Varietà toriche, a.a. 2014/15
Foglio di esercizi n. 4

Toric varieties and morphisms.

Versione del 8 Maggio 2015
Exercise 1. Let $N=\mathbb{Z}^{n}$ and let e_{1}, \ldots, e_{n} be a basis of N. Let $e_{0}=-e_{1}-e_{2}-\ldots-e_{n}$. Now consider the fan Σ whose maximal cones are

$$
\sigma_{j}=\operatorname{cone}\left\{e_{0}, \ldots, \hat{e}_{j}, \ldots, e_{n}\right\}
$$

where $j=0, \ldots, n$ and \hat{e}_{j} means that e_{j} is not in the list. Show that X_{Σ} is isomorphic to \mathbb{P}^{n}.
Exercise 2. (Line bundles on $\left.\mathbb{P}^{n}\right)$ Let $Y=\left(\mathbb{C}^{n+1}-\{0\}\right) \times \mathbb{C}$, with coordinates $\left(z_{0}, \ldots, z_{n}, w\right)$. Given an integer a, define a \mathbb{C}^{*} action on Y by

$$
\lambda \cdot\left(z_{0}, \ldots, z_{n}, w\right)=\left(\lambda z_{0}, \ldots, \lambda z_{n}, \lambda^{-a} w\right)
$$

Show that $L(a)=Y / \mathbb{C}^{*}$ is a smooth $n+1$-dimensional variety which can be constructed by gluing $n+1$ copies of \mathbb{C}^{n+1} (Hint: consider subsets of $L(a)$ given by $U_{j}=\left\{\left[z_{0}, \ldots, z_{n}, w\right] \in L(a) \mid z_{j} \neq 0\right\}$ for all $j=0, \ldots, n$ and identify U_{j} with \mathbb{C}^{n+1} by a suitable bijective map $\psi_{j}=U_{j} \rightarrow \mathbb{C}^{n+1}$, then compute $\left.\psi_{k} \circ \psi_{j}^{-1}\right)$. Consider the $\operatorname{map} \pi: L(a) \rightarrow \mathbb{P}^{n}$ defined by

$$
\pi\left(\left[z_{0}, \ldots, z_{n}, w\right]\right)=\left[z_{0}: \cdots: z_{n}\right]
$$

Prove that π is well defined (i.e. independent of the representatives) and show that it is a morphism. Show that $\pi^{-1}\left(\left[z_{0}: \cdots: z_{n}\right]\right) \cong \mathbb{C}$. The variety $L(a)$ is the total space of the line bundle on \mathbb{P}^{n} which is often denoted by $\mathcal{O}_{\mathbb{P}^{n}}(-a)$.

Exercise 3. (Toric construction of line bundles on \mathbb{P}^{n}) Let $N=\mathbb{Z}^{n+1}$ and let e_{1}, \ldots, e_{n+1} be a basis of N. Let $e_{0}=-e_{1}-e_{2}-\ldots-e_{n}$. For $a \in \mathbb{Z}$, define Σ_{a} to be the fan in N whose maximal cones are

$$
\begin{aligned}
\sigma_{0} & =\operatorname{cone}\left\{e_{1}, \ldots, e_{n+1}\right\} \\
\sigma_{j} & =\operatorname{cone}\left\{e_{0}+a e_{n+1}, e_{1}, \ldots, \hat{e}_{j}, \ldots, e_{n+1}\right\}, j=1, \ldots, n .
\end{aligned}
$$

Show that $X_{\Sigma_{a}}$ coincides with $L(a)$ defined in the previous exercise. Now let Σ^{\prime} be the fan for \mathbb{P}^{n} in \mathbb{R}^{n} as in Exercise 1. Let $\phi: \mathbb{Z}^{n+1} \rightarrow \mathbb{Z}^{n}$ be the map $\phi\left(m_{1}, \ldots, m_{n}, m_{n+1}\right)=\left(m_{1}, \ldots, m_{n}\right)$. Check that ϕ is compatible with Σ_{a} and Σ^{\prime} and prove that the induced map $\bar{\phi}: L(a) \rightarrow \mathbb{P}^{n}$ coincides with the map π defined in Exercise 2 . Hint: try first with $n=1,2$.

Exercise 4. (Hirzebruch surfaces) Let $Y=\left(\mathbb{C}^{2}-\{0\}\right) \times\left(\mathbb{C}^{2}-\{0\}\right)$ with coordinates $\left(z_{0}, z_{1}, w_{0}, w_{1}\right)$. Define the following $\mathbb{C}^{*} \times \mathbb{C}^{*}$ action on Y :

$$
\left(\lambda_{0}, \lambda_{1}\right) \cdot\left(z_{0}, z_{1}, w_{0}, w_{1}\right)=\left(\lambda_{0} z_{0}, \lambda_{0} z_{1}, \lambda_{1} w_{0}, \lambda_{1} \lambda_{0}^{-a} w_{1}\right)
$$

Show that the quotient $F(-a)=Y /\left(\mathbb{C}^{*} \times \mathbb{C}^{*}\right)$ is a smooth variety which can be obtained by gluing four copies of \mathbb{C}^{2}. (Hint: consider subsets of $F(-a)$ given by $U_{0}=\left\{\left[z_{0}, z_{1}, w_{0}, w_{1}\right] \in F(-a) \mid z_{0} \neq 0, w_{0} \neq 0\right\}$, $U_{1}=\left\{\left[z_{0}, z_{1}, w_{0}, w_{1}\right] \in F(-a) \mid z_{0} \neq 0, w_{1} \neq 0\right\}, U_{2}=\left\{\left[z_{0}, z_{1}, w_{0}, w_{1}\right] \in F(-a) \mid z_{1} \neq 0, w_{0} \neq 0\right\}$ and $U_{3}=$
$\left\{\left[z_{0}, z_{1}, w_{0}, w_{1}\right] \in F(-a) \mid z_{1} \neq 0, w_{1} \neq 0\right\}$ and identify them with \mathbb{C}^{2} by suitable bijective maps $\psi_{j}=U_{j} \rightarrow \mathbb{C}^{2}$, then compute $\left.\psi_{k} \circ \psi_{j}^{-1}\right)$. Show that the map $\pi: F(-a) \rightarrow \mathbb{P}^{1}$ defined by

$$
\pi\left(\left[z_{0}, z_{1}, w_{0}, w_{1}\right]\right)=\left[z_{0}: z_{1}\right]
$$

is well defined and is a morphism. Prove that for all $\left[z_{0}: z_{1}\right] \in \mathbb{P}^{1}, \pi^{-1}\left(\left[z_{0}: z_{1}\right]\right) \cong \mathbb{P}^{1}$. The surface $F(-a)$ is called a Hirzerbruch surface and it is an example of a "ruled" surface. The map π is the ruling of $F(-a)$.

Exercise 5. Let $N=\mathbb{Z}^{2}$. For $a \in \mathbb{Z}$, let Σ_{a} be the fan in \mathbb{R}^{2} whose maximal cones are

$$
\begin{gathered}
\sigma_{1}=\operatorname{cone}\{(1,0),(0,1)\}, \quad \sigma_{2}=\operatorname{cone}\{(1,0),(0,-1)\} \\
\sigma_{3}=\operatorname{cone}\{(0,-1),(-1, a)\}, \quad \sigma_{4}=\operatorname{cone}\{(-1, a),(0,1)\}
\end{gathered}
$$

Prove that $X_{\Sigma_{a}}$ is the Hirzerbruch surface $F(-a)$. Now let Σ^{\prime} be the fan for \mathbb{P}^{1} in \mathbb{R} as in Exercise 1 and $\phi: \mathbb{Z}^{2} \rightarrow \mathbb{Z}$ the map $\phi\left(n_{1}, n_{2}\right)=n_{1}$. Check that ϕ is compatible with Σ_{a} and Σ^{\prime} and that the induced map $\bar{\phi}: \Sigma_{a} \rightarrow \mathbb{P}^{1}$ coincides with the morphism π defined in Exercise 4. If we take $\phi\left(n_{1}, n_{2}\right)=n_{2}$, is it compatible with Σ_{a} and Σ^{\prime} ?

Exercise 6. (Sections of line bundles on $\left.\mathbb{P}^{n}\right)$ Let $L(a)$ and the map $\pi: L(a) \rightarrow \mathbb{P}^{n}$ be defined as in Exercise 2. A section of $L(a)$ is a morphism $s: \mathbb{P}^{n} \rightarrow L(a)$ such that $\pi \circ s$ is the identity of \mathbb{P}^{n}. A polynomial $f(z)$, in the coordinates $z=\left(z_{0}, \ldots, z_{n}\right)$, is homogeneous of degree d if for all $\lambda \in \mathbb{C}, f(\lambda z)=\lambda^{d} f(z)$. One can show that $f(z)$ is homogenous of degree d if all monomials appearing in $f(z)$ are of degree d. Assume a is negative and let $f(z)$ be a homogeneous polynomial of degree $-a$. Prove that the map $s_{f}: \mathbb{P}^{n} \rightarrow L(a)$ given by

$$
s_{f}\left(\left[z_{0}: \cdots: z_{n}\right]\right)=\left[z_{0}, \ldots, z_{n}, f\left(z_{0}, \ldots, z_{n}\right)\right]
$$

is well defined (i.e. independent of reppresentatives) and defines a section of $L(a)$.
Exercise 7. (The blow up of \mathbb{C}^{2}) If we view \mathbb{P}^{1} as the space of lines through the origin in \mathbb{C}^{2}, define the tautological line bundle on \mathbb{P}^{1} as $L=\left\{(\ell, p) \in \mathbb{P}^{1} \times \mathbb{C}^{2} \mid p \in \ell\right\}$. There are two maps: $\pi_{1}: L \rightarrow \mathbb{P}^{1}$ given by $\pi_{1}(\ell, p)=\ell$ and $\pi_{2}: L \rightarrow \mathbb{C}^{2}$ given by $\pi_{2}(\ell, p)=p$. The space $L(1)$ is also called the blow up of \mathbb{C}^{2} at the origin and the map π_{2} is called the blow down map. Prove that L is isomorphic to $L(1)$ defined in Exercise 2. (Hint: using coordinates $\ell=\left[z_{0}: z_{1}\right]$ and $p=\left(w_{1}, w_{2}\right)$ the condition $p \in \ell$ is equivalent to equation $\left.w_{0} z_{1}-w_{1} z_{0}=0\right)$. Using the description of $L(1)$ given in Exercise 2, prove that the map π_{2} defined above is given by $\pi_{2}\left(\left[z_{0}, z_{1}, w\right]\right)=\left(w z_{0}, w z_{1}\right)$.

Exercise 8. Let Σ_{1} be the fan for the line bundle $L(1)$ over \mathbb{P}^{1} (as defined in Exercise 3 with $n=1$). Let $\sigma=\operatorname{cone}\{(-1,1),(1,0)\}$. The identity map $\phi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is obviously compatible with Σ_{1} and σ. Prove that the induced map $\bar{\phi}: L(1) \rightarrow \mathbb{C}^{2}$ coincides with π_{2} defined in the previous exercise.

Exercise 9. Let $Y=\mathbb{C}^{3}-\{0\}$. For a triple of positive integers $\left(a_{0}, a_{1}, a_{2}\right)$ define the following \mathbb{C}^{*} action on Y :

$$
\lambda \cdot\left(z_{0}, z_{1}, z_{2}\right)=\left(\lambda^{a_{0}} z_{0}, \lambda^{a_{1}} z_{1}, \lambda^{a_{2}} z_{2}\right)
$$

It can be shown that Y / \mathbb{C}^{*} is a variety, which is called a weighted projective space and denoted $\mathbb{P}\left(a_{0}, \ldots, a_{n}\right)$. Prove this in the case of the triple $(1,1,2)$, following similar methods as in the previous exercises.

Exercise 10. Let $N=\mathbb{Z}^{2}$ and consider the fan Σ whose cones are

$$
\sigma_{1}=\operatorname{cone}\{(1,0),(0,1)\}, \sigma_{2}=\operatorname{cone}\{(1,0),(-1,-2)\}, \sigma_{3}=\operatorname{cone}\{(-1,-2),(0,1)\}
$$

Prove that X_{Σ} is the weighted projective space $\mathbb{P}(1,1,2)$.

