Category Theory

February 25, 2015

- 1. Let \mathbb{C} be a category with finite sums. Given a fixed object C in \mathbb{C} , for any other object X, let T(X) = X + C, $\eta_X : X \to X + C$ be the canonical arrow into the sum and $\mu_X : X + C + C \to X + C$ be $1_X + \nabla_C$, where $\nabla_C = [1_C, 1_C]$ is the codiagonal of C.
 - (i) Show that the above assignments give rise to a monad (T, η, μ) on \mathbb{C} .
 - (ii) Describe the category of the algebras for such a monad in the case $\mathbb{C} = Set$ and C = 1, the terminal object.
- 2. Let

be a morphism of exact sequences in an abelian category \mathbb{C} Show that α is an isomorphism.

- 3. Let \mathbb{C} be a small category with pullbacks.
 - (i) Show that the collection of all non-empty sieves on objects of C is a Grothendieck topology
 - (ii) Show that in case of $\mathbb{C} = \bullet \rightrightarrows \bullet$ the above assertion is not true.
- 4. (Just if you want to do it!) Let \mathbb{C} be a category with a subobject classifier $t: 1 \to \Omega$. If A is a suboject of B, and B is a subobject of X, so that A is also a suboject of X, how are related the characteristic arrows $\chi_A: B \to \Omega$ and $\overline{\chi}_A: X \to \Omega$?