $\chi_{A}: B \rightarrow \Omega$ and $\bar{\chi}_{A}: X \rightarrow \Omega$?
