Varietà toriche, a.a. 2014/15 Foglio di esercizi n. 4

Toric varieties and morphisms.

Versione del 8 Maggio 2015

Exercise 1. Let $N = \mathbb{Z}^n$ and let e_1, \ldots, e_n be a basis of N. Let $e_0 = -e_1 - e_2 - \ldots - e_n$. Now consider the fan Σ whose maximal cones are

$$\sigma_j = \operatorname{cone}\{e_0, \dots, \hat{e}_j, \dots, e_n\},\$$

where j = 0, ..., n and \hat{e}_j means that e_j is not in the list. Show that X_{Σ} is isomorphic to \mathbb{P}^n .

Exercise 2. (*Line bundles on* \mathbb{P}^n) Let $Y = (\mathbb{C}^{n+1} - \{0\}) \times \mathbb{C}$, with coordinates (z_0, \ldots, z_n, w) . Given an integer a, define a \mathbb{C}^* action on Y by

$$\lambda \cdot (z_0, \dots, z_n, w) = (\lambda z_0, \dots, \lambda z_n, \lambda^{-a} w)$$

Show that $L(a) = Y/\mathbb{C}^*$ is a smooth n + 1-dimensional variety which can be constructed by gluing n + 1 copies of \mathbb{C}^{n+1} (**Hint:** consider subsets of L(a) given by $U_j = \{[z_0, \ldots, z_n, w] \in L(a) | z_j \neq 0\}$ for all $j = 0, \ldots, n$ and identify U_j with \mathbb{C}^{n+1} by a suitable bijective map $\psi_j = U_j \to \mathbb{C}^{n+1}$, then compute $\psi_k \circ \psi_j^{-1}$). Consider the map $\pi : L(a) \to \mathbb{P}^n$ defined by

$$\pi([z_0,\ldots,z_n,w]) = [z_0:\cdots:z_n]$$

Prove that π is well defined (i.e. independent of the representatives) and show that it is a morphism. Show that $\pi^{-1}([z_0:\cdots:z_n]) \cong \mathbb{C}$. The variety L(a) is the total space of the line bundle on \mathbb{P}^n which is often denoted by $\mathcal{O}_{\mathbb{P}^n}(-a)$.

Exercise 3. (*Toric construction of line bundles on* \mathbb{P}^n) Let $N = \mathbb{Z}^{n+1}$ and let e_1, \ldots, e_{n+1} be a basis of N. Let $e_0 = -e_1 - e_2 - \ldots - e_n$. For $a \in \mathbb{Z}$, define Σ_a to be the fan in N whose maximal cones are

$$\sigma_0 = \operatorname{cone} \{ e_1, \dots, e_{n+1} \}$$

$$\sigma_j = \operatorname{cone} \{ e_0 + a e_{n+1}, e_1, \dots, \hat{e}_j, \dots, e_{n+1} \}, \ j = 1, \dots, n.$$

Show that X_{Σ_a} coincides with L(a) defined in the previous exercise. Now let Σ' be the fan for \mathbb{P}^n in \mathbb{R}^n as in Exercise 1. Let $\phi : \mathbb{Z}^{n+1} \to \mathbb{Z}^n$ be the map $\phi(m_1, \ldots, m_n, m_{n+1}) = (m_1, \ldots, m_n)$. Check that ϕ is compatible with Σ_a and Σ' and prove that the induced map $\phi : L(a) \to \mathbb{P}^n$ coincides with the map π defined in Exercise 2. **Hint:** try first with n = 1, 2.

Exercise 4. (*Hirzebruch surfaces*) Let $Y = (\mathbb{C}^2 - \{0\}) \times (\mathbb{C}^2 - \{0\})$ with coordinates (z_0, z_1, w_0, w_1) . Define the following $\mathbb{C}^* \times \mathbb{C}^*$ action on Y:

$$(\lambda_0, \lambda_1) \cdot (z_0, z_1, w_0, w_1) = (\lambda_0 z_0, \lambda_0 z_1, \lambda_1 w_0, \lambda_1 \lambda_0^{-a} w_1)$$

Show that the quotient $F(-a) = Y/(\mathbb{C}^* \times \mathbb{C}^*)$ is a smooth variety which can be obtained by gluing four copies of \mathbb{C}^2 . (**Hint:** consider subsets of F(-a) given by $U_0 = \{[z_0, z_1, w_0, w_1] \in F(-a) | z_0 \neq 0, w_0 \neq 0\}, U_1 = \{[z_0, z_1, w_0, w_1] \in F(-a) | z_0 \neq 0, w_1 \neq 0\}, U_2 = \{[z_0, z_1, w_0, w_1] \in F(-a) | z_1 \neq 0, w_0 \neq 0\}$ and $U_3 = \{[z_0, z_1, w_0, w_1] \in F(-a) | z_0 \neq 0, w_1 \neq 0\}, U_2 = \{[z_0, z_1, w_0, w_1] \in F(-a) | z_1 \neq 0, w_0 \neq 0\}$

 $\{[z_0, z_1, w_0, w_1] \in F(-a) \mid z_1 \neq 0, w_1 \neq 0\}$ and identify them with \mathbb{C}^2 by suitable bijective maps $\psi_j = U_j \to \mathbb{C}^2$, then compute $\psi_k \circ \psi_i^{-1}$). Show that the map $\pi : F(-a) \to \mathbb{P}^1$ defined by

$$\pi([z_0, z_1, w_0, w_1]) = [z_0 : z_1]$$

is well defined and is a morphism. Prove that for all $[z_0 : z_1] \in \mathbb{P}^1$, $\pi^{-1}([z_0 : z_1]) \cong \mathbb{P}^1$. The surface F(-a) is called a Hirzerbruch surface and it is an example of a "ruled" surface. The map π is the ruling of F(-a).

Exercise 5. Let $N = \mathbb{Z}^2$. For $a \in \mathbb{Z}$, let Σ_a be the fan in \mathbb{R}^2 whose maximal cones are

$$\sigma_1 = \operatorname{cone}\{(1,0), (0,1)\}, \quad \sigma_2 = \operatorname{cone}\{(1,0), (0,-1)\}$$

$$\sigma_3 = \operatorname{cone}\{(0,-1), (-1,a)\}, \quad \sigma_4 = \operatorname{cone}\{(-1,a), (0,1)\}$$

Prove that X_{Σ_a} is the Hirzerbruch surface F(-a). Now let Σ' be the fan for \mathbb{P}^1 in \mathbb{R} as in Exercise 1 and $\phi : \mathbb{Z}^2 \to \mathbb{Z}$ the map $\phi(n_1, n_2) = n_1$. Check that ϕ is compatible with Σ_a and Σ' and that the induced map $\bar{\phi} : \Sigma_a \to \mathbb{P}^1$ coincides with the morphism π defined in Exercise 4. If we take $\phi(n_1, n_2) = n_2$, is it compatible with Σ_a and Σ' ?

Exercise 6. (Sections of line bundles on \mathbb{P}^n) Let L(a) and the map $\pi : L(a) \to \mathbb{P}^n$ be defined as in Exercise 2. A section of L(a) is a morphism $s : \mathbb{P}^n \to L(a)$ such that $\pi \circ s$ is the identity of \mathbb{P}^n . A polynomial f(z), in the coordinates $z = (z_0, \ldots, z_n)$, is homogeneous of degree d if for all $\lambda \in \mathbb{C}$, $f(\lambda z) = \lambda^d f(z)$. One can show that f(z) is homogeneous of degree d if all monomials appearing in f(z) are of degree d. Assume a is negative and let f(z) be a homogeneous polynomial of degree -a. Prove that the map $s_f : \mathbb{P}^n \to L(a)$ given by

$$s_f([z_0:\cdots:z_n]) = [z_0,\ldots,z_n,f(z_0,\ldots,z_n)]$$

is well defined (i.e. independent of representatives) and defines a section of L(a).

Exercise 7. (*The blow up of* \mathbb{C}^2) If we view \mathbb{P}^1 as the space of lines through the origin in \mathbb{C}^2 , define the tautological line bundle on \mathbb{P}^1 as $L = \{(\ell, p) \in \mathbb{P}^1 \times \mathbb{C}^2 | p \in \ell\}$. There are two maps: $\pi_1 : L \to \mathbb{P}^1$ given by $\pi_1(\ell, p) = \ell$ and $\pi_2 : L \to \mathbb{C}^2$ given by $\pi_2(\ell, p) = p$. The space L(1) is also called the blow up of \mathbb{C}^2 at the origin and the map π_2 is called the blow down map. Prove that L is isomorphic to L(1) defined in Exercise 2. (**Hint:** using coordinates $\ell = [z_0 : z_1]$ and $p = (w_1, w_2)$ the condition $p \in \ell$ is equivalent to equation $w_0z_1 - w_1z_0 = 0$). Using the description of L(1) given in Exercise 2, prove that the map π_2 defined above is given by $\pi_2([z_0, z_1, w]) = (wz_0, wz_1)$.

Exercise 8. Let Σ_1 be the fan for the line bundle L(1) over \mathbb{P}^1 (as defined in Exercise 3 with n = 1). Let $\sigma = \operatorname{cone}\{(-1,1), (1,0)\}$. The identity map $\phi : \mathbb{R}^2 \to \mathbb{R}^2$ is obviously compatible with Σ_1 and σ . Prove that the induced map $\phi : L(1) \to \mathbb{C}^2$ coincides with π_2 defined in the previous exercise.

Exercise 9. Let $Y = \mathbb{C}^3 - \{0\}$. For a triple of positive integers (a_0, a_1, a_2) define the following \mathbb{C}^* action on Y:

$$\lambda \cdot (z_0, z_1, z_2) = (\lambda^{a_0} z_0, \lambda^{a_1} z_1, \lambda^{a_2} z_2).$$

It can be shown that Y/\mathbb{C}^* is a variety, which is called a weighted projective space and denoted $\mathbb{P}(a_0, \ldots, a_n)$. Prove this in the case of the triple (1, 1, 2), following similar methods as in the previous exercises.

Exercise 10. Let $N = \mathbb{Z}^2$ and consider the fan Σ whose cones are

$$\sigma_1 = \operatorname{cone}\{(1,0), (0,1)\}, \ \sigma_2 = \operatorname{cone}\{(1,0), (-1,-2)\}, \ \sigma_3 = \operatorname{cone}\{(-1,-2), (0,1)\}$$

Prove that X_{Σ} is the weighted projective space $\mathbb{P}(1, 1, 2)$.