
Advanced arguments in
Analytic Number Theory
Fourier Analysis in locally compact abelian
groups

Prof. Giuseppe Molteni
A. Y. 2017/2018

Spring 2018, revision 4.0

Università degli Studi di Milano
Dipartimento di Matematica



These are my personal notes of the course in Advanced Arguments in
Analytical Number Theory in A.Y. 2017–’18. In this edition the course
deals mainly with topological groups, Haar measure, integration, Pon-
tryagin duality, Fourier analysis, classification of locally compact fields,
and construction of Adèles–Idèles and (maybe) Tate thesis.
It is strongly based on D. Ramakrishnan and R. J. Valenza book Fourier
analysis on number fields cited in bibliography, from which I borrow the
main organization and the proofs of all main results.
I wish to thank my students (alphabetical order): Guglielmo Beretta,
Stefano Decio, Leonardo Fiore, Ivan Franjic, Ludovico Marini, Marco
Rinetti, Simone Verzelletti, for careful reading and suggestions improv-
ing these notes.
I am the unique responsible for any possible error in these notes.

Giuseppe Molteni

This work is licensed under a Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. This means
that: (Attribution) You must give appropriate credit, provide a link to
the license, and indicate if changes were made. You may do so in any
reasonable manner, but not in any way that suggests the licensor en-
dorses you or your use. (NonCommercial) You may not use the material
for commercial purposes. (NoDerivatives) If you remix, transform, or
build upon the material, you may not distribute the modified material.



Contents

Notation 1

Chapter 1. Topological groups 2
1.1. Preliminary facts 2
1.2. Topological groups 4
1.3. Modular function 18

Chapter 2. Banach algebras 22
2.1. Preliminary facts and basic properties for the spectrum 22
2.2. Gelfand transform 27
2.3. Stone-Weierstrass theorem 29
2.4. Hilbert spaces 31
2.5. The spectral theorem (functional calculus version) 34

Chapter 3. Representations 39

Chapter 4. Duality 45
4.1. Pontryagin duality 45
4.2. Functions of positive type 47
4.3. Elementary functions 52
4.4. The Fourier inversion formula 55
4.5. The Fourier transform of character measures 61
4.6. Proof of the Fourier inversion formula 65
4.7. Pontryagin Duality 67
4.8. Plancherel theorem 69
4.9. Proof of Pontryagin theorem 71
4.10. Proof of the second part of Theorem 4.3 72

Appendix. Bibliography 73

ii



Notation

• Let (X, τ) be a topological space.
• Let U ⊆ X. Then Ů denotes the open part of U and U its closure.

• C(X) := {f : X → C, f is continuous}.

• Cc(X) := {f : X → C, supp(f) is compact} (the set of continuous and compactly
supported functions).

• ∥ · ∥∞,X the sup norm on X, i.e., ∥f∥∞,X := supx∈X |f(x)|.

• C+
c (X) := {f : X → R+, f is continuous , supp(f) is compact} (the set of nonnega-

tive continuous and compactly supported functions).

• Cb(X) := {f ∈ C(X), supp(f) is compact} (the set of continuous and bounded func-
tions).

• C0(X) := {f ∈ C(X), f “goes to 0 to the ∞”} (actually, let X ′ := X ∪ {∞} be the
one point compactification of X, then f ∈ C0(X) iff it can be extended as continuous
function on X ′ with f(∞) := 0).
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CHAPTER 1

Topological groups

1.1. Preliminary facts

Let X be a topological space, and let τ be its topology. Let x ∈ X. A neighborhood of
x is any set U containing an open set V such that x ∈ V ⊆ U . Thus, U is not assumed to
be an open set in itself, but x ∈ Ů .

Convergence in topological spaces is introduced using the machinery of nets (see [K],
p.62): limxα = y means that (xα) is a directed set (i.e., a map A → X, where A is the
set of indexes supporting a notion of ≥ which is transitive and reflexive, and such that
for every couple α, β ∈ A, there is γ ∈ A with γ ≥ α and γ ≥ β), such that for every
open neighborhood U of y, the (xα) net is eventually (in the sense of nets, i.e. using the
≥ notion) in U .
This notion allows to prove that given two topological spaces X and Y , a map f : X → Y
is continuous (i.e. the preimage f−1(V ) is an open set in X for every open set V in Y ) if
and only if lim f(xα) = f(x) for every net (xα) converging to an element x (see [K] p. 86).
When the topology satisfies the first axiom of countability (i.e., each point has a countable
base of neighborhoods) the mechanism of nets can be substituted by sequences.

We also need a local version of compactness: we adopt the following definition. A
topological space (X, τ) is locally compact when every point x ∈ X has a compact neigh-
borhood, i.e. for every x there is a compact K such that {x} ⊆ K̊ ⊆ K.

1.1.1. Product topology. Here we collect several facts about product topology:
proofs are mainly omitted but these results are standard and all of them can be found
for example in [K].

Let Xα for every α ∈ I (any cardinality admitted here) be a topological set. Then in
X :=

∏︁
α∈I Xα we can introduce the product topology, which is the coarsest topology such

all the projection maps πβ : X → Xβ , πβ((xα)α∈I) := xβ , are continuous.
A cylindric open set is a set of type

∏︁
α∈I Uα where each Uα is an open subset of Xα

and Uα = Xα with only finitely many exceptions. The set of cylinders is a base for the
product topology (see [K], p. 90).

When the set of indexes I is finite, all sets of type
∏︁N
α=1 Uα with Uα open in Xα are

cylinders, thus the product topology coincides with the topology generated by the products
of open sets. However, if I is not finite then not every product of open sets is a cylinder,
and in fact in this case the product topology is strictly coarser than the topology generated
by product of open sets.

Note that every open set U ̸= ∅ in X contains a cylinder: this is a consequence of the
fact that cylinders are a base for that topology (see [K], p. 46).

The projections πα are always open maps, i.e., πα(U) is open in Xα whenever U is open
in X: this is evident for cylinders and the general claim follows by the fact that cylinders
are a base for the topology.

Proposition 1.1 If each Xα is T2 (i.e., Hausdorff), then X is T2.

2



1.1. PRELIMINARY FACTS 3

Proof. (see [K], p. 92). Take x, y ∈ X, x ̸= y. Then xα ̸= yα for some index α. Let
Uα, Vα be open sets separating xα and yα in Xα (they exist, because Xα is T2). Take
U := π−1

α (Uα) and V := π−1
α (Vα). They are open sets in X which separate x and y. ■

Proposition 1.2 Let Y be another topological space, and let f : Y → X. Then f is contin-
uous if and only if πα ◦ f : Y → Xα is continuous for each α ∈ I.

Proof. See [K], p. 91. ■

The following proposition states the key feature of the product topology.

Proposition 1.3 (Tychonoff’s theorem) if each Xα is compact, then X is compact with
respect to the product topology.

Proof. See [K] p. 143. ■

Unfortunately the product topology behaves badly with respect the local compactness,
because in general the product of locally compact sets is not locally compact.
For example (see [SS] p. 122), consider Xα = Z for all α ∈ I, I = N (hence countably
many copies of Z), and in Xα (i.e. in Z) set the discrete topology. Choose any (xα)α ∈ X.
Let U be any open set in X containing (xα)α (so it is not empty). Then it is the union
of cylinders (because cylinders are a base for the product topology). In particular there is
an index ᾱ such that πᾱ(U) = Z (because every cylinder is eventually equal to the base
set). If X is locally compact, then there is a compact K such that {(xα)α} ⊆ K̊ ⊆ K. The
previous argument applied to K̊ shows that there exists an index ᾱ such that πᾱ(K̊) = Z.
Hence Z = πᾱ(K̊) ⊆ πᾱ(K), but this is impossible, because πᾱ(K) is a compact (because
πᾱ is continuous) in the discrete topology, and hence it is finite.

However, it is possible to prove that if the locally compact Xα spaces are actually
compact with only finitely many exceptions, then X is locally compact, and viceversa
(see [K] Th. 19, p. 147).
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1.2. Topological groups

Let G be a group, hence a set with a binary operation that we denote as a product ·,
having good properties: identity, associativity, and inverse. Note that we do not assume
commutativity.
Suppose that G has also a topology, so we have a notion of open/closed sets. By definition
the set G becomes a topological group when these structures interact well. The correct
definition is the following: G is a topological group G when the product ρ : G × G → G,
ρ(a, b) := a · b and the inverse ι : G→ G, ι(a) := a−1, both are continuous maps (in G×G
we set the product topology).

Let a ∈ G, and let La,Ra : G→ G be defined as La(x) := ax (left multiplication by a),
Ra(x) := xa−1 (right multiplication by a−1). Note that definitions are such that LaLb =
Lab and RaRb = Rab. The maps La and Ra are homeomorphisms acting transitively on
G, because for every couple x, y of elements in G there is a such that La(x) = y (set
a := yx−1). Thus G is a homogeneous space with respect to the family {La : a ∈ G} (and
{Ra : a ∈ G}, as well). This property is extremely important, since it allows to transfer
properties which are true locally in the identity e to the neighborhood of each other point:
in other words, all points behave the same from the point of view of the topology.

Here we collect some basic properties.

Proposition 1.4 Let G be a topological group. Then
1. every neighborhood U of e contains an open neighborhood V still containing e and such

that V V ⊆ U . If necessary, V can be chosen symmetric, i.e. such that V = V −1.
2. Let U be an open set in G, and W ⊆ G be any subset. Then UW and WU are open

sets.
3. The product map ρ : G×G→ G is an open map.
4. Let H ⊆ G be a subgroup, then also the closure H is a subgroup.
5. Let H ⊆ G be an open subgroup, then H is also closed.
6. Let K1, K2 be compact sets in G, then K1K2 is compact.
7. Let K be compact and F be closed sets in G, then FK and KF are closed.

Proof.
1. By hypothesis e ∈ Ů . Let ρ : G × G → G be the product. The set ρ−1(Ů) is open

in G × G (because ρ is continuous), and contains (e, e). Hence there are open sets
U1, U2 ⊆ G such that (e, e) ∈ U1×U2 ⊆ ρ−1(Ů) (because the product of open sets is a
base for the product topology). Let V ′ := U1 ∩U2, an open subset of G. Then e ∈ V ′,
and V ′V ′ = ρ(V ′ × V ′) ⊆ ρ(U1 × U2) ⊆ ρ(ρ−1(Ů)) ⊆ Ů ⊆ U .
The inclusion of e in V ′ implies V ′ ⊆ V ′V ′, which is in U , thus V ′ ⊆ U . Finally, take
V := V ′ ∩ V ′−1 in order to produce the symmetric open set.

2. Note that WU = ∪w∈WLw(U), hence it is open because each Lw(U) is open. The
same for UW = ∪w∈WRw−1(U).

3. Every open set U in G×G may be written as ∪αUα×U ′
α, for suitable open sets Uα, U ′

α

in G (because the sets Uα × U ′
α are a base for the product topology). Then

ρ(U) = ρ
(︁
∪α (Uα × U ′

α)
)︁
= ∪αρ(Uα × U ′

α) = ∪α(UαU ′
α)

and each UαU ′
α is open, by [2.].

4. Easy, because the product and the inverse are continuous maps.
5. We decompose G as disjoint union of lateral classes G/H. Thus

Hc =
⋃︂

a∈G/H
a̸=e

aH
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which is open, because each aH is open by [2.].
6. The product K1 ×K2 is compact in G × G, and the product map ρ : G × G → G is

continuous. Thus K1K2 = ρ(K1 ×K2) is compact.
7. It is sufficient to prove the claim for FK (for the other case consider that KF =

(F−1K−1)−1 and that the inverse map ι is a homeomorphism). Let z in the closure
of the product FK. Then there is a net of the form xaya converging to z, with xa in
F and ya in K. The compactness of K ensures that, passing to a subnet if necessary,
the net {ya} converges to an element y, say.
Let U be a neighborhood of e, and let V be a symmetric neighborhood of e such that
V V ⊆ U (it exists by [1.]). Then the nets {z−1xaya} and {y−1ya} are both eventually
in V , whence the product

z−1xay = (z−1xaya)(y
−1ya)

−1

is eventually in V V −1 = V V ⊆ U . This proves that z−1xay tends to e, i.e. that xa
tends to zy−1.
By hypothesis xa is in F which is closed, thus zy−1 is in F as well. Then the equality
z = (zy−1)y shows that z ∈ FK.

■

Remark. 1.1 Note that claims [6.] and [7.] in previous proposition do not imply that
compact×compact is closed: this happens because we are not assuming T2 property, so
that in this general setting a compact set is not necessarily a closed set. □

Remark. 1.2 Note that ρ is not necessarily a closed map. For example, let G = (R,+)
(i.e., R with the sum as binary operation), and take F := {(x, x−1 − x) ∈ R × R : x > 0}
is a closed subset in R× R, but ρ(F ) = {x−1 : x > 0} = (0,+∞) is not closed. □

Remark. 1.3 A similar example shows that in general the product of closed sets is not
closed. Take G = (R2,+) (i.e., R2 with the vector sum as operation), and take F :=
{(x, x−1) ∈ R2 : x ̸= 0} in R2. Then ρ(F, F ) = {(x+y, x−1+y−1) : x, y ̸= 0} = {(a, b) : ab <
0} ∪ {(a, b) : ab ≥ 4} ∪ {(0, 0)}, which is not closed. □

The following result shows how the algebraic structure interacts with the separation
properties.

Proposition 1.5 Let G be a topological group. Then the following properties are equiva-
lent:
1. {e} is a closed set.
2. Each element in G is a closed set.
3. G is T1.
4. G is T2.

Proof.
1. =⇒ 2. In fact, let x ∈ G. Then {x} = Lx({e}) and Lx is a homeomorphism and {e}

is closed by assumption. Thus {x} is closed, too.
2. =⇒ 3. Trivial.
3. =⇒ 4. Let x, y ∈ G, x ̸= y. By hypothesis G is T1, thus there is a neighborhood U of

e separating xy−1 and e. Let V be an open and symmetric set still containing e and
such that V V ⊆ U (it exists by Proposition 1.4[1.]). Then V x and V y are open sets
containing x and y respectively, and without common elements, because if vx = v′y
then e = v′−1vxy−1 ∈ V −1V xy−1 = V V xy−1 ⊆ Uxy−1, which is impossible.

4. =⇒ 1. Trivial.
■
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Let H be a subgroup of the topological group G. In the quotient space G/H :=
{aH : a ∈ G} (i.e. the set of left cosets ofH inG) we take the quotient topology, which is the
strongest topology (i.e., largest topology) such that the canonical projection π : G→ G/H
is continuous. In other words, a subset W of G/H is open if and only if π−1(W ) is open in
G. The following proposition shows how the topological properties of H affect the quotient
topology.

Proposition 1.6 Let G be a topological group, and let H be a subgroup. Then:

1. the quotient space G/H is homogeneous under G.
2. The canonical projection π : G→ G/H is an open map.
3. If H is a compact subgroup, then the canonical projection π : G → G/H is a closed

map.
4. G/H is T1 if and only if H is closed.
5. G/H is discrete if and only if H is open. When G is compact, G/H is finite if and

only if H is open.
6. If H is normal, then G/H is a topological group with respect to the quotient topology

and the induced operation.
7. Let H be the closure of {e} in G. Then H is normal and G/H is Hausdorff.

Exercise. 1.1 Let G be a topological group.

1. let S ⊆ G be the maximal connected component containing e. Prove that S is a closed
subgroup of G.

2. let S as before. Suppose that S has a finite index in G. Prove that S is also an open
subgroup of G.

3. Suppose that G is connected and let H ⊆ G be an open subgroup. Prove that H = G.
4. In general (i.e. without assuming that G is connected), let S as before and let H ⊆ G

be an open subgroup. Prove that S ⊆ H, with equality if and only if H is connected.

Proof.

1. For every couple of cosets xH, yH, the left multiplication by the element yx−1 acts on
G/H and sends xH to yH, in other words, Lyx−1(xH) = yH (but note that this is an
abuse of notation, because by definition Lyx−1 : G→ G, not G/H → G/H). This map
is also continuous. In fact, for every set U ⊆ G/H, (La)−1(U) = {a−1bH : bH ∈ U},
implying π−1((La)−1(U)) = (La)−1(π−1(U)). Thus, if U is open in G/H, then π−1(U)
is open in G (by definition of quotient topology), hence (La)−1(π−1(U)) is open in G
(because La is continuous), hence π−1((La)−1(U)) is open in G, hence (La)−1(U) is
open in G/H (by definition of quotient topology).

2. Let U be an open set in G. Then π(U) is open in G/H if and only if π−1(π(U)) is open
in G. This is true, since π−1(π(U)) = UH and UH is open by Proposition 1.4[2.].

3. Let F be a closed set in G. Then π(F ) is closed in G/H if and only if π−1(π(F ))
is closed in G. This is true, since π−1(π(F )) = FH and FH is closed by Proposi-
tion 1.4[7.].

4. Imitate the proof of Proposition 1.5: this is possible since G/H is homogeneous with
respect to G. It follows that G/H is T1 if and only if the trivial class in G/H is closed,
and by the definition of quotient topology this happens if and only if H is closed in G.

5. By definition, G/H is discrete if and only if the points in G/H are open, and by
homogeneity this happens if and only if the trivial class is open, and this happens (by
the definition of the quotient topology) if and only if H is open.
When G is compact, then G/H is compact as well (because π is continuous). Thus H
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is open if and only if G/H is discrete (by previous step), and a compact is discrete if
and only if it is finite.

6. When H is normal, the product

ρG/H : G/H ×G/H → G/H, ρG/H((aH, bH)) := (aH)(bH) := abH

is well defined and the diagram

G×G G/H ×G/H

G G/H

π×π

ρG ρG/H

π

commutes. It shows that ρ−1
G/H(U) = (π × π)(ρ−1

G (π−1(U))) for every set U in G/H.
When U is open, then π−1(U) is open in G (because π is continuous), ρ−1

G (π−1(U)) is
open (because ρG is continuous), and (π × π)(ρ−1

G (π−1(U))) is open (because π is an
open map). This proves that ρG/H is continuous. A similar argument proves the same
for the inverse map.

7. {e} is a subgroup in G, thus also its closure H is a group (by Proposition 1.4[4.]). Each
conjugate group aHa−1 of H is closed (because it is LaRa(H)) and contains e. Thus
H is contained in each conjugate group (because H is the intersection of all closed set
containing e). In particular H is normal.
H is closed, hence G/H is T1 (by step 4), hence it is T2 (by Proposition 1.5).

■

Remark. 1.4 Note that [7.] is a generalization of the implication [1.] =⇒ [4.] of Proposi-
tion 1.5. □

Let G be a topological group, and let D(G,S) be the set of functions f : G→ S, where
S is R or C (or any other Banach space). Then G acts on D both via the left action

Lh : D → D, Lh(f)(g) := f(h−1g),

and the right action

Rh : D → D, Rh(f)(g) := f(gh).

Note that the definitions are similar to the ones of Lh and Rh, but the details are different
(Lh modifies a function f via a left multiplication by h−1, not by h as for Lh). This is a
bit strange, but it is necessary in order to preserve the validity of identities LaLb = Lab
and RaRb = Rab. In fact, in this way

(LaLbf)(g) = (La(Lbf))(g) = (Lbf)(a
−1g) = f(b−1a−1g)

= f((ab)−1g) = (Labf)(g),

and an analogous computation shows that RaRb = Rab.
A function f is left-uniformly continuous on G when for every ϵ > 0, there exists a neigh-
borhood V of e such that

h ∈ V =⇒ ∥Lhf − f∥∞,G := sup
g∈G

∥(Lhf)(g)− f(g)∥S = sup
g∈G

∥f(h−1g)− f(g)∥S ≤ ϵ.

For the right-uniformity the definition is similar.
Let C(G,S) be the set of continuous maps, and Cc(G,S) be the subset of continuous maps
having compact support. The following property is probably highly expected, but it is
extremely important for our purposes and a proof is welcome.

Proposition 1.7 Let G be a topological group, and let Cc(G,S) be the set of continuous
maps with compact support. Then each map in Cc(G,S) is both left and right uniformly
continuous.
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Proof. We prove the left uniformity, the proof of the right uniformity being similar. Let
K be the support of f . It is a compact, by assumption. Set a value for ϵ > 0. f is by
hypothesis a continuous map, hence for every g in K there is an open neighborhood Ug of
e such that

h ∈ Ug =⇒ ∥f(hg)− f(g)∥S ≤ ϵ.

Let Vg be the open and symmetric subset of Ug such that e ∈ Vg, and VgVg ⊆ Ug (once
again, it exists by Proposition 1.4[1.]). The family {Vgg}g∈K is an open covering of K, from
which we can produce a finite covering: g1, . . . , gN and sets V1, . . . , VN (where Vi := Vgi
for every i = 1, . . . , N).
Let V := ∩Ni=1Vi, which contains e, is open, symmetric, and satisfies V ⊆ V V ⊆ ViVi ⊆ Ui
for every i. Assume h ∈ V . Then, when g ∈ K, there is an index i such that g ∈ Vigi, and
we have

∥(Lhf)(g)− f(g)∥S = ∥f(h−1g)− f(g)∥S ≤ ∥f(h−1g)− f(gi)∥S + ∥f(gi)− f(g)∥S .
The inclusions h−1g = (h−1)(gg−1

i )gi ∈ V (gg−1
i )gi (because V is symmetric) ∈ V Vigi

(because g ∈ Vigi) ∈ Uigi (because V ⊆ Vi and V 2
i ⊆ Ui) prove that ∥f(h−1g)−f(gi)∥S ≤ ϵ.

In similar way, the inclusion g = (gg−1
i )gi ∈ Vigi ∈ Uigi, shows that also ∥f(gi)−f(g)∥S ≤

ϵ. This proves that
g ∈ K =⇒ ∥(Lhf)(g)− f(g)∥S ≤ 2ϵ.

Suppose g ̸∈ K. If also h−1g ̸∈ K then f(g) = f(h−1g) = 0, and the bound ∥f(h−1g) −
f(g)∥S = 0 ≤ 2ϵ is trivial.
On the contrary, suppose h−1g ∈ K. Let i be the index such that h−1g ∈ Vigi. Then

∥(Lhf)(g)− f(g)∥S = ∥f(h−1g)− f(g)∥S ≤ ∥f(h−1g)− f(gi)∥S + ∥f(gi)− f(g)∥S .
The inclusion h−1g ∈ Vigi ⊆ Uigi shows that ∥f(h−1g) − f(gi)∥S ≤ ϵ, and the inclusions
g = h(h−1gg−1

i )gi ∈ V (h−1gg−1
i )gi (because h ∈ V ) ∈ V Vigi (because h−1gg−1

i ∈ Vi)
∈ Uigi (because V Vi ⊆ ViVi ⊆ Ui) prove that also ∥f(gi)− f(g)∥S ≤ ϵ.
Thus, in any case we have proved that h ∈ V implies that ∥(Lhf)(g)− f(g)∥S ≤ 2ϵ. ■

1.2.1. Locally compact groups. A topological group G which is locally compact,
and T2 (Hausdorff) is called locally compact group.
Note that a topological group which is also locally compact is not necessarily a locally
compact group: the separation property T2 (Hausdorff) is assumed for a locally compact
group. The following property is quite distinctive of these groups.

Proposition 1.8 Let G be a locally compact group. Let H be a subgroup which is locally
compact. Then H is closed.

Proof. We prove that H ⊆ H. Let x ∈ H. Also H is a group (Prop. 1.4[4]), so x−1 ∈ H
as well. By hypothesis H is locally compact in the induced topology, thus there exists a
neighborhood K of e which is compact in H. Then K is compact also in G. Hence K is
closed both in G and in H, because G and hence H are Hausdorff spaces. In particular,
there exists F a closed (in G) neighborhood of e such that K = F ∩H.
We know that there exists V ⊆ G such that e ∈ V , and V V ⊆ F . The sets V x−1

and H intersect nontrivially, because x−1 ∈ H and V x−1 is a neighborhood of x−1: let
y ∈ V x−1 ∩H.
We prove now that xy ∈ H. In fact, let W be any neighborhood of xy. Then y−1W is
a neighborhood of x, hence y−1W ∩ xV is again a neighborhood of x, and there exists
z ∈ y−1W ∩ xV ∩H (because x ∈ H). Then yz ∈ W (evident), and yz ∈ H (because y
and z are in H which is a group). Moreover, the fact that y ∈ V x−1 with the inclusion
z ∈ xV implies that yz ∈ V x−1 · xV = V V ⊆ F .
Thus yz ∈W ∩ (F ∩H), in particular W ∩ (F ∩H) ̸= ∅.
This happens for every neighborhood W of xy, and F ∩H is closed (because it is K which
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is closed in G), hence xy ∈ F ∩H. In particular xy ∈ H.
Now we can conclude the proof, because x = xy · y−1 and xy ∈ H and y−1 ∈ H, hence
also x ∈ H. ■

1.2.2. Haar measure. A collection M of subsets of a set X is called σ-algebra when
i. X ∈ M,
ii. if E ∈ M, then Ec ∈ M where Ec denotes the complement of E in X,
iii. suppose En ∈ M for all n ∈ N, then E :=

⋃︁
n∈NEn ∈ M.

(thus ∅ ∈ M and
⋂︁
n∈NEn ∈ M).

A measured space X is the triplet (X,M, µ) where M is a σ-algebra and µ is a measure,
i.e. a map: M → [0,+∞] (+∞ admitted here) such that

µ
(︂ ⋃︂
n∈N

En

)︂
=

∑︂
n∈N

µ(En)

whenever the sets En are pairwise disjoint.
In particular, a Borel-measure is any such structure when X is locally compact and Haus-
dorff topological space, and M contains the Borel sets. Essentially, we have a Borel measure
when we have both a topology and a measure, and the measure interacts well with the
topology.
Assume that X is locally compact and Hausdorff, and that µ is a Borel measure. Then

i. µ is called outer regular in a set E ∈ M when

µ(E) = inf{µ(U) : E ⊆ U, U open};
ii. µ is called inner regular in a set E ∈ M when

µ(E) = sup{µ(K) : K ⊆ E, K compact}.
A Radon-measure is a Borel measure (hence X is locally compact and Hausdorff) which is
finite on compact sets, is outer regular on all Borel sets, and is inner regular on all open
sets.
Essentially, a Radon measure is a Borel measure in which the measure of all Borel sets de-
pends only on measures of compact sets. Or, in other words, a measure which is completely
known on Borel sets when it is known on compact sets.

Let G be a topological group and let µ be a Borel measure on G. We say that it is left
invariant when

µ(gE) = µ(E)

for every Borel subset E ⊆ G, and all g ∈ G, and right invariant when

µ(Eg) = µ(E)

for every Borel subset E and all g ∈ G.
Finally, let G be a locally compact topological group (hence it is also Hausdorff, by

definition). A left (resp. right) Haar measure on G is a nonzero Radon measure that is
left (resp. right) invariant.

Example. 1.1 G := (Rk,+), i.e. Rk with the vector sum. The Lebesgue measure dµ := dx
is both a left and a right Haar measure.

Example. 1.2 G := (R+,×), i.e. (0,+∞) with the usual product. The measure d∗µ :=
dx/x, where dx is the Lebesgue measure, is both a left and a right Haar measure.

Example. 1.3 G := (GL(n,R), ·), i.e. the set of invertible matrices with real entries
and the ‘rows-times-columns’ product. We introduce in G the topology that we obtain
identifying GL(n,R) with a subset of Rn2 . The measure dµ :=

∏︁n
i,j=1 dxi,j/|det(M)|n,

where each dxi,j is the Lebesgue measure in the xi,j space, and M := [xi,j ]
n
i,j=1, is both a

left and a right Haar measure.
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Example. 1.4 Let

G :=
{︂(︃√

b a/
√
b

0 1/
√
b

)︃
: a ∈ R, b ∈ R+

}︂
,

which is a subgroup of GL(n,R) since(︃√
b a/

√
b

0 1/
√
b

)︃(︃√
b′ a′/

√
b′

0 1/
√
b′

)︃
=

(︃√
bb′ (a+ a′b)/

√
bb′

0 1/
√
bb′

)︃
.

The formula shows that G is isomorphic to the set {(a, b) ∈ R×R+}, with (a, b) · (a′, b′) :=
(a+ a′b, bb′). Note that G is not abelian and is locally compact with respect to the usual
topology of R× R+. Then

µL(E) :=

∫︂
E

dx dy

y2
and µR(E) :=

∫︂
E

dx dy

y

are left (respectively right)-Haar measures.

Proof. Let g =

(︃√
b a/

√
b

0 1/
√
b

)︃
. Suppose (u, v) varies in E ⊆ G and let (x, y) ∈ gE. Then{︄

x = a+ ub

y = vb

thus the jacobian of the transform is J =
(︁
b 0
0 b

)︁
, with det J = b2. Then

µL(gE) =

∫︂
gE

dx dy

y2
=

∫︂
E
b2

dudv

(bv)2
=

∫︂
E

dudv

v2
= µL(E).

On the other hands, suppose (u, v) varies in E ⊆ G and let (x, y) ∈ Eg. Then{︄
x = u+ va

y = vb

thus the jacobian of the transform is J =
(︁
1 a
0 b

)︁
, with det J = b. Then

µR(Eg) =

∫︂
Eg

dx dy

y
=

∫︂
E
b
dudv

bv
=

∫︂
E

dudv

v
= µR(E).

In this case µL and µR are different. ■

Example. 1.5 This is a generalization of the previous example. Let

G := {(g, w) : g ∈ GL(n,R), w ∈ Rn},

with
(g1, w1) · (g2, w2) := (g1g2, g1w2 + w1).

This is a group, with (1, 0) as identity and (g, w)−1 := (g−1,−g−1w) as inverse. It is
the group of affine transformations in Rn (take the action (g, w) : Rn → Rn, (g, w)(a) :=
ga+w). We introduce in G the topology that we obtain identifying GL(n,R) with a subset
of Rn2 , so that G becomes a subset of Rn2 × Rn. The measures

µL(E) :=

∫︂
E

∏︁n
i,j=1 dxi,j ·

∏︁n
i=1 dyi

| det(M)|n+1
and µR(E) :=

∫︂
E

∏︁n
i,j=1 dxi,j ·

∏︁n
i=1 dyi

| det(M)|n
,

where each dxi,j and each dyi is the Lebesgue measure in the corresponding space and
M := [xi,j ]

n
i,j=1, are left (respectively right)-Haar measures. Also in this case the measures

µL and µR are different.
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Example. 1.6 Let G be the group of nonzero quaternions, i.e.

G := {a+ bi+ cj + dk : (a, b, c, d) ̸= (0, 0, 0, 0) ∈ R4},

with i2 = j2 = k2 = ijk = −1. G may be represented via 4× 4 matrices,

a+ bi+ cj + dk ↦→ M :=

⎛⎜⎜⎝
a −b −c −d
b a −d c
c d a −b
d −c b a

⎞⎟⎟⎠ ,

and the product of elements in G corresponds to the product (in the same order) of the
representing matrices. A (tedious) computation shows that

det(M) = (a2 + b2 + c2 + d2)2 = ∥a+ bi+ cj + dk∥4.

The identification of G with the open subset R4\{(0, 0, 0, 0)} allows one to consider G as
a locally compact topological group. The measure

µ(E) :=

∫︂
E

dx dy dz du

(x2 + y2 + z2 + u2)2
=

∫︂
E

dx dy dz du

∥x+ yi+ zj + uk∥4

is a doubly invariant Haar measure (i.e. it is both left and right invariant). Here each
dx dy dz du is the Lebesgue measure in R4.

Let
C+
c (G) := {f : G→ R+, supp(f) is compact, ∥f∥∞ > 0}

the set of nonnegative, not identically zero, continuous and compactly supported functions.

Proposition 1.9 Let G be a locally compact group. Then:
• Let µL be a left-Haar measure. Let µR be the measure defined by µR(E) := µL(E

−1)
for every E ∈ M. Then µR is a right-invariant Haar measure.

• Let µ be a Radon measure. It is left-Haar on G if and only if∫︂
G
Lgf dµ =

∫︂
G
f dµ

for every f ∈ C+
c (G) and every g ∈ G.

• Let µ be a left-Haar measure. Then µ is positive on open and nonempty sets, and∫︁
G f dµ > 0 for all f ∈ C+

c (G).
• Let µ be a left-Haar measure. Then µ(G) < +∞ if and only if G is compact.

Proof.
• The map ι : G → G is a homeomorphism, thus µR is a Radon measure. It is right

invariant because µR(Eg) = µL((Eg)
−1) = µL(g

−1E−1) = µL(E
−1) = µR(E).

• Let µ be left invariant. Then the equality of integrals
∫︁
G Lgf dµ =

∫︁
G f dµ holds true

for all positive simple functions f (i.e., positive linear combinations of characteristic
functions of measurable sets), and it is true also for functions in C+

c (G) by density
arguments1.

1The usual argument runs as follows. Let ϕn : [0,+∞) → [0,+∞), with

ϕn(x) := min
(︂
2n,

⌊2nx⌋
2n

)︂
.

Then, for every compact K ⊆ [0,+∞), there is N such that supx∈K |ϕn(x)− x| ≤ 2−n when n ≥ N . Let
f ∈ C+

c (G), and set fn := ϕn ◦ f . The range of f is a compact in [0,+∞) (because f is continuous and
its support is a compact). Hence ∥fn − f∥∞ ≤ 2−n as soon as n is large enough. Each fn is a simple
function (because ϕn is left-continuous and f is continuous). This proves that each function in C+

c (G)
is the uniform limit of simple functions. Moreover, the support of fn is the one of f and is a compact,
therefore f is the limit of fn also in L1 norm.
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On the contrary, suppose
∫︁
G Lgf dµ =

∫︁
G f dµ for all f ∈ C+

c (G). Let U be any open
set. The equality µ(gU) = µ(U) for every g ∈ G follows immediately as soon as we
prove that

µ(U) = sup
{︂∫︂

G
f dµ : f ∈ C+

c (G), supp(f) ⊆ U, ∥f∥∞ = 1
}︂
.

Once the the invariance is proved for all open set, then the invariance for all Borel sets
follows by the assumed outer regularity of the measure.
Thus we have to prove the previous formula for µ(U). Let ℓ be the value of the sup. For
every such f we have

∫︁
G f dµ ≤

∫︁
G χsupp(f) dµ (because 0 ≤ f(g) ≤ 1 by hypothesis)

= µ(supp(f)) ≤ µ(U). This proves that ℓ ≤ µ(U). On the other hand, suppose that
µ(U) < +∞. µ is inner regular, hence for every ϵ > 0 there is a compact K ⊆ U
such that µ(K) ≥ µ(U) − ϵ. By Urysohn’s Lemma (see [R], p. 39: note that local
compactness and T2 separation are used here) there is function f ∈ C+

c (G) such that
χK(g) ≤ f(g) ≤ χU (g). Thus ∥f∥∞ = 1 and

µ(U) ≤ µ(K) + ϵ =

∫︂
G
χK dµ+ ϵ ≤

∫︂
G
f dµ+ ϵ.

This proves that µ(U) ≤ ℓ + ϵ. ϵ being arbitrary, we deduce that µ(U) ≤ ℓ, which
proves the equality µ(U) = ℓ in this case. For the case µ(U) = +∞ the proof is similar.

• µ is not trivial (i.e. identically zero), hence by inner regularity there is a compact K
with µ(K) > 0. Let U be a nonempty open set. Without loss of generality we can
assume that e ∈ U (otherwise set x ∈ U and consider x−1U : by left invariance, µ(U) =
µ(x−1U) and hence the first one is positive if and only if the second is positive). The set⋃︁
a∈K aU is a covering of K, which by compactness we can reduce to a finite covering⋃︁N
i=1 ajU . Hence µ(K) ≤ µ(

⋃︁N
i=1 ajU) (inclusion) ≤

∑︁N
i=1 µ(ajU) (subadditivity)

= µ(U)N (because µ is left-invariant). By hypothesis µ(K) > 0, hence µ(U) ≥
µ(K)/N > 0, which sets the first claim.
Let f ∈ C+

c (G), f not identically zero; fix any δ in the range of f , and take U := {g ∈
G : f(g) > δ/2}. Then U is open and nonempty, and∫︂

G
f dµ ≥

∫︂
U

δ

2
dµ ≥ δ

2
µ(U) > 0.

• If G is compact, then µ(G) < +∞ for all Radon measures. Assume that G is not
compact. Let K be any compact neighborhood of e (it exists, because G is locally
compact), and let V be a symmetric neighborhood of e such that e ∈ V ⊆ V V ⊆ K
(we know that it exists). We define a countable family of points (gn)n∈N in the following
way. We set g0 := e, and we proceed by induction. Suppose we have already found
g0, . . . , gn−1, then we pick any gn in G\

⋃︁n−1
i=0 giK: gn exists because

⋃︁n−1
i=0 giK is

compact and G is not compact by hypothesis.
Note that giV and gjV do not intersect for i ̸= j. In fact, assume i < j, then
giV ∩ gjV ̸= ∅ if and only if gj ∈ giV V

−1 = giV V ⊆ giK, which contradicts the rule
we have used for the selection of gj . Hence

µ(G) ≥ µ
(︂ ⋃︂
n∈N

gnV
)︂
=

∑︂
n∈N

µ(gnV ) =
∑︂
n∈N

µ(V ) = ∞.

The last step comes from µ(V ) > 0, which is true because V is a nonempty open set.
■

The main result of this section is the following claim. It is due to Haar, with important
simplifications for its proof by von Newman, H. Cartan and Weil.

Theorem 1.1 Let G be a locally compact group. Then G admits a left-Haar measure.
Moreover, the measure is unique up to a moltiplicative factor.
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According to the spirit of Proposition 1.9, we prove the theorem by proving the exis-
tence of a linear functional on Cc(G) which is left-invariant. The construction needs some
preparatory tools which are collected here; the covering number is the great idea allowing
Haar to prove his result. The introduction of the product space and the use of Tychonoff’s
theorem is a simplification due to Weil, while H. Cartan proposed a different (and longer)
approach avoiding the need of the choice axiom which is implicit in Tychonoff theorem.
For this alternative approach see [DS], Ch. 6.

Let f, φ ∈ C+
c (G). Recall that the definition of C+

c (G) ensures that φ is not identically 0,
so that ∥φ∥∞ is positive. Let U := {g ∈ G : |φ(g)| > ∥φ∥∞/2}. U is a nonempty open set.
The support of f is a compact, and

⋃︁
s∈G sU equals G and hence covers supp(f). Therefore

finitely many sj , j = 1, . . . , N suffice to have supp(f) ⊆
⋃︁N
j=1 sjU . This inclusion implies

that

f ≤ 2∥f∥∞
∥φ∥∞

N∑︂
j=1

Lsjφ

because if s belongs to the support of f , then it is in some sjU , and hence s−1
j s ∈ U , so

that (Lsjφ)(s) > ∥φ∥∞/2. This suggests the introduction of the following object:

(f : φ) := inf
{︂ N∑︂
j=1

cj : 0 < c1, . . . , cN , with f ≤
N∑︂
j=1

cjLsjφ for some s1, . . . , sN ∈ G
}︂
.

It is called Haar covering number of f with respect to φ. Note that its value is never zero,
because f is not identically zero (see also Proposition 1.10[5.]).

Proposition 1.10 The Haar covering number satisfies the following properties:
1. (f : φ) = (Lsf : φ) for every s ∈ G (left-invariant).
2. (f1 + f2 : φ) ≤ (f1 : φ) + (f2 : φ) (subadditive).
3. (cf : φ) = c(f : φ) for all c > 0 (multiplicative by constants).
4. f1 ≤ f2 implies (f1 : φ) ≤ (f2 : φ) (monotone).

5. (f : φ) ≥ ∥f∥∞
∥φ∥∞ (bounded from below).

6. (f : φ) ≤ (f : f0)(f0 : φ) for every f0 ∈ C+
c (G) (multiplically transitive).

Proof.
1. This is easy, since Ls is a linear map and a morphism, so that

f ≤
N∑︂
j=1

cjLsjφ ⇐⇒ Lsf ≤
N∑︂
j=1

cjLssjφ,

showing that the same set of cj ’s serves for f and for Lsf .
2,3,4. Evident.
5. Let f ≤

∑︁N
i=1 cjLsjφ. Then ∥Lsjφ∥∞ = ∥φ∥∞, thus f ≤ ∥φ∥∞

∑︁N
i=1 cj . Therefore

∥f∥∞ ≤ ∥φ∥∞
∑︁N

i=1 cj , i.e.
∑︁N

i=1 cj ≥ ∥f∥∞/∥φ∥∞, which proves the claim since the
lower bound is independent of the cj ’s.

6. Let f ≤
∑︁M

i=1 ciLsif0 and f0 ≤
∑︁N

j=1 c
′
jLs′jφ, then

f ≤
M∑︂
i=1

ciLsi

(︂ N∑︂
j=1

cjLs′jφ
)︂
≤

M∑︂
i=1

N∑︂
j=1

cicjLsis′jφ

proving that (f : φ) ≤
(︁∑︁M

i=1 ci
)︁(︁∑︁N

j=1 c
′
j

)︁
. The claim follows since the right hand

side is as close to (f : f0)(f0 : φ) as we want.
■
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The Haar covering number gives a kind of functional on C+
c (G), but it is not a true

functional since there are cases where the subadditivity proved in Proposition 1.10[2.] is a
proper inequality. The idea is that we can overcome this difficulty changing φ in a suitable
net where the support becomes smaller and smaller: in this way φ behaves as a kind of
‘Dirac-delta’ that in the limit produces a real functional. Unfortunately this idea cannot
be applied as it is, because in this way we only produce a functional which is additive
because it equals ∞ in every function! To control this phenomenon we apply the idea to a
quotient of indexes, which in the limit will stay bounded. Thus, we fix f0 and φ in C+

c (G),
not identically zero, and set

Iφ(f) :=
(f : φ)

(f0 : φ)

for every f ∈ C+
c (G). By Proposition 1.10[6.], we deduce that

(1.1) (f0 : f)
−1 ≤ Iφ(f) ≤ (f : f0).

This formula is (one of) the key features of this object: it shows how to bound Iφ(f) both
from below and from above, with numbers which do not depend on φ: the existence of
this double bound is the key property showing that we are on the good path toward the
construction of the functional.

The following proposition shows a kind of control from below for its values, which
substitutes the additivity and will produce the full additivity when we will run in a suitable
limit process.

Proposition 1.11 Let f1, f2 ∈ C+
c (G) and ϵ > 0. Then there is a neighborhood U of e such

that
Iφ(f1) + Iφ(f2) ≤ Iφ(f1 + f2) + ϵ

for every φ with supp(φ) ⊆ U .

Proof. By Urysohn’s Lemma there is a function g ∈ C+
c (G) that takes value 1 on supp(f1+

f2) = supp(f1) ∪ supp(f2). Let δ > 0 and set h := f1 + f2 + δg, and let F1 := f1/h,
F2 := f2/h, with the convention that Fi = 0 outside supp(fi), for i = 1, 2. Each Fi is in
C+
c (G) (because g equals 1 on supp(f1+ f2), so that fi and h have no common zeros), and

their sum
F1 + F2 =

f1 + f2
f1 + f2 + δg

approaches 1 from below when δ → 0. By uniform continuity, there is a neighborhood U
of e such that |Fi(s)− Fi(t)| ≤ δ when t−1s ∈ U .
Assume that supp(φ) ⊆ U and that

h ≤
N∑︂
j=1

cjLsjφ.

Then

fi(s) = h(s)Fi(s) ≤
N∑︂
j=1

cjLsjφ(s)Fi(s) =
N∑︂
j=1

cjφ(s
−1
j s)Fi(s).

By assumption φ is supported on U , hence this is

≤
N∑︂
j=1

cjφ(s
−1
j s)(Fi(sj) + δ) (i = 1, 2),

and it follows that

(fi : φ) ≤
N∑︂
j=1

cj(Fi(sj) + δ) (i = 1, 2).
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Since F1 + F2 ≤ 1, this inequality implies that

(f1 : φ) + (f2 : φ) ≤ (1 + 2δ)
N∑︂
j=1

cj .

But
∑︁N

j=1 cj can be made arbitrarily close to (h : φ), and therefore by definition of Iφ we
get

Iφ(f1) + Iφ(f2) ≤ (1 + 2δ)Iφ(h).

Since h = f1 + f2 + δg, By Proposition 1.10[2.] this is bounded by

Iφ(f1) + Iφ(f2) ≤ (1 + 2δ)(Iφ(f1 + f2) + δIφ(g))

= Iφ(f1 + f2) + δ(2Iφ(f1 + f2) + (1 + 2δ)Iφ(g)).

Equation (1.1) shows that all terms appearing to the right may be bounded independently
of φ, so they may be made smaller than ϵ with a suitable choice of δ. ■

Existence of Haar measure. Let X be the compact topological set defined by

X :=
∏︂

f∈C+
c (G)

[(f0 : f)
−1, (f : f0)].

By (1.1) each function Iφ may be considered as an element in X.
For every compact neighborhood U of e let KU be the closure in X of the set

{Iφ : supp(φ) ⊆ U}.
The collection {KU}U satisfies the finite intersection property, i.e. every finite intersection
is not empty. This happens because

N⋂︂
j=1

KUj ⊇ K⋂︁N
j=1 Uj

and a nonzero function g in C+
c (G) supported in

⋂︁N
j=1 Uj exists by Urysohn’s Lemma.

Since X is compact, this implies that
⋂︁
U KU is not empty2. Let I be an element in this

intersection. We will prove that I is the functional we are looking for.
Since I is in the intersection of all KU , it follows that every open neighborhood if I
intersects each of the sets {Iφ : supp(φ) ⊆ U} nontrivially. In particular this happens for
open cylindric sets so that:

for every open neighborhood U of e and for every finite set of functions
fj ∈ C+

c (G), j = 1, . . . , N and every ϵ > 0, there exists a function
φ ∈ C+

c (G) with supp(φ) ⊆ U such that |I(fj) − Iφ(fj)| ≤ ϵ for
j = 1, . . . , N .

So, given f ∈ C+
c (G) and a fixed s ∈ G, we can have both |I(f) − Iφ(f)| ≤ ϵ and

|I(Lsf)− Iφ(Lsf)| ≤ ϵ. Recalling Proposition 1.10[1.] implying that Iφ(Lsf) = Iφ(f), we
get

|I(Lsf)− I(f)| ≤ |I(Lsf)− Iφ(Lsf)|+ |Iφ(Lsf)− I(f)|
= |I(Lsf)− Iφ(Lsf)|+ |Iφ(f)− I(f)| ≤ 2ϵ.

The arbitrariness of ϵ yields the equality I(Lsf) = I(f) (i.e. I is left-invariant).

2Recall that the finite intersection property for X is equivalent to the compactness of X. In fact, let X be
a compact set. The

⋂︁
U KU = ∅ if and only if

⋃︁
U Kc

U = X. Each Kc
U is open and X is compact, hence a

finite set is sufficient to cover X, i.e.,
⋃︁N

j=1 K
c
Uj

= X, and this happens if and only if
⋂︁N

j=1 KUj = ∅. On
the other hand, suppose that X has the finite intersection property. Let

⋃︁
α Vα = X an open covering of

X. Then
⋂︁

α V c
α = ∅. The there is some finite subset

⋂︁N
j=1 V

c
αj

= ∅ (by the finite intersection property),
i.e.

⋃︁N
j=1 Vαj = X.



16 CHAPTER 1. TOPOLOGICAL GROUPS

In similar way, given f ∈ C+
c (G) and c > 0, we can have both |I(f) − Iφ(f)| ≤ ϵ and

|I(cf)−Iφ(cf)| ≤ ϵ. Multiplying the first relation by c (and recalling Proposition 1.10[3.]),
we get

|I(cf)− cI(f)| ≤ |I(cf)− Iφ(cf)|+ |Iφ(cf)− cI(f)| ≤ (1 + c)ϵ.

The arbitrariness of ϵ yields the equality I(cf) = cI(f) (i.e. I is multiplicative).
In similar way, given f1, f2 and f1+f2, we can have |I(f1)−Iφ(f1)| ≤ ϵ, |I(f2)−Iφ(f2)| ≤ ϵ,
and |I(f1 + f2)− Iφ(f1 + f2)| ≤ ϵ. Recalling Proposition 1.10[2.], we get

I(f1 + f2) ≤ Iφ(f1 + f2) + ϵ ≤ Iφ(f1) + Iφ(f2) + ϵ

≤ I(f1) + I(f2) + 3ϵ.

The arbitrariness of ϵ proves that I is subadditive.
Actually, it is additive. In fact, let ϵ > 0. by Proposition 1.11, there is an open neighbor-
hood U of e such that

Iφ(f1) + Iφ(f2) ≤ Iφ(f1 + f2) + ϵ

for every φ with supp(φ) ⊆ U . Moreover, we choose U also such that all φ give Iφ(f1),
Iφ(f2) and Iφ(f1 + f2) within ϵ of I(f1), I(f2) and I(f1 + f2), respectively. Thus, the
previous inequality gives

I(f1) + I(f2) ≤ I(f1 + f2) + 4ϵ.

Since ϵ is arbitrary, this means that

I(f1) + I(f2) ≤ I(f1 + f2)

which with the subadditivity already proved, gives the full additivity of I.
Finally, we extend I to a full linear functional on Cc(G) by setting I(f) := I(f+)− I(f−).

Uniqueness of Haar measure. Suppose we have two left-Haar measures µ and ν on
G. We prove that the quotient

I(f)

J(f)
:=

∫︁
G f dµ∫︁
G f dν

,

which is well defined for f ∈ C+
c (G), is actually independent on f . This implies immediately

that µ(K)/ν(K) is independent on K for every compact set K with nonempty K̊, and this
implies that the measures (which are Radon measures by definition of Haar measure) differ
only by a constant nonzero factor.
We prove the independence of I(f)/J(f) of f by proving that for every couple f, g ∈ C+

c (G)
and every ϵ > 0 we can produce a new function h ∈ C+

c (G) such that I(f)/J(f) and
I(g)/J(g) are both ϵ-close to I(h)/J(h). Thus, let f, g ∈ C+

c (G) be arbitrarily chosen, but
fixed. Let K be a compact neighborhood of e (which exists, because G is locally compact).
Then K contains an open neighborhood of e which is symmetric (by Proposition 1.4[1.])
and whose closure K0 is a compact subset of K (K0 is closed in a compact K, hence it is
compact), and which is also symmetric (because it is the closure of a symmetric set). Let

Kf := supp f ·K0 ∪K0 · supp f, Kg := supp g ·K0 ∪K0 · supp g.
They are compact sets (recall that the product of two compacts sets is compact). For
t ∈ K0, let γtf and γtg be the new functions

γtf(s) := f(st)− f(ts) = (Rtf)(s)− (Lt−1f)(s),

γtg(s) := g(st)− g(ts) = (Rtg)(s)− (Lt−1g)(s).

They are supported in Kf and Kg respectively, because K0 is symmetric. Moreover, both
γtf and γtg vanish identically whenever t belongs to the center of G, and in particular for
t = e. Let ϵ > 0. By left and right uniform continuity, K0 contains an open neighborhood
U0 of e such that for all s ∈ G and all t ∈ U0 both |γtf(s)| and |γtg(s)| are ≤ ϵ (note
that the uniformity here is exploited in the parameter t). In turn, U0 contains an open
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and symmetric neighborhood U1 of e, whose closure K1 is symmetric, compact, and which
is contained in K0. Moreover, by continuity |γtf(s)| ≤ ϵ and |γtg(s)| ≤ ϵ for s ∈ G and
t ∈ K1. In other words, for t ∈ K1 the left and the right t-translation have on f and g
approximatively the same effect.
Now the construction of h. Since e is in the open part of K1, there exists a second compact
neighborhood K2 of e with K2 ⊆ K̊1.

Proof. Let V be an open and symmetric neighborhood of e such that V V ⊆ K̊1 (it exists,
by Proposition 1.4[1.]). The set V is compact, because V ⊆ V V ⊆ K̊1 ⊆ K1, so that V
is a closed subset of K1. Moreover, take g ∈ V . Then gV is a neighborhood of g and its
intersection gV ∩ V is not empty (because g ∈ V ). Thus there exists v1, v2 ∈ V such that
gv1 = v2. Hence g = v2v

−1
1 ∈ V V −1 = V V ⊆ K̊1. This proves that V ⊆ K̊1, so that the

claim holds with K2 := V . ■

From Urysohn’s lemma ([R], p. 39), there is a continuous function h̃ : G → R+ which
is 1 in K2 and 0 outside K1. Let h : G→ R+, h(s) := h̃(s)+ h̃(s−1). Note that h ∈ C+

c (G),
it is supported on K1, and it is an even function (i.e., h(s) = h(s−1)).
Now some computations.

I(f)J(h) =

∫︂
G

∫︂
G
f(s)h(t) dµs dνt

=

∫︂
G

∫︂
G
f(ts)h(t) dµs dνt (s ↦→ ts in the inner integral)

(by left-invariance of the µ measure). Moreover,

I(h)J(f) =

∫︂
G

∫︂
G
h(s)f(t) dµs dνt

=

∫︂
G

∫︂
G
h(t−1s)f(t) dµs dνt (s ↦→ t−1s in the inner integral)

=

∫︂
G

∫︂
G
h(s−1t)f(t) dµs dνt (using the parity of h).

Now we consider the double integral as a unique integral in G × G with respect to the
product measure dµs ⊗ dνt. The classical theorems of Tonelli-Fubini apply here, since
G × G is locally compact, the measures are Radon measures, and the functions we are
integrating are continuous and compactly supported in G × G. As a consequence we can
exchange the order of integrals, without affecting its value. This yields

=

∫︂
G

∫︂
G
h(s−1t)f(t) dνt dµs

=

∫︂
G

∫︂
G
h(t)f(st) dνt dµs (t ↦→ st in the inner integral)

=

∫︂
G

∫︂
G
h(t)f(st) dµs dνt (exchange the integrals).

Hence their difference is

|I(h)J(f)− I(f)J(h)| =
⃓⃓⃓ ∫︂

G

∫︂
G
h(t)[f(st)− f(ts)] dµs dνt

⃓⃓⃓
≤

∫︂
G

∫︂
G
h(t)|γtf(s)|dµs dνt.

The function h is supported onK1 and γtf onKf , hence we can introduce the characteristic
functions of these sets, without affecting the value of the integral which becomes

=

∫︂
G

∫︂
G
h(t)χK1

(t)χKf
(s)|γtf(s)| dµs dνt.
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We know that |γtf(s)| ≤ ϵ when t is in K1, thus this is

≤ ϵ

∫︂
G

∫︂
G
h(t)χK1

(t)χKf
(s) dµs dνt

= ϵ

∫︂
G

∫︂
G
h(t)χKf

(s) dµs dνt

= ϵµ(Kf )

∫︂
G
h(t) dνt = ϵµ(Kf )J(h).

Dividing by J(h)J(f) we get: ⃓⃓⃓ I(h)
J(h)

− I(f)

J(f)

⃓⃓⃓
≤ ϵ

µ(Kf )

J(f)
.

A similar computation with g and h gives⃓⃓⃓ I(h)
J(h)

− I(g)

J(g)

⃓⃓⃓
≤ ϵ

µ(Kg)

J(g)
.

Thus ⃓⃓⃓ I(f)
J(f)

− I(g)

J(g)

⃓⃓⃓
≤ ϵ

[︂µ(Kf )

J(f)
+
µ(Kg)

J(g)

]︂
,

showing that I(f)
J(f) =

I(g)
J(g) , because ϵ is arbitrary.

1.3. Modular function

Let G be a locally compact group, and let µ be (one determination of) its right-
Haar measure with respect to a σ-algebra M. Pick any g ∈ G, and let µg : M → R,
µg(E) := µ(gE). Then µg is a Radon measure which is right invariant, so it is a right Haar
measure. Thus, by the theorem characterizing the Haar-measures, there is a number ∆(g)
such that

µg(E) = µ(gE) = ∆(g)µ(E), ∀E ∈ M.

The function ∆: G → R associating g ↦→ ∆(g) is the so called modular function. Its
definition immediately shows that

∆(gg′)µ(E) = µ(gg′E) = µgg′(E) = ∆(g)µ(g′E) = ∆(g)∆(g′)µ(E).

There always exists a set E with 0 < µ(E) < +∞: for example take a nonempty open
with a compact closure, which always exists in Hausdorff locally compact spaces. Thus we
can remove µ(E) from the previous computation, getting

∆(gg′) = ∆(g)∆(g′),

which proves that the modular function is a morphism ofG into the group R+. In particular
∆(g) ̸= 0 for every g, ∆(e) = 1 and ∆(g−1) = ∆(g)−1.

Note that ∆ is trivial when G is commutative, because in that case the left and the
right Haar measures coincide.

We want to prove that ∆ is well related also with the topological structure of G: in
fact, it is a continuous map.

Lemma 1.1 Let K be a compact set, let U be an open set, and assume K ⊆ U . Then there
exists an open and symmetric neighborhood V of e such that V K ⊆ U .

Proof. For every g ∈ K, let Wg := Ug−1. It is an open set which contains e (because
g ∈ K ⊆ U). Let Vg be an open and symmetric neighborhood of e such that VgVg ⊆ Wg.
Then

⋃︁
g∈K Vgg is an open covering of K. By compactness there exists a finite sub covering

K ⊆
⋃︁N
j=1 Vgjgj . Let V :=

⋂︁
j=1 Vgj , which is an open and symmetric neighborhood of e.

Then V K ⊆
⋃︁N
j=1 V Vgjgj ⊆

⋃︁N
j=1 VgjVgjgj ⊆

⋃︁N
j=1Wgjgj = U . ■
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Proposition 1.12 The modular function is a continuous map.

Proof. It is a morphism, thus it is sufficient to prove that it is continuous in e, i.e. that
for every ϵ > 0 there is an open neighborhood V of e such that |∆(g)− 1| ≤ ϵ.

LetK be any compact with K̊ ̸= ∅; it exists becauseG is locally compact and Hausdorff.
Fix ϵ > 0. The Haar measure is outer regular, hence there is an open set U such that
K ⊆ U and

µ(K) ≤ µ(U) ≤ µ(K)(1 + ϵ).

Let V be an open and symmetric neighborhood of e such that V K ⊆ U (it exists by
Lemma 1.1). Let g ∈ V . Then

∆(g) =
µ(gK)

µ(K)
≤ µ(U)

µ(K)
≤ 1 + ϵ.

On the other hand, by construction also g−1 is in V , hence

∆(g) =
1

∆(g−1)
≥ 1

1 + ϵ
≥ 1− ϵ.

Therefore we have proved that |∆(g)− 1| ≤ ϵ for every g ∈ V . ■

Proposition 1.13 Let G be compact group. Then ∆ is trivial, so that the right-Haar mea-
sure is also left invariant.

Proof. The modular function is continuous, hence ∆(G) is a compact subgroup of R+. But
{1} is the unique compact subgroup in R+, so the claim follows. ■

Note that ∆ is trivial on G′, the subgroup generated by the commutators of G, because
its image is in R+ which is abelian. Since ∆ is continuous, it is trivial also on G′, the closure
of G′. Thus ∆ can be considered as a morphism from the quotient G/G′ into R+, setting
∆′ : G/G′ → R+ with ∆′(gG′) := ∆(g).

G R+

G/G′

∆

π
∆′

The map ∆′ remains continuous, since the projection G → G/G′ is an open map and the
diagram commutes by construction.

Let µ be the right-Haar measure. For every f ∈ Cc(G) the function

g ↦→ f(g)∆(g−1) = f(g)/∆(g)

is again in Cc(G), because the modular function is nonzero and continuous. Hence the
number

Iℓ(f) :=

∫︂
G

f(g)

∆(g)
dµ(g)

is well defined, and actually defines a functional on Cc(G). It is left invariant, i.e. Iℓ(Lsf) =
Iℓ(f) for every s ∈ G and every f ∈ Cc(G). In fact,

Iℓ(Lsf) =

∫︂
G

Lsf(x)

∆(x)
dµ(x) =

∫︂
G

f(s−1x)

∆(x)
dµ(x).

The change of variable x→ sy modifies the measure dµ(x) into ∆(s) dµ(y). Thus

Iℓ(Lsf) =

∫︂
G

f(y)

∆(s)∆(y)
∆(s) dµ(y) = Iℓ(f).

Moreover, the functional Iℓ is evidently positive on C+
c (G), hence it is associated with the

unique (up to positive multiplies) left-Haar measure. From its definition (as integral) we
deduce that dµL(g) := ∆(g−1) dµ(g) is a left-Haar measure. In particular, the formula
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shows that µL is absolutely continuous with respect to the right-Haar measure. Since we
know that also the map E → µ(E−1) is a left invariant measure, we deduce that the inverse
map ι : G→ G is absolutely continuous with respect to the right-Haar measure. Since ι−1

is = ι, we conclude that ι is absolutely continuous also with respect the left-Haar measure,
and that µ(E−1) = 0 if and only if µ(E) = 0.
We can further study the relation between the functional Iℓ and the left-invariant measure
µ(ι(·)); the conclusion will be a formula showing how the integral changes when the change
of variable ι is applied (Formula 1.2 below). The functional on Cc(G) generated by µ(ι(·))
is

f ↦→
∫︂
G
f(g−1) dµ(g),

and we prove that actually this functional coincides with Iℓ. In fact, both are left invariant,
hence there exists a constant c such that∫︂

G
f(g−1) dµ(g) = c

∫︂
G

f(g)

∆(g)
dµ(g), ∀f ∈ Cc(G).

Applying this formula to f(g) := (h(g) + h(g−1))
√︁
∆(g), where h ∈ C+

c (G), we get∫︂
G
(h(g−1) + h(g))

√︁
∆(g−1) dµ(g) = c

∫︂
G

(h(g) + h(g−1))
√︁
∆(g)

∆(g)
dµ(g),

i.e., ∫︂
G

h(g) + h(g−1)√︁
∆(g)

dµ(g) = c

∫︂
G

h(g) + h(g−1)√︁
∆(g)

dµ(g),

which proves that c = 1. In other words, we have proved the formula:

(1.2)
∫︂
G
f(g) dµ(g) =

∫︂
G

f(g−1)

∆(g)
dµ(g), ∀f ∈ Cc(G).
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Exercise. 1.2 Let G := (GL+(n,R), ·), the matrices with positive determinant and the
‘rows times columns’ operation as product.
1. Prove that G′ = SL(n,R). Note that in this case G′ = G′.
2. Prove that the determinant gives an isomorphism of G/G′ with (R+, ·), so that ∆′

becomes a continuous morphism (R+, ·) → (R+, ·).
3. Let f be a continuous morphism (R+, ·) → (R+, ·) (i.e., f(xy) = f(x)f(y) and it is

continuous). Suppose that f is a C1 map. Prove that f(x) = xc where c := f ′(1).
4. The C1 regularity assumed in previous step allows an interesting proof of the claim,

but actually the conclusion holds true under the weaker hypothesis of the continuity
for f . Prove it. (Hint: consider the map F : R → R, F (w) := log(f(ew))).

5. Conclude that there exists c ∈ R such that ∆′(·) = det(·)c.

Exercise. 1.3 Let G := (GL(n,R), ·).
1. Prove that G′ = SL(n,R).
2. Prove that the determinant gives an isomorphism of G/G′ with (R×, ·), so that ∆′

becomes a continuous morphism (R×, ·) → (R+, ·).
3. Let f be a continuous morphism (R×, ·) → (R+, ·). Prove that there is α ∈ {0, 1} and
c ∈ R such that f(x) = sgn(x)α|x|c.

5. Conclude that there exists c ∈ R such that ∆′(·) = |det(·)|c.

Note, that for GL(n,R) and for GL+(n,R) the left and the right Haar measures coincide
(see Example 1.3), so that for this group ∆ is trivial (c = 0) and the conclusions of the
previous exercise are trivially true.

Exercise. 1.4 Let G := GL(n,R) ⋉ Rn, the group of affine maps in Rn, i.e. the group in
Example 1.5.
1. Prove that (GL(n,R), 0) is a (not normal) subgroup in G, and that (1,Rn) is a normal

subgroup of G.
2. Prove thatG′ contains (SL(n,R),0), but note that it is strictly larger, since (SL(n,R),0)

is not normal.
3. Prove that G′ contains also (1,Rn) (Hint: pick h ∈ GL(n,Rn) such that also 1− h is

invertible. Then compute [(h, (1− h)−1w), (1, 0)]).
4. Since G′ contains both (SL(n,R), 0) and (1,Rn), it contains also (SL(n,R),Rn) (the

group of affine maps preserving the measure of sets). Conclude that G′=(SL(n,R),Rn)
and that therefore G/G′ ∼ R×, with the isomorphism given by the determinant.

5. Note that also in this case the modular function must be a power of the (absolute value
of the) determinant: in fact left and right Haar measures in this case differ exactly by
a factor which is equal to the determinant (see Example 1.5).



CHAPTER 2

Banach algebras

2.1. Preliminary facts and basic properties for the spectrum

A Banach algebra A on the field C is a C algebra which is also a Banach space (hence
it is also complete) with respect to a norm ∥ · ∥, where

∥ab∥ ≤ ∥a∥ · ∥b∥, ∀a, b ∈ A.

This axiom shows that the moltiplicative structure of A and the norm are well related.
We will always assume that A is associative. Moreover, without loss of generality we can
further assume that A is unital, i.e. that A contains a multiplicative identity 1A, and that
∥1A∥ = 1 (see Exercises 2.1– 2.3).

Exercise. 2.1 Let A be a C-algebra. Let A′ := A × C, with the pointwise sum and C
product, and further set

(a, λ) · (b, µ) := (ab+ λb+ µa, λµ).

1. Prove that A′ is C-algebra with respect to these operations, and that (0, 1) is a mul-
tiplicative identity in A′.

2. Note that {(a, 0) : a ∈ A} is a subalgebra in A′ which can be identified with A.
3. Suppose that A is also a Banach algebra with respect to ∥ · ∥A. Set ∥(a, α)∥A′ :=

∥a∥A+ |λ|. Prove that A′ is a Banach algebra with respect to this norm, and that the
inclusion of A into A′ is a continuous map which preserves the norm.

4. Note that ∥(0, 1)∥A′ = 1.

Exercise. 2.2 Let A be a complex Banach algebra with a multiplicative identity 1A. For
every a ∈ A, let ma : A → A the (left)-multiplicative map: ma(b) := ab, considered as
linear map on the C-vector space A.
1. Shows that

∥a∥∞ := sup
x∈A,x ̸=0

∥ma(x)∥
∥x∥

= sup
x∈A
∥x∥≤1

∥ma(x)∥
∥x∥

= sup
x∈A
∥x∥=1

∥ma(x)∥.

2. Prove that
∥a∥
∥1A∥

≤ ∥a∥∞ ≤ ∥a∥

so that the norms ∥ · ∥∞ and ∥ · ∥ are equivalent and the converging sequences are the
same.

3. Prove that A is a Banach algebra also with respect to ∥ · ∥∞.
4. Note that ∥1A∥∞ = 1.

Exercise. 2.3 Let A be a complex Banach algebra with a multiplicative identity 1A and
such that ∥1A∥ = 1. Prove that the operatorial norm of the multiplication by a coincides
with ∥a∥ (i.e. ∥a∥∞ = ∥a∥, where ∥ · ∥∞ is defined in Exercise 2.2).

22
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Let a ∈ A, and recall the polynomial identity

(1− a)
(︂ N∑︂
n=0

an
)︂
= 1− aN+1 =

(︂ N∑︂
n=0

an
)︂
(1− a).

Assume that ∥a∥ < 1. Then
∑︁+∞

n=0 a
n converges by Weierstrass’ test, because ∥an∥ ≤ ∥a∥n

and
∑︁+∞

n=0 ∥a∥n < ∞, and the previous identity shows both that 1 − a is invertible, and
that

(1− a)−1 =

+∞∑︂
n=0

an.

This identity also shows that

∥(1− a)−1∥ ≤
+∞∑︂
n=0

∥an∥ ≤
+∞∑︂
n=0

∥a∥n =
1

1− ∥a∥
.

This easy computation is the key ingredient for the proof of the following facts.

Proposition 2.1 Let A× be the set of invertible elements in A. Then A× is an open set.
The inverse map ι : A× → A×, ι(a) := a−1 is a continuous map (actually it is locally
Lipschitz).

Proof. Let a ∈ A×, and take b ∈ A, with ∥b− a∥ < 1/∥a−1∥. Then

∥1− a−1b∥ = ∥a−1(a− b)∥ ≤ ∥a−1∥ · ∥a− b∥ < 1.

Thus, a−1b = 1 − (1 − a−1b) is invertible, and hence b = a · (a−1b) is invertible as well.
This shows that the open ball B1/∥a−1∥(a) is in A×, which is therefore an open set.
The computation also shows that

∥b−1a∥ = ∥(a−1b)−1∥ = ∥(1− (1− a−1b))−1∥ ≤ 1

1− ∥a−1∥ · ∥a− b∥
.

Now, suppose that b satisfies the more restrictive assumption ∥b− a∥ ≤ 1
2∥a−1∥ . Then

∥b−1a∥ ≤ 1

1− ∥a−1∥ · ∥a− b∥
≤ 1

1− ∥a−1∥ · 1
2∥a−1∥

= 2,

so that ∥b−1∥ = ∥b−1a · a−1∥ ≤ 2∥a−1∥. This shows that

∥a−1 − b−1∥ = ∥a−1(a− b)b−1∥ ≤ ∥a−1∥ · ∥a− b∥ · ∥b−1∥ ≤ 2∥a−1∥2 · ∥a− b∥
proving that ι is a Lipschitz map in a neighborhood of a. ■

To each a ∈ A we associate its spectrum in A, i.e. the set

sp(a) := {λ ∈ C : λ1A − a ̸∈ A×}.
Its complementary set is called resolvent set of a:

Res(a) := C\ sp(a) = {λ ∈ C : λ1A − a ∈ A×}.
We also introduce the radius of the spectrum, which is simply

r(a) := sup{|λ| : λ ∈ sp(a)}
(it is well defined because sp(a) is never empty, as we will see in a moment).

Let p ∈ C[x], p(x) =
∑︁N

n=0 cnx
n, say. Then

p(λ)1A − p(a) =
N∑︂
n=0

cn(λ
n1A − an) =

N∑︂
n=1

cn(λ
n1A − an)
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=
N∑︂
n=1

cn

n−1∑︂
j=0

(λjan−1−j)(λ1A − a)

= b(λ1A − a) = (λ1A − a)b

with b :=
∑︁N

n=1 cn
∑︁n−1

j=0 (λ
jan−1−j). Note that b commutes with λ1A − a.

Suppose that p(λ) belongs to the resolvent set for p(a). Then there exists c ∈ A such that
c(p(λ)1A − p(a)) = 1A = (p(λ)1A − p(a))c. The previous computation shows that cb is a
left inverse for (λ1A − a) and that bc is a right inverse for (λ1A − a). In associative rings
this is sufficient to conclude that (λ1A−a) is invertible1, so that λ belongs to the resolvent
for a. In other words, this shows that p(sp(a)) ⊆ sp(p(a)). (See also Exercise 2.4 below; in
Theorem 2.2 we will see that this is true as equality, also for much more general functions).

The following proposition contains some fundamental properties of the spectrum of an
element.

Proposition 2.2 Let A be a complex unital Banach algebra. Let a ∈ A. Then
1. r(a) ≤ ∥a∥, so that sp(a) ⊆ B∥a∥(0),
2. sp(a) is a compact set,
3. sp(a) ̸= ∅,
4. the limit limn→∞ ∥an∥1/n exists and equals r(a), i.e.

r(a) = lim
n→∞

∥an∥1/n.

Proof. Assume that |λ| > ∥a∥. Then λ1A − a = λ(1A − λ−1a) and ∥λ−1a∥ = ∥a∥
|λ| < 1,

proving that 1A − λ−1a (and hence λ1A − a) is invertible. This shows that r(a) ≤ ∥a∥.
Applying the same argument to an, we get r(an) ≤ ∥an∥. Specializing the previous com-
putation to p(x) = xn we get also that r(a)n ≤ r(an), so that r(a)n ≤ ∥an∥ and the
arbitrariness of n produces the bound

(2.1) r(a) ≤ lim inf
n→∞

∥an∥1/n.

Moreover, the resolvent of a is the preimage of the map C → A mapping λ to λ1A − a,
of the open set A×. Since this map is continuous, the preimage is open. Therefore the
spectrum (being the complementary set of the resolvent set) is closed. Since we already
know that it is bounded (by ∥a∥), we conclude that sp(a) is compact.
The proof of the remaining statements is more difficult, and relates different fields of the
analysis. Let ϕ be any topological functional in A∗. Thus it is a map A → C which is C
linear and continuous. Let fϕ : Res(a) ⊆ C → C:

fϕ(λ) := ϕ((λ1A − a)−1).

Note that Res(a) is an open set, which is not empty (for example because it contains every
λ with |λ| > ∥a∥). We prove that fϕ is a holomorphic function. In fact, let λ ∈ Res(a) and
take µ small enough. Then

fϕ(λ− µ) = ϕ
(︁
((λ− µ)1A − a)−1

)︁
= ϕ

(︁[︁
(λ1A − a)(1− µ(λ1A − a)−1)

]︁−1)︁
= ϕ

(︁
(1− µ(λ1A − a)−1)−1(λ1A − a)−1

)︁
1In fact, suppose that in an associative ring R one has αβ = 1 = γα. Then γ = γ · 1 = γ(αβ) = (γα)β =
1 · β = β.
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= ϕ
(︂ +∞∑︂
m=0

µm(λ1A − a)−m(λ1A − a)−1
)︂

(µ is small, Σ converges)

= ϕ
(︂ +∞∑︂
m=0

µm(λ1A − a)−m−1
)︂
=

+∞∑︂
m=0

µmϕ
(︁
(λ1A − a)−m−1

)︁
. (ϕ is continuous)

This shows that fϕ is locally represented by a power series, hence it is holomorphic.
Suppose |λ| > ∥a∥. Then

(2.2) fϕ(λ) =
1

λ
ϕ((1A − λ−1a)−1) =

1

λ
ϕ
(︂ +∞∑︂
m=0

am

λm

)︂
=

1

λ

+∞∑︂
m=0

ϕ(am)

λm
.

In particular, recalling that ϕ is continuous,

|fϕ(λ)| ≤
1

|λ|

+∞∑︂
m=0

|ϕ(am)|
|λ|m

≤ 1

|λ|

+∞∑︂
m=0

∥ϕ∥∥am∥
|λ|m

≤ 1

|λ|

+∞∑︂
m=0

∥ϕ∥∥a∥m

|λ|m
=

∥ϕ∥
|λ| − ∥a∥

.

This computations shows that fϕ(λ) → 0 as λ → ∞. Suppose that sp(a) = ∅. Then
Res(a) = C, so that fϕ is an entire function (i.e. holomorphic on C) which is bounded
(because it goes to 0 for λ → ∞). By Liouville’s theorem fϕ is constant, and hence it
is identically 0. This happens for every choice of the functional ϕ. However, the Hahn–
Banach theorem states that there is always a continuous functional ϕ′ whose value at
(1A−a)−1 is not 0 (because (1A−a)−1 is evidently not 0), and this is a contradiction with
the fact that ϕ′((1A − a)−1) = fϕ′(1) = 0. This proves that sp(a) ̸= ∅.
The formula (2.2) has been proved under the hypothesis |λ| > ∥a∥, but we also know that
fϕ is holomorphic in Res(a), which is an open set containing the set |λ| > ∥a∥. As a
consequence, for every r > r(a), the formula holds also for |λ| ≥ r, and actually the series
converges uniformly here (this is a typical application of the expansion of holomorphic
functions as Laurent series, it comes out from the fact that the set |λ| ≥ r is connected,
the function is holomorphic in an open set containing this set, and the power series is
a Laurent series representing fϕ outside the disk |λ| ≤ ∥a∥). Thus, we can recover the
coefficient of the series integrating the formula along the circle with radius r. In this way
we get:∫︂ 1

0
e2π(n+1)iθfϕ(re

2πiθ) dθ =

∫︂ 1

0

e2π(n+1)iθ

re2πiθ

+∞∑︂
m=0

ϕ(am)r−me−2πimθ dθ

=
+∞∑︂
m=0

ϕ(am)r−m−1

∫︂ 1

0
e2π(n−m)iθ dθ = ϕ(an)r−n−1.

Hence,

|ϕ(an)|r−n−1 ≤
⃓⃓⃓ ∫︂ 1

0
e2π(n+1)iθfϕ(re

2πiθ) dθ
⃓⃓⃓
≤

∫︂ 1

0

⃓⃓⃓
fϕ(re

2πiθ)
⃓⃓⃓
dθ

=

∫︂ 1

0

⃓⃓
ϕ((re2πiθ1A − a)−1)

⃓⃓
dθ ≤

∫︂ 1

0
∥ϕ∥ · ∥(re2πiθ1A − a)−1∥ dθ

≤ ∥ϕ∥ ·M(r)

where M(r) := supθ∈[0,1] ∥(re2πiθ1A − a)−1∥. Hence

|ϕ(an)| ≤ ∥ϕ∥rn · rM(r).

This bound holds for every choice of ϕ, every integer n and for every r > r(a). Note
that M(r) does not depend on n and ϕ. Fix the integer n. Consider the linear subspace
{α · an : α ∈ C}. The map ϕ′(αan) := α∥an∥ is a continuous functional on the subspace,
and its norm is evidently 1. By Hahn–Banach theorem this functional admits an extension
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to a continuous functional on A whose norm is still 1. When we apply the previous formula
to this functional we get that

∥an∥ ≤ rn · rM(r), i.e., ∥an∥1/n ≤ r · (rM(r))1/n.

Since M(r) is independent of n this formula shows that

lim sup
n→∞

∥an∥1/n ≤ r.

This is true for every r which is by assumption any number larger than r(a), thus we
conclude that

lim sup
n→∞

∥an∥1/n ≤ r(a).

With (2.1), this shows that limn→∞ ∥an∥1/n exists and equals r(a). ■

Exercise. 2.4 Let A be a (unital, associative) complex algebra. Let f(x) :=
∑︁+∞

n=0 cnx
n be

a complex power series with a positive convergence radius ρ. Let a ∈ A, with ∥a∥ < ρ.
1. Prove that f(a) :=

∑︁+∞
n=0 cna

n converges in A.
2. Prove that f(sp(a)) ⊆ sp(f(a)).

Hint: for the first part use Weierstrass test, for the second part repeat what we have done
for polynomials.

Corollary 2.1 (Gelfand–Mazur) Let A be a complex Banach algebra (recall that we are also
assuming that it is unital and associative). If it is a division algebra (i.e., every nonzero
element is invertible) then it is isomorphic (as algebra) to C.

Proof. Let a ∈ A, a ̸= 0. Proposition 2.2 proves that sp(a) ̸= ∅. Let λ ∈ sp(a). Then
λ1A − a is not invertible, therefore it is zero, because we are assuming that A is a division
algebra; in other words a = λ1A. Evidently λ is uniquely determined by this property, and
the map a ↦→ λ gives the isomorphism with C. ■

Mazur proved also a similar result for real algebras: the algebras R, C and H (the
quaternion) are the unique real Banach (unital and associative) algebras which are division
algebras.

Remark. 2.1 Let a ∈ A. Then a is invertible if and only if 0 /∈ sp(a). Moreover, when
a ∈ A× and λ ̸= 0 on has the identity λ1A−a = −λa(λ−11A−a−1) proving that λ ∈ sp(a)
if and only if λ−1 ∈ sp(a−1). i.e. that sp(a−1) = (sp(a))−1. □

Let A be a complex Banach algebra, and let J be a two-sided ideal in A (where only
the structure as a ring for A matters here). Then A/J is ring. Actually it is an algebra,
since λ ·J = (λ1A) ·J ⊆ J for every λ ∈ C so that J is automatically also a complex vector
space (where the distributive properties are inherited from A). In A/J we define the map

∥a+ J∥A/J := inf
w∈J

∥a+ w∥A.

It is easy to check that it is a semi-norm, indeed. It is also submultiplicative, since

∥ab+ J∥A/J ≤ inf
w,w′∈J

∥ab+ (wb+ aw′ + ww′)∥A = inf
w,w′∈J

∥(a+ w)(b+ w′)∥A

≤ inf
w,w′∈J

∥a+ w∥A · ∥b+ w′∥A = inf
w∈J

∥a+ w∥A · inf
w′∈J

∥b+ w′∥A

= ∥a+ J∥A/J · ∥b+ J∥A/J
(for the first step, recall that J is a two-sided ideal, so that wb + aw′ + ww′ ranges in J
when w,w′ are in J).
However, it is a norm if and only if J is closed. In that case A/J is complete, so that it
becomes a complex Banach algebra in itself.
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Remark. 2.2 Let J be a two-sided ideal in A. Then J is again a two-sided ideal. In
fact it is a C vector space (because J is a subgroup of the additive group A, and we
apply Proposition 1.4[iv.]). Moreover, if xn is a sequence in J converging to x, then for
every a ∈ A, axn is a new sequence in J (because J is an ideal), converging to ax since
∥axn − ax∥ = ∥a(xn − x)∥ ≤ ∥a∥ · ∥xn − x∥ → 0. □

2.2. Gelfand transform

Let A be a complex (associative, unital) Banach algebra. Then, A is in particular a
topological C vector space, so that we can introduce the set A∗ which by definition is the
set Homtop(A,C), i.e. the set of its linear functionals which are continuous2. We introduce
also a second family of maps, better related to the structure of A as algebra. By definition
a character χ for A is a nontrivial morphism A→ C as complex algebras, so that

χ(a+ b) = χ(a) + χ(b), χ(λa) = λχ(a), χ(ab) = χ(a)χ(b)

for every a, b ∈ A, λ ∈ C, and χ is not identically 0. Since χ(a) ̸= 0 for some a, then
χ(a) = χ(1Aa) = χ(1A)χ(a) forces χ(1A) = 1, and χ(λ1A) = λ for every C. Therefore any
character is automatically surjective.
The set of characters of A is denoted Â. Note that the continuity of χ is not assumed. In
fact, we will see in a moment that a character is necessarily continuous3.

Proposition 2.3 Let A be an abelian complex Banach algebra. Then
i. Every maximal ideal M is closed;
ii. There is a bijection Â→ {maximal ideals};
iii. Every character is continuous;
iv. for every a ∈ A, sp(a) = {χ(a) : χ ∈ Â}.

Note that the proposition deals only abelian algebras: this is a strong limitation of the
proposition, but it cannot be removed.

Proof.
i. Let M be a maximal ideal. Then M is again an ideal, which contains M . Maximality

implies that if M ̸= M , then M = A. In this case 1A ∈ M . Let xn be a sequence in
M converging to 1A. We know that A× is open, therefore the sequence is eventually in
A×. As a consequence M contains an invertible element, but this is impossible since
M is a maximal ideal.

ii. To each χ ∈ Â we associate its kernel ker(χ). It is a maximal ideal since χ is surjective
in C, so that A/ ker(χ) is isomorphic to C and hence is a field. This shows that the
map χ ↦→ ker(χ) is actually a map Â→ {maximal ideal}.

A C

A/ ker(χ)

π

χ

χ′

On the other hand, let M be a maximal ideal. Then M is closed (by the first part of
this proposition), and A/M is a complex Banach algebra which is also a field, because
we are assuming that A is commutative. By Corollary 2.1 we know that it is isomorphic

2This requirement is necessary because Hom(A,C), the set of all linear functionals, is a much larger set
which is not well related with the topological structure of A.

3This is a big difference with functionals, which are not necessarily continuous.
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to C. Let ρM denote this isomorphism. Then χM := ρM ◦ π is a character of A.

A C

A/M

π

χM

ρM

It is easy to check that these constructions realize the bijection, i.e. that χker(χ) = χ
and that ker(χM ) =M .

iii. Let χ be a character, which we describe as ρM ◦ π, with M := ker(χ). Corollary 2.1
shows that A/M is isomorphic to C, and the proof of this result shows that the
isomorphism is produced by the map associating to every element a +M the unique
element of its spectrum. Let U be an open set in C, then ρ−1

M (U) = {u1A+M : u ∈ U}
and π−1({u1A +M : u ∈ U}) = {u1A + m : u ∈ U, m ∈ M} =

⋃︁
m∈M (U1A + m),

which is open (each U1A+m is open in A). This proves that χ−1(U) = (ρM ◦π)−1(U)
is an open set, i.e. that χ is continuous.

iv. Let λ ∈ C. Then λ ∈ sp(a) if and only if λ1A− a is not invertible, and this happens if
and only if it belongs to some maximal ideal (by Zorn Lemma), and hence this happens
if and only if it belongs to the kernel of some character χ. But 0 = χ(λ1A − a) =
λχ(1A)− χ(a) = λ− χ(a), i.e. λ = χ(a).

■

Each element a in A generates a functional eva on A∗, via the map eva(ϕ) := ϕ(a).
The weak-∗ topology in A∗ is the weakest topology which makes all these maps continuous.
In other words, a sequence of functionals ϕn ∈ A∗ converges to an element ϕ if and only
if eva(ϕn) tends to eva(ϕ) for every a. Given its definition, this means that the sequence
converges if and only if ϕn(a) → ϕ(a) for all a ∈ A. The weak∗ topology, hence, coincides
with the topology of the pointwise convergence. It is known that it is a Hausdorff topology.
According to the previous proposition Â ⊆ A∗; the topology induced on Â by the weak∗
topology of A∗ is called Gelfand’s topology.

Proposition 2.4 Let A be an abelian complex Banach algebra. Then Â is a compact set in
Gelfand’s topology.

Proof. Let χ be a character. Then χ(a) is contained in the spectrum of a (by Prop. 2.3[iv]),
and hence is bounded by ∥a∥ (by Prop. 2.2[1]). This proves that Â is a subset of the 1 ball
of A∗, which is the set {ϕ ∈ A∗ : |ϕ(a)| ≤ ∥a∥∀a ∈ A}. Banach–Alaoglu theorem states
that the closed unit ball is weak∗ compact, hence it is sufficient to prove that Â is a closed
subset in Gelfand’s topology, i.e. in weak∗ topology, i.e. in pointwise topology. This is
immediate, because if a sequence of characters χn converges (pointwise) to a functional χ,
then χ itself is a character. ■

It is customary to denote â the map eva when it is restricted to the subspace of
characters Â; in other words, â(χ) := eva(χ) = χ(a). By construction, the map â is a
continuous map Â→ C, when in Â Gelfand’s topology is considered.
Let C(Â) be the set of all continuous maps Â → C. With the sup norm (recall that Â is
weak∗ compact, the sup norm is well defined) it is a (unital, associative) complex Banach
algebra, and in some sense it is the prototypical Banach algebra, as we will see in a moment.
The map

Γ: A −→ C(Â),
a ↦→ Γ(a) := â.

is called Gelfand’s transform.
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Theorem 2.1 Let A be a (unital, associative) commutative complex Banach algebra.
Then:

i. Gelfand’s transform Γ: A→ C(Â) is a norm-decreasing homomorphism of unital com-
plex algebras;

ii. The image of Γ separates the points in Â;
iii. for every a ∈ A, â(Â) = sp(a) and ∥â∥∞ = r(a), the spectral radius of a;
iv. the kernel of Γ is the Jacobson radical of A; i.e., it is the intersection of all maximal

ideals of A. In other words, the kernel of Γ is the set of all elements in A whose spectral
radius is 0;

v. Γ is injective if and only if the Jacobson radical is trivial, i.e. if and only if A is
semisimple.

Proof.
i. Identities Γ(a + b) = Γ(a) + Γ(b), Γ(λa) = λΓ(a) and Γ(ab) = Γ(a)Γ(b) for every
a, b ∈ A, λ ∈ C follow immediately from the definitions. Moreover, for every a ∈ A
and χ ∈ Â,

|Γ(a)(χ)| = |â(χ)| = |χ(a)| ≤ r(a) ≤ ∥a∥
(because χ(a) belongs to the spectrum of a). Hence ∥Γ(a)∥∞ ≤ ∥a∥;

ii. This is immediate, since if χ, ψ ∈ Â and χ ̸= ψ, then there is a ∈ A with χ(a) ̸= ψ(a),
i.e. with Γ(a)(χ) ̸= Γ(a)(ψ);

iii. By Proposition 2.3[iv.] we know that sp(a) = {χ(a) : χ ∈ Â}, and this is = â(Â). The
equality ∥â∥∞ = r(a) is immediate;

iv. the element a ∈ A belongs to the kernel of Γ if and only if â(χ) = 0 for every χ ∈ Â, i.e.
if and only if χ(a) = 0 for every χ, if and only if a ∈

⋂︁
χ ker(χ). By Proposition 2.3[ii.]

this happens if and only if a belongs to Jacobson’s radical of A.
v. Trivial (an algebra is semisimple if and only if its radical is trivial, by definition).

■

Note that the previous proposition does not say anything about the range of Γ, in
particular we do not know that it is surjective. In fact, for a general algebra this is not the
case. Also about the possible injectivity of Γ we have only very poor control: usually it
is very difficult to compute the radical of an algebra. These difficulties force us to further
select as algebra a special family of algebras: actually commutative subalgebras of the
algebra of endomorphisms of a Hilbert space.

2.3. Stone-Weierstrass theorem

Theorem 2.2 (Stone–Weierstrass) Let X be a compact Hausdorff space. If A is a closed
(with respect to the uniform topology) self-adjoint subalgebra of C(X) (i.e. such that f ∈ A
implies f ∈ A) which separates the points of X and contains 1, then A = C(X).

Proof. (Following [D], Section 2.40.) Let Ar and Cr(X) be the subsets of real functions.
Then, it is sufficient to prove that under those hypotheses Ar = Cr(X). Note that Ar is
closed in Cr(X), contains 1, and separates the points4.
We begin by showing that if f ∈ Ar, then also |f | ∈ Ar. Without loss of generality we can
assume that ∥f∥∞ ≤ 1. Let δ ∈ (0, 1), and take gδ(x) := δ + (1 − δ)f2(x). Note that it
is in Ar, because 1 and f are in Ar, by hypothesis, and Ar is an algebra. Note also that
δ ≤ gδ(x) ≤ 1, for every x ∈ X.

4In fact, let x, y ∈ X, x ̸= y. Let f ∈ A be the element separating x and y, i.e. such that f(x) ̸= f(y). Then
at least one of the inequalities (Re f)(x) ̸= (Re f)(x), (Im f)(x) ̸= (Im f)(x) holds. But Re f = 1

2
(f + f)

and Im f = 1
2i
(f − f), and these formulas show that both Re f and Im f are in A, and hence in Ar.
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Consider the power series
∑︁+∞

n=0

(︁
1/2
n

)︁
zn, which in (−1, 1] converges to (1+z)1/2 (uniformly

on compact subsets of (−1, 1], by Abel Lemma). Then gδ(x)− 1 ∈ [−1 + δ, 0], so that

(δ + (1− δ)f2)1/2 = (1 + (gδ − 1))1/2 =

+∞∑︂
n=0

(︃
1/2

n

)︃
(gδ − 1)n,

and the series converges in Cr(X) (by uniform convergence) and is in Ar (because it is a
closed algebra). This equality shows that (δ+(1− δ)f2)1/2 ∈ Ar, for every δ. At last, note
that

(δ + (1− δ)f2)1/2 − |f | = (1− f2)δ

(δ + (1− δ)f2)1/2 + |f |
≤

√
δ

proving that |f | is the limit (in sup norm) of (δ + (1− δ)f2)1/2, and hence belongs to Ar.
This shows that for every f, g ∈ Ar, also

f ∧ g :=min(f, g) = 1
2(f + g − |f − g|)

and

f ∨ g :=max(f, g) = 1
2(f + g + |f − g|)

are in Ar.
Moreover, let x ̸= y ∈ X. By hypothesis there is h ∈ Ar such that h(x) ̸= h(y). Thus, for
every α, β ∈ R, the function g defined as

g(z) := β + (α− β)
h(z)− h(y)

h(x)− h(y)

belongs to Ar and is such that g(x) = α, g(y) = β.
Now the construction of a uniform approximation in Ar of any f ∈ Cr(X). Let f ∈ Cr(X)
and ϵ > 0 be fixed. We further set a point x′ ∈ X. For every x ∈ X there is a function
gx ∈ Ar with gx(x

′) = f(x′) and gx(x) = f(x): for x ̸= x′ this is what we have proved
in previous step, in case x = x′ we set gx(z) := f(x′) for every z i.e., it is the constant
function.
By continuity, for every ϵ there is an open neighborhood U+(x) where gx(z) < f(z)+ ϵ for
every z ∈ U+(x). The family of U+(x)’s when x ranges in X is an open covering of X.
The compactness of X allows to extract a finite covering, i.e. a finite set of points {xj}Nj=1

such that functions gxj (x) < f(x) + ϵ for every x ∈ U+(xj), and
⋃︁N
j=1 U

+(xj) = X.
As a consequence, the function fx′ := gx1 ∧ · · · ∧ gxN = min(gx1 , . . . , gxN ) is such that
fx′(z) < f(z) + ϵ for every z ∈ X. Note that fx′ ∈ Ar and that fx′(x′) = f(x′).
We repeat the construction for every x′ ∈ X. This produces for every x′ ∈ X a function
fx′ ∈ Ar such that fx′(x′) = f(x′) and still satisfying fx′(z) < f(z) + ϵ for every z ∈ X.
By continuity, to every x′ we associate an open set U−(x′) where fx′(z) > f(z) − ϵ for
every z ∈ U−(x′). The collection of U−(x′) for x′ ∈ X is an open covering of X from
which we can therefore extract a finite covering:

⋃︁N ′

j=1 U
−(x′j). Then the function F :=

fx′1 ∨ · · · ∨ fx′
N′

= max(fx1 , . . . , fxN′ ) is such that F (z) > f(z) − ϵ for every z ∈ X. Note
that F ∈ Ar, and that F (z) < f(z) + ϵ (because each fx′j has this property). Hence we
have found a function F ∈ Ar such that ∥F − f∥∞ ≤ ϵ. ■

We need to extend a little bit the previous result, to cover the case of a non-compact set
X. So, let X be any locally compact Hausdorff space. Let ∞ denote any (new) object, and
let X ′ := X ∪ {∞}. We extend the topology of X to X ′ deciding that the complementary
sets in X ′ of compact sets in X are a family of open neighborhood of ∞. With this choice
the resulting space X ′ becomes a compact and Hausdorff topological space: the so called
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Aleksandrov’s one-point compactification of X (see [K], Theorem 21 p. 150). We identify
the set of functions in C(X ′) and assuming the value 0 in ∞ with the subset

C0(X) := {f ∈ C(X) : ∀ϵ > 0 ∃ compact K s.t. |f(x)| ≤ ϵ for x ∈ Kc}
(i.e. the subset of C(X) of functions which ‘tend to 0’ as the variable tends to ∞). It is a
Banach space with respect the sup norm.

Corollary 2.2 Let X be a locally compact Hausdorff space. If A is a closed (with respect to
the uniform topology) self-adjoint subalgebra of C0(X) which separates the points of X and
such that for every x0 ∈ X there is a function f ∈ A such that f(x0) ̸= 0, then A = C0(X).

Proof. Let A′ be the algebra generated by A and the constants. We identify the elements
in A with the elements in A′ which are null in ∞. The algebra A′ separates the points of
X (because A already does) and separate also ∞ (because by hypothesis for every x0 ∈ X
there is an element in A which is not zero in x0). It is also evidently self-adjoint and unital,
hence it coincides with C(X ′). Let f ∈ C0(X); then f ∈ C(X ′) (with f(∞) := 0), and
hence f ∈ A′. Hence there is g ∈ A and a constant λ ∈ C such that f = g+ λ. Evaluating
this identity in ∞ we see that λ = 0, hence f = g, i.e. C0(X) ⊆ A. ■

Remark. 2.3 Let X be a compact Hausdorff space, and let X ′ = X∪{∞} be the one-point
compactification of X. Then ∞ is an isolated point of X ′, and C0(X) coincides with the
set of functions f in C(X) each one extended to ∞ setting f(∞) := 0. Let A be a closed,
separating and self-adjoint subalgebra of C(X). Moreover, assume that for every x0 there
exists f ∈ A with f(x0) ̸= 0. (Notice that we do not assume that 1 ∈ A). Let A′ be the
subalgebra of C(X ′) generated by all the elements in A (extended as 0 at ∞) and by 1.
Then A′ is self-adjoint (evident), separating5, and closed in C(X ′)6. Thus, by Theorem 2.2,
A′ = C(X ′). Now, projecting on the subspace of functions which are zero at ∞, we recover
the equality A = C(X). In other words, the equality A = C(X) holds also without the
assumption 1 ∈ A, proviso that for every x0 ∈ X we are able to find a function f ∈ A with
f(x0) ̸= 0. □

2.4. Hilbert spaces

Let H be a complex Hilbert space, with respect to the hermitian scalar product ⟨·, ·⟩.
Hence for every x, y, z ∈ H and λ ∈ C we have

⟨x, x⟩ ≥ 0 ∀x, and ⟨x, x⟩ = 0 ⇐⇒ x = 0,

⟨λx+ y, z⟩ = λ⟨x, z⟩+ ⟨y, z⟩,

⟨x, y⟩ = ⟨y, x⟩,
and H is complete with respect to the norm generated by the scalar product, saying with
respect to the map ∥x∥ :=

√︁
⟨x, x⟩.

As usual, End(H) is the set of continuous linear maps H → H. In End(H) we set the usual
norm:

∥T∥ := sup
x ̸=0

∥Tx∥
∥x∥

= sup
∥x∥=1

∥Tx∥ = sup
∥x∥=1

√︁
⟨Tx, Tx⟩.

Recall that End(H) with this norm and the usual operations is a complex (unital, associa-
tive) Banach algebra.

5Let x1 ̸= x2 ∈ X ′ and α, β ∈ C. If x1, x2 both are in X then the separating property of A shows that
there is an f ∈ A with f(x1) = α and f(x2) = β: this function f extended to ∞ as 0 becomes a separating
element in A′. Suppose that x1 or x2 are not in X, say x2. Then x2 = ∞ and x1 ∈ X (because ∞ is the
unique point of X ′ which is not in X, and x1 ̸= x2). Let f1 be the element in C(X) such that f1(x1) ̸= 0
(it exists, by hypothesis). Set g(x) := (α− β)f1(x)/f1(x1) + β. Then g(x1) = α and g(∞) = β.

6Because the convergence in sup norm in X ′ means a convergence in sup norm at X plus a pointwise
convergence in ∞, since ∞ is isolated in X ′.
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This algebra has a further property, which is very important for our applications: via the
Riesz theorem, to every T ∈ End(H) we can associate its adjoint T ∗, which is the unique
linear map such that

⟨Tx, y⟩ = ⟨x, T ∗y⟩
holds for every x, y ∈ H7. This construction does not make evident that T ∗ is continuous.
However, the Cauchy–Schwarz inequality and the continuity of T give

|⟨Tx, y⟩| ≤ ∥Tx∥ · ∥y∥ ≤ ∥T∥ · ∥x∥ · ∥y∥, ∀x, y ∈ H.
Setting x = T ∗y, this inequality gives

∥T ∗y∥2 = |⟨T ∗y, T ∗y⟩| = |⟨TT ∗y, y⟩| ≤ ∥T∥ · ∥T ∗y∥ · ∥y∥ ∀y ∈ H,
proving that

∥T ∗y∥ ≤ ∥T∥ · ∥y∥ ∀y ∈ H.
This shows both that T ∗ is bounded (and hence is in End(H)), and that ∥T ∗∥ ≤ ∥T∥.
Since (T ∗)∗ = T , this inequality immediately proves that

∥T ∗∥ = ∥T∥.
Moreover, a similar computation shows that

∥Tx∥2 = |⟨Tx, Tx⟩| = |⟨T ∗Tx, x⟩| ≤ ∥T ∗Tx∥ · ∥x∥ ≤ ∥T ∗T∥ · ∥x∥2 ∀x ∈ H,
proving that ∥T∥2 ≤ ∥T ∗T∥. The submultiplicity of the norm gives also that ∥T ∗T∥ ≤
∥T ∗∥ · ∥T∥ = ∥T∥2, yielding that

(2.3) ∥T ∗T∥ = ∥T∥2.
We recall that an operator T is normal when commutes with T ∗, unitary when T ∗ = T−1,
and self-adjoint when T = T ∗.
Let T be a normal operator. Then we have:

∥T 2∥2 = ∥(T 2)∗T 2∥ (by (2.3) applied to T 2)

= ∥T ∗T ∗TT∥ = ∥(T ∗T )(T ∗T )∥ (because T is normal)
= ∥(T ∗T )∗(T ∗T )∥ (because T ∗T is self-adjoint)

= ∥T ∗T∥2 (by (2.3) applied to T ∗T )

= ∥T∥4 (by (2.3) applied to T ).

Thus, for a normal operator one has

(2.4) ∥T 2∥ = ∥T∥2.
This formula allows to prove the following interesting result for normal operators.

Proposition 2.5 Let T be a normal operator in End(H). Then r(T ) = ∥T∥.

Proof. In fact, iterating (2.4) one gets

∥T 2n∥ = ∥T∥2n ∀n,
i.e.,

∥T 2n∥1/2n = ∥T∥ ∀n.
The formula for the spectral radius (Proposition 2.2[4]) immediately yields the conclusion.

■

Proposition 2.6 Let T ∈ End(H). If T is unitary then sp(T ) ⊆ S1 := {λ ∈ C : |λ| = 1}.
If T is self-adjoint, then sp(T ) ∈ R.
7A complex algebra supporting a map ∗ having all formal properties for the adjoint operation (i.e., (T ∗)∗ =

T (involution), (λT +S)∗ = λT ∗+S∗(hermitian linearity), and (TS)∗ = S∗T ∗(reverse ordering)) is called
C∗-algebra. Everything we are proving now comes from these formal properties and hence can be extended
to C∗-algebras.
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Proof. Suppose T be unitary. Then ∥Tx∥2 = ⟨Tx, Tx⟩ = ⟨T ∗Tx, x⟩ = ⟨x, x⟩ = ∥x∥2,
proving that ∥T∥ = 1. Thus r(T ) ≤ ∥T∥ = 1, proving that each λ ∈ sp(T ) has |λ| ≤
1. On the other hand, an operator S is invertible if and only if S∗ is invertible, thus
sp(T ∗) = sp(T ). Moreover, for invertible elements S we know that sp(S−1) = (sp(S))−1.
It follows that for the unitary operator T (so that T ∗ = T−1), λ ∈ sp(T ) implies that and
λ−1 ∈ sp(T ). In particular |λ−1| ≤ 1, proving that actually sp(T ) ⊆ S1.
For every S ∈ End(H), the element

exp(S) :=
+∞∑︂
n=0

Sn

n!

is well defined (use Weierstrass test to prove the convergence), and it is invertible with
inverse given by exp(−S) (because S and −S commute, so that the formal computation
exp(S) exp(−S) = exp(S − S) = exp(0) = 1 holds true).
Suppose T be self-adjoint. Then exp(iT ) is unitary, since

(exp(iT ))∗ =
(︂ +∞∑︂
n=0

inTn

n!

)︂∗
=

+∞∑︂
n=0

(−i)n(T ∗)n

n!
=

+∞∑︂
n=0

(−i)nTn

n!

= exp(−iT ) =
(︁
exp(iT )

)︁−1
.

Let λ ∈ sp(T ). Then exp(iλ) ∈ sp(exp(iT )) (consider Exercise 2.4). Therefore | exp(iλ)| =
1, because exp(iT ) is unitary. This forces λ to be real. ■

Finally we can prove the main result in this section.

Proposition 2.7 Let A be a unital, commutative ∗-closed and closed complex subalgebra
of End(H). Then the Gelfand transform Γ: A → C(Â) is an isometric ∗-isomorphism of
unital complex algebras. (∗-closed means that if T ∈ A then T ∗ ∈ A; ∗-isomorphism means
that Γ is an isomorphism such that Γ(T ∗) = Γ(T ) for all T ∈ A.)

Proof. By definition, Γ(T ) = T̂ , and ∥T̂∥∞ = r(T ). But T is normal, since T ∗ is in A
(because A is ∗-closed) and all elements in A commutes. Therefore r(T ) = ∥T∥, proving
that

∥Γ(T )∥∞ = ∥T̂∥∞ = r(T ) = ∥T∥

proving that Γ preserves the norm. In particular Γ is injective.
Given T ∈ A, let

T+ := 1
2(T + T ∗) , T− := 1

2i(T − T ∗).

Elements T± are self-adjoint, hence their spectrum is real. Since the spectrum of T±
coincides with the range of T̂±, this proves that

Γ(T±)(χ) = χ(T±) = χ(T±) = Γ(T±)(χ).

Thus

Γ(T ∗)(χ) = Γ(T+ − iT−)(χ) = Γ(T+)(χ)− iΓ(T−)(χ)

= Γ(T+)(χ) + iΓ(T−)(χ) = Γ(T+ + iT−)(χ)

= Γ(T )(χ) = Γ(T )(χ)

proving that Γ(A) is a self-adjoint algebra in C(Â). It contains 1 since Γ(1A) = 1, separates
the points of Â (by Theorem 2.1[ii.]) and is closed, since A is closed and Γ is unitary. Thus,
by Stone–Weierstrass we conclude that Γ(A) = C(Â), i.e. that Γ is surjective. ■
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2.5. The spectral theorem (functional calculus version)

Let T ∈ End(H) be a normal operator. Let AT be the least (i.e. intersection of all)
closed complex subalgebra of End(H) containing T and T ∗. It is clearly the closure of
the algebra generated by 1H, T and T ∗. Note that AT is commutative, since T and T ∗

commute. Each element which is invertible in AT is evidently invertible also in End(H),
thus ResAT

(T ) ⊆ Res(T ), or, which is the same, sp(T ) ⊆ spAT
(T ). The opposite inclusion

is also true, but its proof needs a sofisticate argument. It is a part of the following theorem.

Theorem 2.3 Let T ∈ End(H) be a normal operator. Let AT as above. Then there exists
a map Φ: C(sp(T )) → AT which is an isometry and a ∗-isomorphism of unital algebras.
Moreover, Φ(isp(T )) = T , and sp(Φ(f)) = f(sp(T )) for every f ∈ C(sp(T )). (The map
isp(T ) is the inclusion of sp(T ) ↪→ C).

Essentially, this theorem states that to every continuous function f which can be
defined on the spectrum of a normal operator T corresponds a unique element Φ(f) in the
algebra AT (so that in particular it commutes with T ), and that the correspondence is
via an isomorphism of algebras. The claim that the spectrum of Φ(f) is exactly f(sp(T ))
settles in the larger setting of continuous functions what we have stated (without proof)
firstly for polynomials and then for power series.

Proof. The map T̂ : AT̂ → C is continuous (because in AT̂ we are considering the weak∗

topology). Moreover, it is injective. In fact, let χ1 and χ2 in AT̂ , such that T̂ (χ1) = T̂ (χ2).
This means that χ1(T ) = χ2(T ). We have proved (Proposition 2.4) that Gelfand’s map is
a ∗-isomorphism, hence for every character χ(T ∗) = χ(T ). As a consequence we also know
that χ1(T

∗) = χ2(T
∗), i.e. T ∗̂(χ1) = T ∗̂(χ2). Since AT is generated by 1H, T and T ∗, we

conclude that
T̂ (χ1) = T̂ (χ2) =⇒ Ŝ(χ1) = Ŝ(χ2) ∀S ∈ AT ,

and this means that χ1(S) = χ2(S) for every S ∈ AT , i.e. that χ1 = χ2 as elements in AT̂ .
Since T̂ is a closed map (because AT̂ is a compact), it is a homeomorphism on its image,
which is spAT

(T ) (by Prop. 2.3[iv.]), so

T̂ : AT̂
∼−→ spAT

(T ).

Let Ψ be defined in the following way:

Ψ: C(spAT
(T )) −→ C(AT̂ )

f ↦→ Ψ(f) := f ◦ T̂
i.e.

AT̂ spAT
(T )

C

T̂

Ψ(f)
f

Then Ψ is an isometry and a ∗-isomorphism of complex algebras. In fact, it is evident that
it is a morphism of complex algebras. Moreover,

∥Ψ(f)∥∞ = sup
χ∈AT̂

|Ψ(f)(χ)| = sup
χ∈AT̂

|f ◦ T̂ (χ)| = sup
χ∈AT̂

|f(χ(T ))|

= sup
λ∈spAT

(T )
|f(λ)| = ∥f∥∞,spAT

(T )

(because χ(T ) with χ ∈ AT̂ ranges exactly on spAT
(T )). This proves that Ψ is an isometry

and hence that it is injective. It is also surjective, since T̂ is a homeomorphism8.

8so that for every g ∈ C(AT̂ ) the map g ◦ T̂
−1

is in C(spAT
(T )) and Ψ(g ◦ T̂

−1
) = g ◦ T̂

−1 ◦ T̂ = g; this
proves that Ψ is surjective.
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Both Ψ and Gelfand’s map Γ are isometries and ∗-isomorphism. Thus the map Φ:

Φ: C(spAT
(T )) −→ A

Φ := Γ−1 ◦Ψ
i.e.

C(spAT
(T )) C(AT̂ )

AT

Ψ

Φ
∼ Γ

is well defined, and is itself an isometry and a ∗-isomorphism.
Now we prove that Φ(ispAT

(T )) = T . This happens if and only if Γ(Φ(ispAT
(T ))) = Γ(T ),

i.e., if and only if Ψ(ispAT
(T )) = Γ(T ). This is true, since directly from its definition

Ψ(ispAT
(T )) = ispAT

(T ) ◦ T̂ = T̂

since the image of T̂ is in spAT
(T ). A similar computation shows that Φ(1) = 1H.

Thus everything has been proved, but the equalities

spAT
(T ) = sp(T ) and sp(Φ(f)) = f(sp(T )).

We prove both of them with a unique argument.
Let f ∈ C(spAT

(T )). Then

f(spAT
(T )) = f(T̂ (AT̂ )) (formula for the spectrum)

= (Ψ(f))(AT̂ ) (definition of Ψ)

= ((Γ ◦ Φ)(f))(AT̂ ) (definition of Φ)

= ˆ︂(Φ(f))(AT̂ ) (definition of Γ)
= spAT

(Φ(f)) (formula for the spectrum),(2.5)

which is similar to what we would like to prove, but it involves the spectrum on AT , not
the one in H.

Fix a λ ∈ spAT
(T ). Let ϵ > 0, and let δ > 0 be such that{︄

|λ− µ| ≤ δ

µ ∈ spAT
(T )

=⇒ |f(λ)− f(µ)| ≤ ϵ

(δ exists, because f is continuous). Let g ∈ C(spAT
(T )) be a function such that

∥g∥∞,spAT
(T ) = 1,

{︄
|µ− λ| ≥ δ

µ ∈ spAT
(T )

=⇒ g(µ) = 0.

Let P := Φ(g). Then, since Φ is an isometry and an isomorphism of algebras, from the
choice of g (and the fact that Φ is a morphism of algebras, with Φ(1) = 1), we get

∥(f(λ)1H − Φ(f))P∥ = ∥Φ−1((f(λ)1H − Φ(f))P )∥∞,spAT
(T )

= ∥Φ−1(f(λ)1H − Φ(f))Φ−1(P )∥∞,spAT
(T )

= ∥(f(λ)− f)g∥∞,spAT
(T ) ≤ ϵ

(for the last bound recall that |((f(λ)− f)g)(µ)| = |(f(λ)− f(µ))g(µ)| is bounded by ϵ on
the support of g).
Assume now by absurd that f(λ)1H − Φ(f) is invertible in End(H). Then

1 = ∥g∥∞,spAT
(T ) = ∥Φ(g)∥ = ∥P∥ = ∥(f(λ)1H − Φ(f))−1(f(λ)1H − Φ(f))P∥

≤ ∥(f(λ)1H − Φ(f))−1∥ · ∥(f(λ)1H − Φ(f))P∥ ≤ ∥(f(λ)1H − Φ(f))−1∥ϵ.
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But ϵ is arbitrarily small, hence this is impossible. This proves that f(λ) ∈ sp(Φ(f)), i.e.
that

(2.6) f(spAT
(T )) ⊆ sp(Φ(f)).

Specializing the identity to f = ispAT
(T ), we get

spAT
(T ) ⊆ sp(T ).

Since we already know that spAT
(T ) ⊇ sp(T ), we conclude that

(2.7) spAT
(T ) = sp(T ),

which is the first of the equalities. Moreover, if an operator is invertible in AT , then it is
also invertible in End(H), so

(2.8) sp(Φ(f)) ⊆ spAT
(Φ(f)).

Thus,

sp(Φ(f))
(2.8)
⊆ spAT

(Φ(f))
(2.5)
= f(spAT

(T ))
(2.6)
⊆ sp(Φ(f)),

therefore the inclusions are actually equalities, giving

sp(Φ(f)) = f(spAT
(T )) = f(sp(T )),

where for the last equality we have used (2.7). ■

Proposition 2.8 Let T ∈ End(H) be a normal operator. Suppose that sp(T ) contains a
unique value, λ0. Then T = λ01H.

Proof. The space C(sp(T )) of all continuous functions on sp(T ) coincides with C, as an
algebra. Hence the algebra AT generated by T and T ∗ is isomorphic to C, By Theorem 2.3.
Thus λ01H − T is 0, because it is not invertible and 0 is the unique element which is not
invertible in AT . ■

The following proposition shows how injectivity/surjectivity of T and T ∗ are related.

Proposition 2.9 Let T ∈ EndH. Then the following claims are equivalent:
i. T is invertible in End(H);
ii. T ∗ is invertible in End(H);
iii. T and T ∗ are both injective and T (H) is closed;
iv. T and T ∗ are both bounded away from 0.

Proof.
i. ⇐⇒ ii. evident, since (T ∗)−1 = (T−1)∗;
i.+ii. =⇒ iii. evident.
iii. =⇒ i. The definition of the adjoint operator shows that ⟨Tx, y⟩ = ⟨x, T ∗y⟩, thus kerT ∗

coincides with T (H)⊥. Thus, T (H)⊥ = {0} when T ∗ is injective, and hence T (H) =

T (H) = ((T (H))⊥)⊥ = H. Thus T is surjective. By hypothesis it is also injective, so
that it is a bijective operator. The open mapping theorem ensures that such operator
is invertible.

i.+ii. =⇒ iv. Let T be invertible. Then x = T−1Tx shows that ∥x∥ ≤ ∥T−1∥ · ∥Tx∥,
i.e. that ∥Tx∥ ≥ (1/∥T−1∥)∥x∥, proving that T is bounded away from 0. The same
happens to T ∗, by [ii.].

iv. =⇒ iii. Suppose that both T and T ∗ are bounded away from 0. Then T and T ∗ are
injective. Moreover, by assumption there exists a constant ℓ such that ∥Tx − Ty∥ =
∥T (x − y)∥ ≥ ℓ∥x − y∥ for every x, y ∈ H. Thus, every Cauchy sequence in T (H)
comes from a Cauchy sequence in H, and hence converges. This proves that T (H) is
closed.
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■

Let λ ∈ sp(T ). Then there is a sequence of unitary vectors vn such that one of the
limits ∥(T − λ1H)vn∥ → 0, ∥(T ∗ − λ1H)vn∥ → 0 holds. In fact, if both are false then both
T −λ1H and (T −λ1H)

∗ are bounded away from 0, but then T −λ1H would be invertible,
by the part [iv] of the previous proposition.
Suppose now that T is normal. Then T−λ1H is normal as well. But then ∥(T−λ1H)vn∥ =
∥(T ∗−λ1H)vn∥ (because if S is normal then ∥Sv∥2 = ⟨Sv, Sv⟩ = ⟨S∗Sv, v⟩ = ⟨SS∗v, v⟩ =
⟨S∗v, S∗v⟩ = ∥S∗v∥2), thus we deduce the following proposition showing that each number
in the spectrum of T is ‘almost’ an eigenvalue.

Proposition 2.10 Let T be a normal operator in End(H). Let λ ∈ sp(T ). Then there is
a sequence of unitary vectors such that ∥Tvn − λvn∥ → 0. If λ is isolated, then λ is an
eigenvalue.

Proof. We have already proved the first claim. Let λ be isolated in sp(T ). Then the
function f : sp(T ) → C defined as

f(x) =

{︄
1 if x = λ

0 if x ̸= λ

is a continuous map on sp(T ). By Theorem 2.3, let P := Φ(f). Then

∥(λ1H − T )P∥ = ∥Φ−1((λ1H − T )P )∥∞,sp(T ) = ∥(λ− isp(T ))f∥∞,sp(T ) = 0.

Hence (λ1H − T )P is the trivial operator. The operator P is not trivial, since f is not
trivial, therefore there is a vector v such that (λ1H − T )w = 0, where w := Pv ̸= 0. ■

By definition, an operator T ∈ End(H) is positive when it is self-adjoint and ⟨Tv, v⟩ ≥ 0
for every v. The following proposition characterizes positive operators.

Proposition 2.11 Let T be a normal operator in End(H). It is self-adjoint if and only if
sp(T ) ⊂ R, and it is positive if and only if sp(T ) ⊂ R≥0. Moreover, T is positive if and
only if there exists a self-adjoint positive operator S such that T = S2. The operator S is
uniquely determined by T and is called the square root of T . It commutes with all operators
commuting with T .

Proof. We already know that sp(T ) ⊂ R for a self-adjoint operator. Let T be positive and
let λ ∈ sp(T ). By Proposition 2.10 there is a sequence of unitary vectors vn such that
∥Tvn − λvn∥ → 0, so that

0 ≤ ⟨Tvn, vn⟩ = ⟨λvn + (T − λ1H)vn, vn⟩ = λ+O(|⟨(T − λ1H)vn, vn⟩|)
= λ+O(∥(T − λ1H)vn∥ · ∥vn∥) = λ+O(∥(T − λ1H)vn∥)
= λ+ o(1)

which proves that λ ≥ 0, i.e. that sp(T ) ⊂ R≥0.
On the contrary, suppose that sp(T ) ⊂ R. Then isp(T ) (the identity map on sp(T )) is a
real map, i.e. it is fixed by the conjugation. This holds true also for Φ(isp(T )) (because
Φ is a ∗-isomorphism), and hence T is self-adjoint (because T = Φ(isp(T ))). At last,
suppose that sp(T ) ⊂ R≥0. Then the map f(λ) :=

√
λ is well defined on sp(T ). Then

S := Φ(f) is such that Φ(f)2 = Φ(f2) = Φ(isp(T )) = T , and is self-adjoint (because
sp(S) = sp(Φ(f)) = f(sp(T )) = (sp(T ))1/2 ⊂ R≥0). Thus

⟨Tv, v⟩ = ⟨S2v, v⟩ = ⟨Sv, Sv⟩ ≥ 0,

proving that T is positive.
At last, we notice that S = Φ(

√
·) belongs to AT , i.e. to the closed algebra generated by

T and T ∗, but this algebra coincides with the polynomial algebra generated by T alone
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because T is self-adjoint (by hypothesis). Therefore, if W is an operator which commutes
with T , then it commutes also with S. ■



CHAPTER 3

Representations

Let G be locally compact group, and V be a vector space on a field k. From a purely
algebraic point of view a representation of G in V is simply a morphism ρ : G→ Aut(V ),
i.e. a map such that

ρ(gg′) = ρ(g)ρ(g′) ∀g, g′ ∈ G,

where ρ(g) and ρ(g′) are in Aut(V ).

Example. 3.1 Let G := {z ∈ C : |z| = 1} (the circle), and let V = C2, as a complex vector
space. For every n ∈ Z, the map

ρn : G→ GL(2,C), ρn(z) :=
(︂
zn 0
0 z−n

)︂
is a representation of G (in SL(2,C)). □

Exercise. 3.1 Let G := U(2,C), the set of unitary automorphisms of C2.
1. Prove that

G =
{︂(︃

a b

−b a

)︃
: a, b ∈ C, |a|2 + |b|2 = 1

}︂
.

Note that G is a non-abelian compact group.
2. Prove that each element in G is conjugated to some element

(︁
eiθ 0
0 e−iθ

)︁
for a θ ∈ [−π, π],

and that these elements are pairwise conjugated, with the element associated with θ
conjugated with the one associated to −θ. Deduce that each conjugation class contains
a unique element of that type with θ ∈ [0, π].

3. For every n ∈ N, let

Hn := {p ∈ C[x, y] : p(λx, λy) = λnp(x, y)},
the set of complex polynomials in two variables which are homogeneous with degree
n. Prove that Hn = SpanC({xjyn−j}nj=0). In particular, dim(Hn) = n+ 1.

4. Let ρn : G→ Aut(Hn), be defined as

(ρn(g)p)(x, y) := p(g−1
(︁ x
y

)︁
).

Prove that ρn is a representation of G.
Remark: This exercise continues with Exercises 3.2 and 3.5.

When the group is not finite, in order to have a better control on its representation it is
a good idea to select the representations having also good properties with respect to other
(usually non algebraic) structures; typically with respect to the topology of G. Moreover,
for our application we can restrict our definition to the case where V is actually a complex
Hilbert space H. In this setting, a topological representation of G in H is a map

ρ : G→ Aut(H)

such that the map
W : G×H −→ H

(g, x) ↦→ W(g, x) := ρ(g)x

is continuous, where in G×H we take the product topology.
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Proposition 3.1 Let G be a locally compact group, and let ρ be a representation of G in
a Hilbert space H. Then ρ is a topological representation if and only if both the following
conditions hold true:
1. For every compact K ⊆ G, the family of automorphisms in ρ(K) is equicontinuous;
2. For every x ∈ H, the map g ↦→ ρ(g)x is continuous as a map G→ H.

In particular, ρ is a topological representation if and only if W is continuous in each
argument. As a consequence, if we already know that ρ(g) ∈ Auttop(H) for every g, then
ρ is a topological representation if and only if 2) holds true, i.e. if and only if g ↦→ ρ(g)x
is continuous, for every x.

Proof. When ρ is a topological representation, Properties 1) and 2) are evident. for the
opposite implication see [RV], Proposition 2.1 (p. 48–49).
For the second part of the claim, suppose we know that W is continuous in each argument.
For every x ∈ H, the map g ↦→ ρ(g)x is W(·, x) and by hypothesis it is continuous. Let
K ⊆ G be any compact set. Then for every fixed x, the set {ρ(g)x : g ∈ K} is a compact
set in H, in particular it is bounded. Thus, each ρ(g) is in Auttop(H), because it is the
map W(g, ·) which is continuous by hypothesis, and the family {ρ(g) : g ∈ K} is pointwise
bounded. By Banach–Steinhaus theorem this family is equibounded, i.e.,

M := sup
g∈K

sup
x : ∥x∥=1

∥ρ(g)x∥ <∞.

as a consequence ∥ρ(g)x − ρ(g)y∥ = ∥ρ(g)(x − y)∥ ≤ M∥x − y∥ when g ranges in K,
and this proves that the family ρ(K) is equicontinuous. This claim is also proved in [RV],
Corollary 2.2 (p. 49). ■

Let ρ : G → Aut(H) be a representation. A subspace W of H is ρ-invariant when
ρ(g)(W ) ⊆ W for every g ∈ G. The representation is called algebraically irreducible
when {0} and H are the unique invariant subspaces; if the representation is a topological
representation, it is called topologically irreducible when {0} and H are the unique closed
subspaces which are invariant.
Note that for a topological representation both notions of irreducibility are meaningful,
and that the algebraic notion is stronger than the topological one, but they coincides when
H is a finite dimensional vector space (however, the notions are strictly different: there are
representations which are topologically irreducible but not algebraically irreducible).
Another definition: two representations ρ and ρ′ of a given group G in Hilbert spaces
H and H′ (not necessarily the same) are interlaced by a map T ∈ Hom(H,H′) when
Tρ(g) = ρ′(g)T for every g ∈ G, i.e. when the following diagram

H H′

H H′

ρ(g)

T

ρ′(g)

T

commutes. Moreover, they are called equivalent when they are interlaced via any iso-
morphism of vector spaces. Analogously, two topological representations ρ and ρ′ are
topologically interlaced by a map T when T is continuous (as a map H → H′), and are
topologically equivalent when T is a continuous isomorphism.
At last, a representation is called unitary when ρ(g) is unitary for all g ∈ G, i.e. when
⟨ρ(g)x, ρ(g)x⟩H′ = ⟨x, x⟩H for every x ∈ H. The following proposition shows an interesting
fact.

Proposition 3.2 Let (ρ,H) and (ρ′,H′) be topological unitary representations which are
topologically equivalent. Then they are unitarily equivalent (i.e. the map T : H → H′
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realizing the equivalence of ρ and ρ′ can be modified to another map still realizing the
equivalence of ρ and ρ′, and which is unitary).

Proof. Let T : H → H′ be the topological isomorphism such that Tρ(g) = ρ′(g)T for every
g. Let T ∗ : H′ → H be the operator defined via the equation

⟨Tx, y⟩H′ = ⟨x, T ∗y⟩H ∀x ∈ H, ∀y ∈ H′.

(This is a generalization of the adjoint, but all properties are still true. In particular T ∗

is continuous). Then TT ∗ is positive and continuous endomorphism of H′. By Proposi-
tion 2.11 there is a self-adjoint operator U such that U2 = TT ∗, and which commutes with
all operators commuting with TT ∗. Moreover,

(U−1T ) · (U−1T )∗ = (U−1TT ∗) · (U−1)∗ = U · U−1 = 1H′ ,

proving that U−1T is a unitary and continuous isomorphism of H′. Finally, we know that

Tρ(g) = ρ′(g)T ∀g ∈ G.

Passing to the adjoint operators yields ρ(g)∗T ∗ = T ∗ρ′(g)∗. But ρ(g) and ρ′(g) are unitary,
thus ρ(g)−1T ∗ = T ∗ρ′(g)−1. The representations are morphisms, hence this equality means
that ρ(g−1)T ∗ = T ∗ρ′(g−1). Since this is true for every g ∈ G, we conclude that

ρ(g)T ∗ = T ∗ρ′(g) ∀g ∈ G.

Therefore,
TT ∗ρ′(g) = Tρ(g)T ∗ = ρ′(g)TT ∗

proving that TT ∗ commutes with ρ′(g) for every g. Hence U−1 commutes as well, produc-
ing:

(U−1T )ρ(g) = U−1ρ′(g)T = ρ′(g)(U−1T )

proving that ρ and ρ′ are unitarily equivalent. ■

Theorem 3.1 (Schur’s lemma)
1. Let (ρ,H) and (ρ′,H) be irreducible representations of a group G. Let T : H → H′ be a

morphism interlacing ρ and ρ′. Then either T is identically 0, or it is an isomorphism.
2. Suppose that G is locally compact and let (ρ,H) be a topologically irreducible unitary

representation of G. Let T ∈ End(H) such that ρ(g)T = Tρ(g) for every g ∈ G. If T
is normal, then it is a scalar operator (i.e. a multiple of the identity). In particular,
TT ∗ is always a scalar operator.

Proof.
1. By hypothesis Tρ(g) = ρ′(g)T for every g ∈ G. This shows that kerT is an invariant

space for ρ and ImmT an invariant space for ρ′. Both ρ and ρ′ are irreducible, by
hypothesis. Thus, if T is not trivial then kerT = {0} and ImmT = H′.

2. Let λ be any number in sp(T ). If λ is the unique element in sp(T ), then T is λ1H, by
Proposition 2.8. Suppose therefore that this is not the case, i.e. that sp(T ) contains
also a second element µ ̸= λ. Then there are functions fλ, fµ in C(sp(T )) which are
not identically 0 but that are zero in suitable open neighborhoods of λ and µ which do
not overlap (so that the product fλfµ is identically zero). Let Φ(fλ) be the operator
associated to fλ via the spectral theorem. It belongs to AT (the closed complex alge-
bra generated by T and T ∗). By hypothesis every element in ρ(G) commutes with T ,
and taking the adjoint we verify that it commutes also with T ∗ (because ρ is unitary).
Hence every element of ρ(G) commutes with AT , and hence in particular with Φ(fλ).
Let W be the closure of Φ(fλ)H in H. Note that W is not {0}, because in this case
∥Φ(fλ)∥ = 0, while ∥f∥∞,sp(T ) ̸= 0 and Φ is unitary.
This space is invariant for ρ, because Φ(fλ) and ρ(g) commute for every g. By assump-
tion ρ is topologically irreducible, hence W is H. The same holds true for Φ(fµ)H.
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However, this is impossible, since Φ is a morphism, so that 0 · 1H = Φ(0) = Φ(fλfµ) =

Φ(fλ)Φ(fµ), which contradicts the fact that Φ(fλ)Φ(fµ)H = Φ(fλ)H = H.
■

Remark. 3.1 For the second point, we could try the following approach. Let G, (ρ,H)
and T as in Theorem 3.1. Let λ ∈ sp(T ). Then T − λ1H is a morphism of H, evidently
commuting with ρ(g) for every g ∈ G. By the first part of the proposition it is either trivial
or an isomorphism, but the second case is impossible (because λ belongs to the spectrum
of T ), thus it is trivial, i.e. T = λ1H. This argument is tantalizing, but it does not work
in general: the assumed topological irreducibility of ρ is weaker than the irreducibility,
thus actually we cannot apply the first part of the theorem to conclude. However, the
argument runs well in case H is finite dimensional, because in that case the two notions of
irreducibility collapse. □

For unitary representations the second claim in Schur’s lemma is actually a character-
ization of irreducibility. In fact, the following fact is true.

Proposition 3.3 Let G be a locally compact group, and let (ρ,H) be a topological unitary
representation of G in H. Then ρ is topologically irreducible if and only if the constant
multiples of the identity 1H are the unique elements in End(H) which are normal and which
commute with ρ(g) for all g.

Proof. Theorem 3.1 shows that this is what happens for unitary and topologically irre-
ducible representations. Thus, we have only to prove that in case ρ is unitary and not
topologically irreducible, there exists a normal T ∈ End(H) commuting with ρ(g) for ev-
ery g and which is not a multiple of the identity. The representation is not topologically
irreducible, hence it admits a closed and non-trivial invariant subspace W . Let W⊥ be the
orthogonal complement in H of W ; it is not trivial either, i.e. it is not {0} or H, because W
is closed and is not {0} or H (the fact that W is closed matters here!). By hypothesis ρ is
unitary, and ρ(g)W ⊆W for every g ∈ G. We show that this implies that ρ(g)W⊥ ⊆W⊥

for every g ∈ G, too. In fact, pick any w ∈W and w′ ∈W⊥. Then

⟨ρ(g)w′, w⟩ = ⟨w′, ρ(g)∗w⟩ (definition of adjoint)

= ⟨w′, ρ(g)−1w⟩ (ρ(g) is unitary)

= ⟨w′, ρ(g−1)w⟩ (ρ is a morphism)

= 0 (ρ(g−1)w is in W for every g).

Let T be the orthogonal projector on W : note that it is not a multiple of the identity
(because its image W and its kernel W⊥ both are non-trivial). Write any v ∈ H as
Tv + (v − Tv) (where v − Tv ∈W⊥). Then

(Tρ(g))v = (Tρ(g))(Tv + (v − Tv)) = (Tρ(g))Tv + (Tρ(g))(v − Tv)

= T (ρ(g)Tv) + T (ρ(g)(v − Tv)) = (ρ(g)T )v

where the last step comes from the fact that Tv ∈ W hence ρ(g)(Tv) ∈ W hence
Tρ(g)(Tv) = ρ(g)(Tv), and that v−Tv ∈W⊥ hence ρ(g)(v−Tv) ∈W⊥ hence T (ρ(g)(v−
Tv)) = 0.
This proves that T commutes with ρ(g) for every g. ■

Proposition 3.4 Let G be an abelian locally compact group, and let (ρ,H) be a topological
unitary representation of G in H. If ρ is topologically irreducible, then dim(H) = 1.

Proof. Fix any g′ in G, and consider Tg′ := ρ(g′). Since G is abelian, we have Tg′ρ(g) =
ρ(g′g) = ρ(gg′) = ρ(g)Tg′ , proving that Tg′ commutes with ρ(G). Tg′ is also unitary, so
that in particular it is normal. By Theorem 3.1[ii.], it is a multiple of the identity, so
that there exists a number, χ(g′) ∈ C, such that Tg′ = χ(g′)1H. This holds true for every
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g′ ∈ G, hence for every g′ there is χ(g′) such that ρ(g′) = χ(g′)1H. Let x be any nonzero
vector in H; then Cx is a closed subspace which is invariant by ρ(G), thus it coincides with
H because ρ is topologically irreducible. ■

Exercise. 3.2 Let G be a compact group with Haar measure µ. (By Proposition 1.13 it is
both left and right invariant). Let (ρ,H) be a topological representation of G on a complex
Hilbert space H. For every x, y ∈ H, set

(x, y) :=
1

µ(G)

∫︂
G
⟨ρ(g)x, ρ(g)y⟩dµ,

where ⟨·, ·⟩ is the hermitian scalar product in H.
1. Prove that it is well defined (i.e. it is finite for every x, y);
2. Prove that (·, ·) is an hermitian scalar product;
3. Prove that the norm induced by (·, ·) is equivalent to the norm coming from ⟨·, ·⟩, so

that H is an Hilbert space also with respect to (·, ·);
4. Prove that ρ becomes unitary when in H the new scalar product (·, ·) is considered.

This exercise shows that all representations of a compact group can be considered as unitary
representations. This extends to compact groups what is well known for finite groups.
Hint: for [3], recall Proposition 3.1, and that each ρ(g) is a continuous automorphism of
H, so that also its inverse is bounded.

Exercise. 3.3 This exercise shows how to operate on representations to produce new
representations.
Let G be a locally compact group, and let (ρ,H) and (ρ′,H′) be topological representations
of G.
1. (direct sum) prove that (ρ⊕ρ′,H⊕H′), with (ρ⊕ρ′)(g) := ρ(g)⊕ρ′(g) is a topological

representation of G;
2. (tensor product) prove that (ρ ⊗ ρ′,H ⊗̂ H′), with (ρ ⊗ ρ′)(g) := ρ(g) ⊗ ρ′(g) is a

topological representation of G;
3. (controgradient) prove that (ρ̃,H), with ρ̃(g) := (ρ(g−1))∗ is a topological representa-

tion of G.
4. (restriction) Let H be a closed subgroup of G. Prove that (ResGH ρ,H), where

(ResGH ρ)(h) := ρ(h) for every h ∈ H, is a topological representation of H.
5. (induction) Let H be a closed subgroup of G whose index in G is finite. Let (ψ,H) be

a topological representation of H. Fix a set S of representatives for G/H, and take

HG
H :=

⨁︂
α∈S

αH,

i.e. the Hilbert sum of [G : H] copies of H. For every g ∈ G and α ∈ S, there is a
unique α′ ∈ S and a unique hg,α ∈ H satisfying the equality gα = α′hg,α. For every
g ∈ G, we define

(IndGH ψ)(g) ∈ End(HG
H)

as the map
(IndGH ψ)(g)

(︂⨁︂
α∈S

αxα

)︂
:=

⨁︂
α∈S

α′ψ(hg,α)xα′ .

Then (IndGH ψ)(g) is actually in Aut(HG
H) and IndGH ψ defines a topological represen-

tation of G.
Remark: there are other possible (and probably better) constructions for the induced
representation; some of them can be extended to cover also the case where the index of H
in G is not finite.
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Exercise. 3.4 Let G be a locally compact group. Let (ρ,H) be a topological representation
of G on a complex Hilbert space H. Let W be a closed ρ-invariant subspace of H.
1. Note that W becomes a Hilbert space itself with respect to the scalar product coming

from H. Prove that restricting each ρ(g) to W produces a new topological represen-
tation (ρW ,W );

2. Suppose that ρ is unitary. Prove that W⊥ := {y ∈ H : ⟨y, x⟩ = 0 ∀x ∈ W} is ρ
invariant as well;

3. Notice that H =W⊕W⊥; conclude that under the hypotheses in [2.], ρ is topologically
isomorphic to ρW ⊕ ρW⊥ .

4. Let ρ be a unitary representation in a finite dimensional Hilbert space H. Prove that
ρ can be decomposed as finite direct sum of topological irreducible representations.

Remark: in the case of compact groupG, last claim is true for every unitary representation
(in particular also for the case of infinite dimensional Hilbert space), with (possibly infinite
many) irreducible representations, each one being finite dimensional. This is part of the
Peter–Weyl theorem. For abelian locally compact groups the analogous claim is a part of
the Pontryagin duality result.

Exercise. 3.5 Let G = U(2,C) and ρn be its representation as in Exercise 3.1. The
following steps will prove that ρn is irreducible for every n (the distinction topolog-
ically/algebrically irreducible does not matter here, because the Hilbert space is finite
dimensional).
1. Note that G is compact, so that ρn can be made unitary;
2. In the Hilbert space Hn take the base of monomials and notice that

ρn

(︂(︃
eiθ 0
0 e−iθ

)︃)︂
is represented by a diagonal matrix in this base;

3. Notice that the diagonal entries in this matrix can be made all different for suitably
chosen values of θ; conclude that if T commutes with ρn

(︂(︂
eiθ 0
0 e−iθ

)︂)︂
for every θ, then

T is diagonal in that base;
4. Let {aj}n+1

j=0 be the constants such that T (xjyn−j) = ajx
jyn−j for j = 0, . . . , n. Com-

pare

Tρn

(︂(︃
a b

−b a

)︃)︂
xn

to
ρn

(︂(︃
a b

−b a

)︃)︂
Txn

and deduce that if T commutes with ρn(g) for all g ∈ G then it is a multiple of the
identity. Apply Proposition 3.3 to conclude.

Remark: It is possible to prove that this is a full set of inequivalent topologically irre-
ducible representations for U(2,C).

Exercises of Chapter 2 in [RV] are instructive and should be fully studied. For a very
nice introduction to the representations of compact groups and some material on repre-
sentations in locally compact groups see [Ro]. For a classical treatise on representations of
Lie groups see [Kn].



CHAPTER 4

Duality

4.1. Pontryagin duality

Let G be an abelian locally compact group. Let Ĝ be the set of all continuous homo-
morphisms G ↦→ S1, where as usual S1 denotes the set of complex numbers of absolute
value 1. The elements in Ĝ are called characters for G, and Ĝ is also called Pontryagin’s
dual of G. It is an abelian group with respect to the pointwise product, i.e. when the
product of two characters χ, η is defined as

χ · η : G −→ S1,
g ↦→ (χ · η)(g) := χ(g)η(g).

Let K be any compact in G and U any open neighborhood of 1 in S1; we denote W (K,U)

the set of characters for which the image of K is in U , i.e. the set {χ ∈ Ĝ : χ(K) ⊆ U}.
The sets W (K,U) are a neighborhood base for the trivial character, and the compact-open
topology of Ĝ is (by definition) the topology generated by the translated in each point of
the family of sets W (K,U). In other words, a family of characters {χn}n∈N converges in
this topology to a character χ when for every compactK in G and every open neighborhood
U of 1 in S1 there is an integer N = N(K,U) such that

n ≥ N =⇒ ∀g ∈ K, (χnχ)(g) ∈ U.

Since the topology in S1 is a metric topology, the compact-open topology in Ĝ coincides
with the topology of uniform convergence in all compact subsets, i.e. the topology for
which a family of characters {χn}n∈N converges to a character χ when for every compact
K and every ϵ > 0 there is N = N(K, ϵ) such that

n ≥ N =⇒ ∥χn(g)− χ(g)∥∞,K ≤ ϵ.

(See [K], Theorem 11, p. 230). Moreover, if G is discrete then the compact sets in G are
the finite sets, and the compact-open topology coincides with the topology of pointwise
convergence.

Let ϕ : R → S1 be the covering map ϕ(x) := e2πix, and for every w > 0, let

N(w) := ϕ
(︁(︁

− w

3
,
w

3

)︁)︁
,

the image of the open interval (−w/3, w/3) via ϕ.
Moreover, for every S ⊆ G and every integer m, we denote

S(m) := {s1 · s2 · · · sm : sj ∈ S ∀j = 1, . . . ,m},
the set of all m-long products of elements in S.

Lemma 4.1 Let m be any positive integer. Suppose that U ⊆ G contains e, and that
χ : G → S1 is a group homomorphism (not necessarily continuous) such that χ(U (m)) ⊂
N(1). Then χ(U) ⊂ N(1/m).

Proof. First we prove that if x ∈ S1 is such that x, x2, x3, . . . , xm lie in N(1), then x ∈
N(1/m). The proof is by induction on m. For m = 1 the claim is evident. Suppose m > 1
and that x, x2, x3, . . . , xm lie in N(1). By inductive hypothesis the claim holds for m− 1,
and hence x ∈ N(1/(m − 1)). Moreover, we know that xm ∈ N(1), so that there exists

45
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y ∈ N(1/m) such that xm = ym. In other words, x = yζqm where ζm := exp(2πi/m)
(a primitive mth root of 1), and q is an integer in 0, 1, . . . ,m − 1. when q ̸= 0, the sets
N(1/(m − 1)) and N(1/m)ζqm do not intersect (take the ‘worst’ case m = 2, to convince
yourself), thus the equality x = yζqm is possible only for q = 0, and the resulting equality
x = y shows that x ∈ N(1/m), i.e. the claim.
The statement of the lemma follows easily. In fact, for every g ∈ S and 1 ≤ j ≤ m, the
power gj is a m-long product in S(m) (because e ∈ S, by assumption), so that χ(g)j =
χ(gj) ∈ N(1) for j = 1, . . . ,m implies that χ(g) ∈ N(1/m), by the first part of the proof.

■

Proposition 4.1 Let G be an abelian and locally compact group. Then:
1. A group homomorphism χ : G→ S1 is continuous (and hence a character) if and only

if χ−1(N(1)) is a neighborhood of the identity in G;
2. The family {W (K,N(1))}K , where K ranges in the set of compact subsets of G, is a

neighborhood base of the trivial character for the compact-open topology of Ĝ;
3. If G is discrete then Ĝ is compact;
4. If G is compact then Ĝ is discrete;
5. If G is locally compact, then Ĝ is locally compact, as well.

Proof.
1. The claim is evidently necessary for the continuity of χ. We prove that it is also

sufficient. Suppose that there exists U ⊆ G which is an open neighborhood of e
in G and such that χ(U) ⊆ N(1). Fix any positive integer k. By Proposition 1.4[1.]
(iterated k times) inG there is an open set V which is a neighborhood of e and such that
V (2k) ⊆ U . Thus χ(V (2k)) ⊆ N(1). By Lemma 4.1 we deduce that χ(V ) ⊆ N(2−k),
and this proves that χ is continuous.

2. It is sufficient to prove that for every compact K1 and every integer m, there is a
compact K such W (K,N(1)) ⊆ W (K1, N(1/m)). Without loss of generality we can
suppose that e ∈ K1. Let K := K

(m)
1 (a compact, by the continuity of the product).

Let χ ∈ W (K,N(1)) and pick any g ∈ K1. Then χ(g), χ2(g), . . . , χm(g) are in N(1),
so that χ(g) ∈ N(1/m) (by Lemma 4.1), proving that χ ∈W (K1, N(1/m)).

3. Let G be discrete. We have already noted that in this case the compact-open topology
is the pointwise topology. With this topology the set of all maps G → S1 becomes
compact (by Tychonoff’s theorem), and therefore also Ĝ = Hom(G,S1) (the full set
of all morphisms G→ S1) is compact, since it is evidently a closed subset.

4. Let G be compact. Take any χ ∈ W (G,N(1)). then χ(G) is a compact subgroup
of S1 in N(1), and {1} is the unique such subgroup, therefore χ = χ0, the trivial
character. Thus W (G,N(1)) coincides with {χ0}. In the compact-open topology the
set W (G,N(1)) is open, therefore we have proved that the singleton {χ0} is an open
set in Ĝ.

5. By Part 2, to show that Ĝ is locally compact it is sufficient to prove that if K is a
compact neighborhood of the identity in G, then

W :=W (K,N(1/4))

is a compact neighborhood of the identity in Ĝ.
LetG0 denote the same groupG but with the discrete topology. ThenG0̂=Hom(G0,S

1)
is compact (by Part 3) and its topology (the compact-open topology) is actually the
pointwise convergence topology. Let

W0 := {χ ∈ G0̂ : χ(K) ⊆ N(1/4)}.



4.2. FUNCTIONS OF POSITIVE TYPE 47

It is a closed subset of G0̂, hence it is compact. Moreover, by Part 1 each homomor-
phism in W0 is G-continuous (i.e. continuous as a map G → S1), hence W0 ⊆ W .
On the other hands, W ⊆ W0, because every map is continuous with respect to the
discrete topology. Hence

W =W0.

Let τ0 be the topology of W0 induced by the one in G0̂ (i.e., the pointwise topology),
and let τ be the topology of W induced by the one in Ĝ (i.e., the compact-open
topology). Since W =W0 (as sets), if we are able to prove that τ0 is finer than τ (i.e.
that each τ -open set is also τ0-open), then the identity map

(W0, τ0) → (W, τ) : ı(w) = w

is continuous, and the compactness of W itself cames out, since W equals ı(W0), i.e.
the continuous image of the compact W0.
Let K1 be a compact in G and let m be a positive integer. For each χ ∈ W , consider
the subset

W (χ) :=
(︁
χ ·W (K1, N(1/m))

)︁
∩W.

(Recall that W (K1, N(1/m)) is a neighborhood of the trivial character, thus χ ·
W (K1, N(1/m)) becomes a neighborhood of χ). Since the sets W (χ) are a base of
τ -open neighborhood for χ, to conclude it is sufficient to prove that they are also τ0-
open.
Let V be an open neighborhood of the identity in G such that V (2m) ⊆ K. Since K1

is compact, there is a finite set F such that K1 ⊆ F · V . Consider

W0(χ) :=
(︁
χ ·W0(F,N(1/(2m)))

)︁
∩W,

where W0(F,N(1/(2m)) denotes the set of homomorphisms on G0 mapping F to
N(1/(2m)). We claim that W0(χ) is τ0-open and is contained in W (χ): when proved,
this will conclude the proof. The set W0(F,N(1/(2m)) being clearly τ0-open, only the
inclusion needs verification.
Let µ ∈W0(χ). Then µ = χµ0 for some µ0 ∈ G0̂ with µ0(F ) ⊆ N(1/(2m)). Note that
both µ and χ are in W , by construction, thus

µ0(K) = (µχ−1)(K) = µ(K) · χ−1(K) = µ(K) · χ(K)

⊆ N(1/4) ·N(1/4) = N(1/2) ⊆ N(1).

By Part 1 this shows that µ0 is continuous. Moreover, since V (2m) ⊆ K and since
µ0(V

(2m)) ⊆ µ0(K) ⊆ N(1), by Lemma 4.1 we get that µ0(V ) ⊆ N(1/(2m)). Thus
we further have

µ0(K1) ⊆ µ0(F ) · µ0(V ) ⊆ N(1/(2m)) ·N(1/(2m)) = N(1/m)

proving that µ0 is in W (K1, N(1/m)), so that µ is in W (χ).
■

4.2. Functions of positive type

Let G be a locally compact group. Pick a left invariant Haar measure µ in G, and
let Lp(G) with p ∈ [1,+∞] be the usual spaces of (class of equivalence of) measurable
functions G→ C, such that

∥f∥p :=
(︂∫︂

G
|f(g)|p dµ(g)

)︂1/p
< +∞

for p ∈ [1,+∞), and

∥f∥∞ := inf
{︁
α ∈ R : µ({g ∈ G : |f(g)| ≥ α}) = 0

}︁
<∞
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(the essential sup is finite) for p = +∞.
We demand to specialized books for standard results (completeness, local convexity, du-
ality, measure product and so on); we simply note that essentially everything which is
known for R holds true also in the present case since locally compact groups are union of
σ-compact spaces and Haar measures are Radon measures.
Let ϕ ∈ L∞(G) be a function such that

(4.1) ϕ(g−1) = ϕ(g) ∀g ∈ G

(well, actually for almost all g ∈ G). With such a function we can define a scalar product
in Cc(G), setting

⟨f1, f2⟩ϕ :=

∫︂
G×G

ϕ(s−1t)f1(s)f2(t) dµ(s) dµ(t),

where in G×G we have introduced the product measure. It is well defined, with

|⟨f1, f2⟩ϕ| ≤ ∥ϕ∥∞∥f1∥L1∥f2∥L1

≤ ∥ϕ∥∞∥f1∥∞∥f2∥∞µ(supp(f1))µ(supp(f2)).(4.2)

It is evidently sesquilinear in its arguments, and it is also a hermitian scalar product, i.e.
it satisfies the identity

⟨f1, f2⟩ϕ = ⟨f2, f1⟩ϕ
as a consequence of the assumption (4.1) on ϕ.
We are interested into those functions ϕ for which the scalar product is positive, i.e. such
that

⟨f, f⟩ϕ ≥ 0 ∀f ∈ Cc(G).
These functions are called of positive type. Note that we are not requiring that ⟨·, ·⟩ϕ is
definite positive (i.e. that it is zero only on the zero function).
Indeed, our interest for this set of functions comes from two remarks:
• All characters are of positive type. In fact, for a character χ the identity χ(g−1) = χ(g)

is evident, and the positivity holds since

⟨f, f⟩χ =

∫︂
G×G

χ(s−1t)f(s)f(t) dµ(s) dµ(t)

=

∫︂
G×G

χ(s)f(s)χ(t)f(t) dµ(s) dµ(t) =
⃓⃓⃓ ∫︂

G
χ(s)f(s) dµ(s)

⃓⃓⃓2
.

• The set of functions of positive type is a convex set, i.e. if ϕ, ψ are of positive type,
then λϕ+ (1− λ)ψ is of positive type for every λ ∈ [0, 1], too.

The following steps will characterize the characters as the extremal point of a suitable
convex subset of all functions of positive type: in this way (via the Krein–Milman theorem)
we will see that the characters are a sufficiently large family to allow the Fourier transform
to have a unique inverse (in a proper sense). However, the proof is not easy and we will
need a lot of theory to reach our purpose.
The positivity assumption produces a Cauchy-Schwartz-type inequality1

|⟨f, h⟩ϕ| ≤ ∥f∥ϕ · ∥h∥ϕ,

1In fact, if ϕ is positive then ⟨λf + h, λf + h⟩ϕ ≥ 0 for every f, h ∈ Cc(G) and every λ ∈ C. Thus

0 ≤ |λ|2⟨f, f⟩ϕ + 2Re(λ⟨f, h⟩ϕ) + ⟨h, h⟩ϕ.

If ⟨f, f⟩ϕ ̸= 0 we can set λ = − ⟨f,h⟩ϕ
⟨f,f⟩ϕ

yielding

0 ≤
|⟨f, h⟩ϕ|

2

⟨f, f⟩ϕ
− 2

|⟨f, h⟩ϕ|
2

⟨f, f⟩ϕ
+ ⟨h, h⟩ϕ = −

|⟨f, h⟩ϕ|
2

⟨f, f⟩ϕ
+ ⟨h, h⟩ϕ,
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where
∥f∥ϕ := (⟨f, f⟩ϕ)

1/2 =
[︂ ∫︂

G×G
ϕ(s−1t)f(s)f(t) dµ(s) dµ(t)

]︂1/2
.

Note that ∥ · ∥ϕ it not a norm, in spite of its notation, since it is possibile to have ∥f∥ϕ = 0
also with a nonzero function f . However, an immediate consequence of the Cauchy–
Schwarz inequality is that ∥f + g∥ϕ ≤ ∥f∥ϕ + ∥g∥ϕ2 so that the set of functions

Dϕ := {f ∈ Cc(G) : ∥f∥ϕ = 0}
is a closed subspace of Cc(G)3. The usual arguments show that ∥ · ∥ϕ becomes a true norm
on the quotient space Cc(G)/Dϕ, which we convert into a Hilbert space Hϕ by completing
the norm.
The left action Lg : Hϕ → Hϕ, defined by (Lgf)(s) := f(g−1s) actually defines a represen-
tation of G into Hϕ:

L : G → Aut(Hϕ)
g ↦→ Lg.

It is unitary: it is sufficient to prove it for elements in Cc(G), and a direct computation
shows that

⟨Lgf, Lgf⟩ϕ =

∫︂
G×G

ϕ(s−1t)(Lgf)(s)(Lgf)(t) dµ(s) dµ(t)

=

∫︂
G×G

ϕ(s−1t)f(g−1s)f(g−1t) dµ(s) dµ(t)

=

∫︂
G×G

ϕ((g−1s)−1(g−1t))f(g−1s)f(g−1t) dµ(s) dµ(t)

=

∫︂
G×G

ϕ(s−1t)f(s)f(t) dµ(s) dµ(t) = ⟨f, f⟩ϕ

(recall that µ is left invariant, by assumption).
It is also a topological representation. In fact, if (sα, fα) is a sequence in G×Hϕ converging
to (s, f), then

∥Lsf − Lsαfα∥ϕ ≤ ∥Lsαf − Lsαfα∥ϕ + ∥Lsf − Lsαf∥ϕ = ∥f − fα∥ϕ + ∥Lss−1
α
f − f∥ϕ

(because L is unitary). The first term can be made arbitrarily small because fα → f , by
assumption; the second term goes to zero because sα → s and Lss−1

α
f → f in sup norm

when f ∈ Cc(G) (by uniform continuity on compact domains), so that this is true also in
Lp(G) with p ∈ [1,+∞)4. In particular it is true in L1(G) and hence also in ∥ · ∥ϕ norm,
because ϕ is essentially bounded, by (4.2).

which is the claim. Suppose ⟨f, f⟩ϕ = 0. Then if ⟨f, h⟩ϕ ̸= 0 we could take λ = −η
⟨h,h⟩ϕ
2⟨f,h⟩ϕ

with any η ∈ R,
getting a contradiction when η > 1. Thus, in case ⟨f, f⟩ϕ = 0 also ⟨f, h⟩ϕ = 0, and the inequality holds
in this case, too.

2Because

∥f + h∥2ϕ =⟨f + h, f + h⟩ϕ = ⟨f, f⟩ϕ + 2Re(⟨f, h⟩ϕ) + ⟨h, h⟩ϕ
=∥f∥2ϕ + 2Re(⟨f, h⟩ϕ) + ∥h∥2ϕ ≤ ∥f∥2ϕ + 2∥f∥ϕ∥h∥ϕ + ∥h∥2ϕ
=(∥f∥ϕ + ∥h∥ϕ)2.

3Closed, because ∥ · ∥ϕ is a continuous map.
4In fact, let K be the support of f . Then the support of L

ss−1
α

f is ss−1
α K. Let U be a compact neighborhood

of e: it exists because G is locally compact. Hence ss−1
α is eventually in U and the support of L

ss−1
α

f is
eventually in UK, which is a compact set. Hence the support of L

ss−1
α

f − f is eventually in UK ∪ K,
and we have

∥L
ss−1

α
f − f∥pLp(G) =

∫︂
G

|L
ss−1

α
f(t)− f(t)|p dµ(t) ≤ ∥L

ss−1
α

f − f∥p∞µ(UK ∪K) → 0.
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Let f, g be a pair of complex Borel functions on G. Formally, their convolution is the
new function

(f ∗ g)(t) :=
∫︂
G
f(s)g(s−1t) dµ(s) =

∫︂
G
f(ts)g(s−1) dµ(s)

(for the second equality recall that µ is by assumption a left-invariant Haar measure), but
this applies only when the integral is well defined: This happens for sure when f ∈ Cc(G)
and g ∈ L∞(G), and in this case the resulting function f ∗ g is continuous5.

Remark. 4.1 Note that (at least for the moment) we are not assuming that G is abelian.
As a consequence f ∗ g and g ∗ f are not necessarily the same function, because

(g ∗ f)(t) =
∫︂
G
g(s)f(s−1t) dµ(s) =

∫︂
G
f(st)g(s−1)

dµ(s)

∆(s)

(recall Formula (1.2)) which in general is not equal to (f ∗ g)(t), unless f(st) = f(ts)∆(s).
Note that this happens for every f only when G is abelian. □

Let ϕ be a function of positive type, and let f, h ∈ Cc(G). Then (via the usual Fubini–
Tonelli theorems) we have the identity

⟨f, h⟩ϕ =

∫︂
G×G

ϕ(s−1t)f(s)h(t) dµ(s) dµ(t)

=

∫︂
G

[︂ ∫︂
G
f(s)ϕ(s−1t) dµ(s)

]︂
h(t) dµ(t)

=

∫︂
G
(f ∗ ϕ)(t)h(t) dµ(t).

In particular, suppose that ∥f∥ϕ = 0. Then, by Cauchy–Schwarz inequality we know that
⟨f, h⟩ϕ = 0 for every h ∈ Cc(G), and the previous formula gives∫︂

G
(f ∗ ϕ)(t)h(t) dµ(t) = 0 for all h ∈ Cc(G).

We know that f ∗ ϕ is continuous, therefore we deduce that (f ∗ ϕ)(t) = 0 for every t ∈ G.
The following proposition shows a very useful representation formula for functions of

positive type.

Proposition 4.2 Let ϕ be a function of positive type on G. Then there exists an element
xϕ ∈ Hϕ such that

ϕ(s) = ⟨xϕ, Lsxϕ⟩ϕ for a.e. s ∈ G.

Proof. Let f ∈ Cc(G). Note that f ∗ ϕ is a well defined continuous function, and define

Φ(f) := (f ∗ ϕ)(e) =
∫︂
G
f(s)ϕ(s−1) dµ(s),

This proves the convergence of L
ss−1

α
f to f in Lp(G) norm, when f ∈ Cc(G). For a generic g ∈ Lp(G)

(with p ∈ [0,+∞)) the claim from the density of Cc(G) as subset of Lp(G), and the inequality

∥L
ss−1

α
g − g∥Lp(G) ≤ ∥L

ss−1
α

g − L
ss−1

α
f∥Lp(G) + ∥L

ss−1
α

f − f∥Lp(G) + ∥f − g∥Lp(G)

= ∥L
ss−1

α
f − f∥Lp(G) + 2∥f − g∥Lp(G).

5In fact, let tα be a family of elements in G converging to t. Then

|(f ∗ g)(tα)− (f ∗ g)(t)| ≤
∫︂
G

|f(tαs)− f(ts)| · |g(s−1)| dµ(s) ≤ ∥g∥∞
∫︂
G

|f(tαs)− f(ts)|dµ(s)

= ∥g∥∞ · ∥L
t−1
α

f − Lt−1f∥L1(G) = ∥g∥∞ · ∥L
tt−1

α
f − f∥L1(G),

and we can repeat the argument in Footnote 4.
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which is a linear functional on Cc(G). Let f ∈ Dϕ, i.e. suppose that ∥f∥ϕ = 0. Then we
have noticed that f ∗ ϕ is identically zero, in particular, Φ(f) = 0. This proves that Φ is
well defined on the quotient space Cc(G)/Dϕ. Now we prove that Φ can be extended as a
continuous linear functional on Hϕ. In fact, let {α} be an index set for the collection of all
open neighborhood Vα of e in G. Since G is Hausdorff,

⋂︁
α Vα = {e}, and if we write α ≤ β

when Vβ ⊆ Vα, then the set of indexes becomes a direct set. By Urysohn’s lemma for every
α there is a function gα : G → [0,+∞) which is continuous and compactly supported on
Vα, and such that ∫︂

G
gα(t) dµ(t) = 1.

This family defines a corresponding family of functionals on Cc(G):

f ↦→
∫︂
G
f(t)gα(t) dµ(t).

For every fixed f the limit in α of all these values is f(e), thus the family of functionals
converges weakly to the Dirac distribution in e. This is true also for functions f which are
in C(G) (i.e. which not necessarily have a compact support). In fact, let K be a compact
neighborhood of e and let Vβ := K̊ (the open part of K is an open neighborhood of e). By
Urysohn lemma, let h : G→ R be a continuous function supported in K and which is 1 in
Vβ . Then ∫︂

G
f(t)gα(t) dµ(t) =

∫︂
G
f(t)h(t)gα(t) dµ(t)

when α ≥ β (because gα is supported in Vα and Vα ⊆ Vβ for α ≥ β), thus

lim
α

∫︂
G
f(t)gα(t) dµ(t) = lim

α

∫︂
G
f(t)h(t)gα(t) dµ(t) = f(e)h(e) = f(e).

Therefore, we have

Φ(f) = (f ∗ ϕ)(e) = lim
α

∫︂
G
(f ∗ ϕ)(t)gα(t) dµ(t)

= lim
α

∫︂
G×G

ϕ(s−1t)f(s)gα(t) dµ(s)dµ(t) = lim
α

⟨f, gα⟩ϕ.

On the other hand, we have

|⟨f, gα⟩ϕ| ≤ ∥f∥ϕ∥gα∥ϕ (Cauchy–Schwarz)
≤ ∥f∥ϕ∥ϕ∥∞∥gα∥L1 (comparison of norms, Eq. (4.2))

= ∥ϕ∥∞∥f∥ϕ (gα is nonnegative and ∥gα∥L1 =
∫︁
G gα dµ = 1).

Thus the previous equality shows that

|Φ(f)| ≤ ∥ϕ∥∞∥f∥ϕ,

i.e. Φ is a continuous functional on Cc(G)/Dϕ. This implies that it can be extended in a
unique way to a continuous functional on Hϕ, that we denote Φ, as well. Let xϕ ∈ Hϕ be
the element such that Φ(f) = ⟨f, xϕ⟩ϕ (by Riesz isomorphism theorem).
Let ξ ∈ Cc(G), then

(4.3) ⟨ξ, xϕ⟩ϕ = Φ(ξ) = (ξ ∗ ϕ)(e) =
∫︂
G
ϕ(t−1)ξ(t) dµ(t) =

∫︂
G
ϕ(t)ξ(t) dµ(t),

where in the last step we have used (4.1). Substituting ξ with Ls−1ξ in this formula, and
recalling that Ls is unitary in Hϕ, we get

(4.4) ⟨ξ, Lsxϕ⟩ϕ = ⟨Ls−1ξ, xϕ⟩ϕ =

∫︂
G
ϕ(t)ξ(st) dµ(t) =

∫︂
G
ϕ(s−1t)ξ(t) dµ(t).
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Let h be another function in Cc(G), then

⟨ξ, h⟩ϕ =

∫︂
G×G

ϕ(s−1t)ξ(s)h(t) dµ(s)dµ(t)

=

∫︂
G

[︂ ∫︂
G
ϕ(s−1t)ξ(s) dµ(s)

]︂
h(t) dµ(t)

=

∫︂
G

[︂ ∫︂
G
ϕ(t−1s)ξ(s) dµ(s)

]︂
h(t) dµ(t)

=

∫︂
G
⟨ξ, Ltxϕ⟩ϕh(t) dµ(t),(4.5)

where in the last step we have used (4.4). By density, this formula holds also for every
ξ ∈ Hϕ. Setting ξ = xϕ (and recalling (4.3)) yields∫︂

G
⟨xϕ, Ltxϕ⟩ϕh(t) dµ(t) = ⟨xϕ, h⟩ϕ = ⟨h, xϕ⟩ϕ = Φ(h)

=

∫︂
G
ϕ(t)h(t) dµ(t) =

∫︂
G
ϕ(t)h(t) dµ(t).

Since h ∈ Cc(G) is arbitrary, we conclude that ϕ(t) = ⟨xϕ, Ltxϕ⟩ϕ for almost all t ∈ G. ■

Remark. 4.2 Note that the equality (4.5) shows that the C-span of Ltxϕ when t ranges in
G is dense in Hϕ. In fact, the formula shows that if ξ is ⟨·, ·⟩ϕ-orthogonal to all Ltxϕ, then
⟨ξ, h⟩ϕ = 0 for every h ∈ Cc(G). When the formula is extended to ξ ∈ Hϕ, this shows that
ξ is the zero element in Hϕ. □

Exercise. 4.1 Let (ρ,H) be any unitary representation of a locally compact group G. Take
any v ∈ H, and set

ϕ : G→ C, ϕ(g) := ⟨v, ρ(g)v⟩.
Prove that ϕ is of positive type.

Corollary 4.1 Let ϕ ∈ L∞(G) be a function of positive type. Then ϕ is a continuous
functions almost everywhere. Moreover, suppose that ϕ is continuous, then
• ϕ(e) = ∥xϕ∥2ϕ ≥ 0;

• |ϕ(s)| ≤ ∥xϕ∥ϕ ∥Lsxϕ∥ϕ = ∥xϕ∥2ϕ = ϕ(e).

Proof. By Proposition 4.2 we know that ϕ(s) = ⟨xϕ, Lsxϕ⟩ϕ for a.e. s ∈ G. The function
s ↦→ ⟨xϕ, Lsxϕ⟩ϕ is continuous, hence the first claim follows. The other facts are immediate
consequence of this identity (plus the Cauchy–Schwarz inequality and the fact that Ls is
a unitary representation in Hϕ). ■

4.3. Elementary functions

Let
P(G) := {ϕ ∈ C(G) ∩ L∞(G) : ϕ of positive type, ∥ϕ∥∞ ≤ 1},

which is a convex set. Note that elements in P are continuous, so that for them the
condition ∥ϕ∥∞ ≤ 1 is equivalent to the assumption ϕ(e) ≤ 1 (by Corollary 4.1). We also
introduce

E(G) := {extreme points of P(G)},
where extreme is in the sense of convex sets, i.e. ϕ ∈ E(G) cannot be written as λϕ1+(1−
λ)ϕ2 with ϕ1, ϕ2 ∈ P(G), ϕ1 ̸= ϕ2 and λ ∈ (0, 1).
We notice that the null function belongs to E(G)6. All other functions in E(G) are called

6Suppose the contrary, i.e. that 0 = λϕ1 + (1 − λ)ϕ2 with ϕ1, ϕ2 ∈ P and ϕ1 ̸= ϕ2. Then 0 = λϕ1(e) +
(1 − λ)ϕ2(e), but ϕj(e) ≥ 0, hence ϕ1(e) = ϕ2(e) = 0 implying that both ϕj are the null function (By
Corollary 4.1). In particular ϕ1 = ϕ2, which is a contradiction.
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elementary functions, by definition. Note that ∥ϕ∥∞ = ϕ(e) = 1 for elementary functions;
In fact, ϕ(e) ̸= 0 (otherwise ϕ is the null function), and assume that ϕ(e) < 1. Then
ϕ/ϕ(e) is in P(G) and the equality ϕ = ϕ(e) · ϕ

ϕ(e) + (1 − ϕ(e)) · 0 shows that ϕ is not an
extreme point.
Let ϕ ∈ P(G), with ϕ(e) = 1. Then the following properties are equivalent:

i) ϕ is extremal, so that cannot be written as λϕ1 + (1− λ)ϕ2 with ϕ1 ̸= ϕ2 ∈ P(G) and
λ ∈ (0, 1),

ii) if ϕ = ϕ1 + ϕ2 with ϕ1, ϕ2 ∈ P(G), then there exists λ ∈ [0, 1] such that ϕ1 = λϕ.
In fact:
i)⇒ ii). Suppose ϕ = ϕ1 + ϕ2 with ϕ1, ϕ2 ∈ P(G). Evaluating the equality at e we
deduce that 1 = ϕ(e) = ϕ1(e) + ϕ2(e), with ϕ1(e), ϕ2(e) ∈ [0, 1] (because ϕj are in P). If
ϕ1(e), ϕ2(e) ∈ (0, 1), then

ϕ = ϕ1(e)
ϕ1
ϕ1(e)

+ ϕ2(e)
ϕ2
ϕ2(e)

,

with ϕj
ϕj(e)

∈ P. Assumption i) implies that ϕ1
ϕ1(e)

= ϕ2
ϕ2(e)

= ϕ. Therefore ϕj = ϕj(e)ϕ

for j = 1, 2, and ii) is proved. The same conclusion holds also in case ϕ1(e) ∈ {0, 1} or
ϕ2(e) ∈ {0, 1}, trivially.
ii)⇒ i). Suppose ϕ = λϕ1+(1−λ)ϕ2 with ϕ1, ϕ2 ∈ P(G) and λ ∈ (0, 1). Then 1 = ϕ(e) =
λϕ1(e) + (1 − λ)ϕ2(e) ≤ 1, with equality if and only if ϕ1(e) = ϕ2(e) = 1. Suppose that
this is the case. Let ψ1 := λϕ1, which is in P(G) since ψ1(e) = λϕ1(e) = λ ≤ 1. The
same for ψ2 := (1 − λ)ϕ2. Assumption ii) implies that there exists α ∈ [0, 1] such that
λϕ1 = ψ1 = αϕ. Evaluating at e this equality gives λ = α, so that ϕ1 = ϕ. The same
happens to ϕ2 = ϕ, so that in particular ϕ1 = ϕ2.

Theorem 4.1 Let ϕ be a continuous function of positive type on G, with ϕ(e) = 1. Then
ϕ ∈ E(G) if and only if the unitary representation s ↦→ Ls in Hϕ is topologically irreducible.

Proof. ⇒). The claim is evident if ϕ is the null function (because in this case Hϕ is the
trivial space {0}). Assume that ϕ is an elementary function. Let W be a closed subspace
of Hϕ which is Ls invariant for every s ∈ G, let W⊥ be its orthogonal complement and
let PW be the orthogonal projector to W . Since the representation is unitary, also W⊥ is
invariant, and PW commutes with Ls for every s. Thus, to prove the claim it is sufficient
to prove that the unique orthogonal projectors commuting with Ls for every s ∈ G are the
zero or the identity map. Let A be any orthogonal projector. Then A2 = A and A = A∗,
and also 1Hϕ

−A is an orthogonal projector. Suppose that A commutes with Ls for every
s. Thus for every s ∈ G we have

ϕ(s) = ⟨xϕ, Lsxϕ⟩ϕ
= ⟨Axϕ, Lsxϕ⟩ϕ + ⟨(1Hϕ

−A)xϕ, Lsxϕ⟩ϕ
= ⟨Axϕ, ALsxϕ⟩ϕ + ⟨(1Hϕ

−A)xϕ, (1Hϕ
−A)Lsxϕ⟩ϕ since A∗A = A2 = A

= ⟨Axϕ, LsAxϕ⟩ϕ + ⟨(1Hϕ
−A)xϕ, Ls(1Hϕ

−A)xϕ⟩ϕ.

This identity gives ϕ as sum of tho functions of positive type (see Exercise 4.1). Since ϕ is
extreme, there is λ such that

⟨Axϕ, Lsxϕ⟩ϕ = ⟨Axϕ, LsAxϕ⟩ϕ = λ⟨xϕ, Lsxϕ⟩ϕ ∀s ∈ G,

i.e.
⟨(A− λ1Hϕ

)xϕ, Lsxϕ⟩ϕ = 0 ∀s ∈ G.

By Remark 4.2 we know that {Lsxϕ : s ∈ G} spans a dense subset of Hϕ, hence we deduce
that (A−λ1Hϕ

)xϕ = 0, i.e. Axϕ = λxϕ. But A is a projector, hence λ = 0 or 1. Changing
A with 1Hϕ

− A, if necessary, we can assume that λ = 1, i.e. that Axϕ = xϕ. Since A
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commutes with Ls, we deduce that ALsxϕ = LsAxϕ = Lsxϕ, and hence A = 1Hϕ
(again

because Lsxϕ spans a dense subset of Hϕ).
⇐). Suppose that the representation (L,Hϕ) is irreducible, and that ϕ = ϕ1 + ϕ2 with
ϕ1, ϕ2 both in P(G). Then for every f ∈ Cc(G)

⟨f, f⟩ϕ1 + ⟨f, f⟩ϕ2 = ⟨f, f⟩ϕ
so that

(4.6) ⟨f, f⟩ϕ1 ≤ ⟨f, f⟩ϕ.
This proves that if f is degenerate with respect to ϕ, then it is degenerate also with respect
to ϕ1, i.e. that Dϕ ⊆ Dϕ1 . This inclusion produces a surjection j : Hϕ ↠ Hϕ1 . The map
⟨j(·), j(·)⟩ϕ1 defines a positive hermitian form on Hϕ, and hence there exists a continuous
and positive endomorphism A on Hϕ such that

(4.7) ⟨j(ξ), j(ψ)⟩ϕ1 = ⟨Aξ, ψ⟩ϕ ∀ξ, ψ ∈ Hϕ.

This formula also shows that A is self-adjoint, because it implies that

⟨Aξ, ψ⟩ϕ = ⟨j(ξ), j(ψ)⟩ϕ1 = ⟨j(ψ), j(ξ)⟩ϕ1 = ⟨Aψ, ξ⟩ϕ = ⟨ξ, Aψ⟩ϕ.

We verify that A commutes with Ls for every s. In fact, by (4.7), the fact that L is unitary,
and the fact that j commutes with Ls, we get, for every s ∈ G and every ξ, ψ ∈ Hϕ:

⟨ALsξ, ψ⟩ϕ = ⟨j(Lsξ), j(ψ)⟩ϕ1 = ⟨Lsj(ξ), j(ψ)⟩ϕ1 = ⟨j(ξ), Ls−1j(ψ)⟩ϕ1
= ⟨j(ξ), j(Ls−1ψ)⟩ϕ1 = ⟨Aξ,Ls−1ψ⟩ϕ = ⟨LsAξ, ψ⟩ϕ.

This means that ⟨(ALs − LsA)ξ, ψ⟩ϕ = 0 for every ξ, ψ ∈ Hϕ so that ALs − LsA = 0.
Schur’s lemma (Theorem 3.1[2]) implies that A = λ1Hϕ

for some λ ∈ C, thus (4.7) becomes

⟨j(ξ), j(ψ)⟩ϕ1 = λ⟨ξ, ψ⟩ϕ, ∀ξ, ψ ∈ Hϕ.

Setting ξ = ψ we deduce that λ is real and in [0, 1] (it is ≥ 0 because ⟨j(·), j(·)⟩ϕ1 is
positive, and ≤ 1 by (4.6)). Let f, g ∈ Cc(G), and let ξ, ψ their images in Hϕ. Then the
previous equality becomes∫︂

G×G
ϕ1(s

−1t)f(s)g(t) dµ(s) dµ(t) = λ

∫︂
G×G

ϕ(s−1t)f(s)g(t) dµ(s) dµ(t).

Since f, g are arbitrary this implies that ϕ1(s) = λϕ(s) for almost every s ∈ G, and hence
for every s, because they are continuous. ■

Theorem 4.2 Let G be an abelian and locally compact group. Then the set of the elementary
functions of G coincides with the set of (continuous) characters.

Proof. We have already verified that the characters are functions of positive type, and
for them the condition χ(e) = 1 is evident. Thus, by Theorem 4.1 the claim will follow
immediately if we are able to prove that the following conditions are equivalent:

i. ϕ(e) = 1 and the representation of G in Hϕ is irreducible;
ii. ϕ is a character on G.

(ii.) =⇒ (i.) Suppose that ϕ is a character. Then

⟨f, f⟩ϕ =
⃓⃓⃓ ∫︂

G
ϕ(s)f(s) dµ(s)

⃓⃓⃓2
proving thatDϕ coincides with the set of all functions f ∈ Cc(G) such that

∫︁
Gϕ(s)f(s) dµ(s)

= 0. Thus, the dimension of Cc(G)/Dϕ(G) is one7, and Hϕ itself is one-dimensional.

7Pick any h ∈ Cc(G), with
∫︁
G
h(s) dµ(s) = 1. Set α :=

∫︁
G
ϕ(s)f(s) dµ(s). Then∫︂

G

ϕ(s)
[︁
f(s)− αϕ(s)h(s)

]︁
dµ(s) = α− α

∫︂
G

h(s) dµ(s) = 0,
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Therefore the representation is irreducible.
(i.) =⇒ (ii.) Assume that the representation L of G in Hϕ is irreducible. Then Hϕ is
one-dimensional (by Proposition 3.4). We know that xϕ ∈ Hϕ is not zero (otherwise
ϕ(s) = ⟨xϕ, Lsxϕ⟩ϕ would be identically 0, contradicting the assumption that ϕ(e) = 1).
Thus Hϕ = Cxϕ, and there exists λ : G → C such that Lsxϕ = λ(s)xϕ. The function λ
is a morphism of groups, since L is a morphism. It is also a continuous map, since the
representation L is a topological representation, therefore λ ∈ Ĝ. Finally, we have

ϕ(s) = ⟨xϕ, Lsxϕ⟩ϕ = ⟨xϕ, λ(s)xϕ⟩ϕ = λ(s)⟨xϕ, xϕ⟩ϕ = λ(s)ϕ(e) = λ(s),

and therefore ϕ is a character. ■

4.4. The Fourier inversion formula

Let G be a locally compact and abelian group. Fix µ be any Haar measure on G: it is
both left and right invariant, because G is commutative. Let f ∈ L1(G); by definition the
function

f̂ : Ĝ→ C, f̂(χ) :=

∫︂
G
χ(g)f(g) dµ(g)

is its Fourier transform. Note that it is well defined, because |χ(g)| = 1 for every g, and
that f̂ is bounded, since ∥f̂∥∞ ≤ ∥f∥L1(G).

Let V (G) denote the complex span of the continuous functions of positive type (so that
it is ⟨P(G)⟩C), and let

V 1(G) := V (G) ∩ L1(G).

We know that also Ĝ is a locally compact abelian group. Thus, also Ĝ support a Haar
measure. The following theorem states the main result of this section: it is possible to fix
the Haar measure in Ĝ in such a way that it is well related with the Haar measure in G,
on a suitable set of functions.

Theorem 4.3 (Fourier inversion formula) It is possible to fix the Haar measure dµ̂ in Ĝ

in such a way that if f ∈ V 1(G) then f̂ ∈ V 1(Ĝ), and

f(y) =

∫︂
Ĝ
f̂(χ)χ(y) dµ̂(χ) ∀y ∈ G.

Moreover, the Fourier transform f ↦→ f̂ is an isometric bijection of V 1(G) into V 1(Ĝ).

The proof of this result will need some work, actually, but this claim in itself is not
completely satisfying since the formulation of the duality in V 1(G) space is a bit artificial.
A more conventional choice would be the space L2(G) ∩ L1(G), and then extended by
density to a map in L2(G). We will need some other tools to move from the theorem on
V 1(G) to a theorem claiming the same conclusions on these more usual spaces.

Firstly, we need the following statement analyzing the structure of L1(G) with respect
to the convolution.

Proposition 4.3 Let ∗ denote the convolution product. Then L1(G) is a commutative and
associative algebra with respect to the pointwise sum and the ∗ product. Moreover,

∥f ∗ g∥L1 ≤ ∥f∥L1 · ∥g∥L1 ∀f, g ∈ L1(G),

so that it is a Banach algebra.

and this proves that f −αϕh is in Dϕ, or, which is the same, that f is represented by αϕh in the quotient
Cc(G)/Dϕ. This proves that the quotient Cc(G)/Dϕ is generated by the function ϕh, and hence it is
one-dimensional.
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Proof. We have already noted that the convolution is commutative for abelian groups.
The proof that f ∗ g is a measurable function is the unique point needing some care, but
can be performed with the same strategy for the usual case where G = Rn. The upper
bound for the norm and the associativity of the product are elementary consequence of the
formal properties of the product (plus Fubini–Tonelli theorems). ■

Remark. 4.3 In general L1(G) is not a unital algebra, i.e. it does not contain a function
g such that f ∗ g = f for every f ∈ L1(G). In fact, it can be proved that such a function
g exists if and only if G is discrete (and in that case the Haar measure is the function
counting points and the function which is 1 in e and 0 otherwise becomes the unit in
L1(G)). This fact represents a difficulty, because we need to apply to L1(G) several tools
we have introduced in Chapter 2 (spectrum, Gelfand transform, and so on) for unital
algebras. However, there is a canonic way to inject any algebra into a unital algebra via
an isometry of Banach algebras (see Exercise 2.1): This will allow us to recover some
properties for L1(G) from the analogous property of its canonical unital extension. □

To proceed we need a different characterization of the compact-open topology of Ĝ. As
a first step we prove that the Fourier transform of L1(G) functions are continuous maps.

Lemma 4.2 Let f ∈ L1(G). Then f̂ is a continuous map on Ĝ.

Proof. Haar measure is a Radon measure, by design. As a consequence also |f(s)| dµ(s)
is a Radon measure. In particular it is inner regular and finite (because f ∈ L1(G), by
assumption), so that for every ϵ > 0 there exists a compact K = K(ϵ) such that∫︂

Kc

|f(s)| dµ(s) ≤ ϵ.

Let {χα}α be any direct system of characters in Ĝ converging to a given character χ. Fix
ϵ > 0. The compact-open topology coincides with the uniform on compact convergence
topology. Thus, let K be the compact with

∫︁
Kc |f(s)| dµ(s) ≤ ϵ and let α be large enough

so that ∥χβ − χ∥∞,K ≤ ϵ for every β ≥ α. Then

|f̂(χβ)− f̂(χ)| ≤
∫︂
G
|f(s)| · |χβ(s)− χ(s)|dµ(s)

=

∫︂
K
|f(s)| · |χβ(s)− χ(s)| dµ(s) +

∫︂
Kc

|f(s)| · |χβ(s)− χ(s)|dµ(s).

By assumption, |χβ(s)− χ(s)| is bounded by ϵ in K if β ≥ α, and by 2 in general, thus

≤ ϵ

∫︂
K
|f(s)|dµ(s) + 2

∫︂
Kc

|f(s)| dµ(s).

Moreover, the integral of |f | is bounded by ∥f∥L1 in K and by ϵ in Kc, hence

≤ ϵ
(︁
∥f∥L1 + 2

)︁
,

which proves the claim. ■

Let
Â := {f̂ : f ∈ L1(G)},

the set of Fourier transforms of L1(G) functions. In Ĝ we can introduce also a (formally)
different topology, namely the transform topology, t-topology in brief, which is the weak-
* topology induced by the set Â; in this topology a family of characters χ converges to
χ0 if and only if f̂(χ) → f̂(χ0) for every f̂ ∈ Â. By its definition, this topology is the
coarser topology such that all functions in Â become continuous. Lemma 4.2 shows that
this topology is weaker than the compact-open topology, i.e. that every set in Ĝ which is
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t-open is also open in the compact-open topology8. We want to prove that actually these
topologies are the same. To this purpose we need a second lemma.

Lemma 4.3 Let G × Ĝ have the product topology of the assumed topology in G and the
t-topology in Ĝ. Then the map

G× Ĝ −→ C,
(y, χ) ↦→ χ(y)

is continuous.

Proof. Let f be any map in L1(G). Firstly we prove the continuity of the map

G× Ĝ −→ C,
(y, χ) ↦→ ˆ︃Lyf(χ).

Choose any (y0, χ0) ∈ G× Ĝ. For very ϵ > 0 there is an open neighborhood U of y0 such
that ∥Lyf − Ly0f∥L1 ≤ ϵ9. Hence

|ˆ︃Lyf(χ)− ˆ︁Ly0f(χ)| ≤ ∥Lyf − Ly0f∥L1 ≤ ϵ ∀χ ∈ Ĝ,

when y belongs to this set. Moreover, by definition of t-topology, there is a t-open neigh-
borhood V of χ0 such that

|ˆ︁Ly0f(χ)− ˆ︁Ly0f(χ0)| ≤ ϵ ∀χ ∈ V.

Therefore, if (y, χ) ∈ U × V then

|ˆ︃Lyf(χ)− ˆ︁Ly0f(χ0)| ≤ |ˆ︃Lyf(χ)− ˆ︁Ly0f(χ)|+ |ˆ︁Ly0f(χ)− ˆ︁Ly0f(χ0)| ≤ 2ϵ,

which proves the claim.
Now, we note the following equality:

χ(y)ˆ︃Lyf(χ) = ∫︂
G
(Lyf)(s)χ(y)χ(s) dµ(s) =

∫︂
G
f(y−1s)χ(y−1s) dµ(s) = f̂(χ).

Pick again any couple (y0, χ0) in G× Ĝ, and let f0 be any function such that f0̂(χ0) ̸= 0
(such a function exists, for example take f = hχ0 where h is any function in Cc(G) with∫︁
G hdµ ̸= 0). Then ˆ︂Ly0f0(χ0) ̸= 0 (by the previous formula). By the first part of the

proof, the value of ˆ︁Lyf0(χ) is non zero in a suitable open neighborhood of (y0, χ0), so that
the map

(y, χ) ↦→ f0̂(χ)

ˆ︁Lyf0(χ)
= χ(y)

is well defined there, and hence continuous in U × V (because quotient of continuous
maps). Repeating this argument in every point we conclude that the map is continuous
everywhere. ■

8This is probably my fault, but I have always some hesitation about the truth of this claim. I reproduce
here its simple proof. Consider the following diagram:

(Ĝ, c.-open top.) (Ĝ, t-top.)

C

i

f̂

f̂

where i is the identity map. Let O be an open set in the t-topology. Then, directly from its definition,
there is a function f ∈ L1(G) and an open set V ⊆ C such that O = f̂

−1
(V ). By Lemma 4.2,

f̂ : (Ĝ, com.-open top.) → C is continuous, hence O = f̂
−1

(V ) is an open set in the comp.-open topology.
This proves that each open set in t-topology is also an open set in comp.-open topology. In particular the
inclusion i map is itself continuous.

9We have already used this property for functions in Cc(G), see Footnote 5 in Section 4.2. The claim
extends to all L1(G) because Cc(G) is dense in this space.
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Theorem 4.4 Compact-open topology and t-topology in Ĝ are the same.

Proof. It is sufficient to prove that every set W (K,V ) (with K compact in G and V open
neighborhood of 1 in S1) is a neighborhood of the trivial character also with respect to
the t-topology. This proves that the compact-open topology is contained in the t-topology,
and the claim follows because we already know the opposite inclusion.
By Proposition 4.1 it is sufficient to prove the claim when V = N(1). Let K be a compact
subset in G and let χ0 be the trivial character; evidently χ0 ∈W (K,N(1)). By Lemma 4.3,
for every y0 ∈ K there is an open neighborhood U of y0 in G and a t-open neighborhood
V of χ0 in Ĝ such that χ(y) ∈ N(1) for all (y, χ) ∈ U × V . The compact set K is covered
by finitely many U1, . . . , Ur. Let V1, . . . , Vr be the corresponding t-open neighborhoods in
Ĝ. Then V :=

⋂︁r
j=1 Vj is a t-open set which is contained in W (K,N(1)). This proves that

W (K,N(1)) is a neighborhood of the trivial character also in the t-topology. ■

Proposition 4.4 Let B denote the Banach algebra L1(G), and let B̂ be the set of complex
characters of B (as algebra). For every χ ∈ Ĝ and f ∈ B, define

ν̂χ(f) := f̂(χ) =

∫︂
G
f(s)χ(s) dµ(s).

Then νχ is in B̂, and the map

ν̂ : Ĝ −→ B̂,
χ ↦→ ν̂χ

is a bijection. It is a homeomorphism of topological spaces when in Ĝ we consider the
compact-open topology and in B̂ we take the Gelfand topology.

Recall that a character of an algebra is by definition a nonzero map. Note that the
proposition states the validity of the formula

ˆ︁f ∗ g(χ) = ν̂χ(f ∗ g) = ν̂χ(f)ν̂χ(g) = f̂(χ)ĝ(χ)

for every χ, i.e. that ˆ︁f ∗ g = f̂ ĝ (so that the Fourier transform converts the convolution
into the pointwise product).

Proof. Every ν̂χ is evidently linear on B, and not identically 0 (because for every χ there is
a function f ∈ B with f̂(χ) ̸= 0). A routine computation suffices to prove the multiplicative
property of ν̂χ (recall that G is abelian, thus the Haar measure is left-right invariant):

ν̂χ(f ∗ g) =
∫︂
G
(f ∗ g)(s)χ(s) dµ(s)

=

∫︂
G

∫︂
G
f(t)g(st−1) dµ(t)χ(s) dµ(s)

=

∫︂
G

∫︂
G
f(t)g(st−1) dµ(t)χ(t)χ(st−1) dµ(s)

=

∫︂
G
f(t)χ(t)

[︂ ∫︂
G
g(st−1)χ(st−1) dµ(t)

]︂
dµ(s)

=

∫︂
G
f(t)χ(t) dµ(s) ĝ(χ) = f̂(χ)ĝ(χ).

Let χ, χ′ be two characters. Suppose that ν̂χ = ν̂χ′ , i.e. that f̂(χ) = ν̂χ(f) = ν̂χ′(f) =

f̂(χ′) for every f ∈ B. Then χ(s) = χ′(s) for a.e. s ∈ G. Since they are continuous, they
are equal everywhere. This proves that ν̂ is injective.
Let ψ be an element in B̂, i.e. a character of the algebra L1(G). Then it is automatically
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continuous (by Proposition 2.3[iii]) 10. In particular it is a continuous and linear morphism
of the Banach linear space L1(G), and its norm is finite11. The classical duality result in
Lp(G) spaces shows that there exists φ ∈ L∞(G) such that

ψ(f) =

∫︂
G
f(s)φ(s) dµ(s) ∀f ∈ L1(G),

with ∥φ∥∞ = ∥ψ∥. Moreover, ψ is multiplicative, thus (Fubini–Tonelli result applied
several times, here)

ψ(f)

∫︂
G
g(t)φ(t) dµ(t) = ψ(f)ψ(g) = ψ(f ∗ g) = ψ(g ∗ f)

=

∫︂
G
(g ∗ f)(s)φ(s) dµ(s) =

∫︂
G

∫︂
G
g(t)f(t−1s) dµ(t)φ(s) dµ(s)

=

∫︂
G
g(t)

[︂ ∫︂
G
(Ltf)(s)φ(s) dµ(s)

]︂
dµ(t) =

∫︂
G
ψ(Ltf)g(t) dµ(t).

In this identity g is arbitrary, therefore

ψ(f)φ(t) = ψ(Ltf) for a.e. t ∈ G.

The function appearing to the right side of this formula is continuous in t and we can select
f so that ψ(f) ̸= 0, hence changing φ in a null set at most, we can assume that φ itself
is continuous and that the equality holds everywhere. Then, applying the identity three
times we conclude that

ψ(f)φ(st) = ψ(Lstf) = ψ(LsLtf) = φ(s)ψ(Ltf) = φ(s)φ(t)ψ(f)

for every s, t ∈ G, proving that φ is multiplicative. The map s ↦→ |φ(s)| is a multiplicative
map G → [0,+∞) whose range is in [0, ∥ψ∥1], because ∥φ∥∞ = ∥ψ∥1. The unique multi-
plicative subgroup in R which is also bounded is {1}, hence |φ(s)| is identically 1. This
completes the proof that φ is a character, i.e. that ν̂ is a surjection.
Note that the Gelfand topology in B̂ is only another name for the weak-* topology, which
in this setting is the topology producing the pointwise convergence. Thus, a sequence of
characters in B̂ converges if and only if and only if their values in each element f ∈ B
converges. We have just verified that the characters in B̂ are all of the type ν̂χ for some
χ, so that they converge if and only if ν̂χ(f) converges for every f ; i.e. if and only if f̂(χ)
converges for every f ; this is exactly the notion of t-topology we have introduced before
on Ĝ. This proves that B̂ (with Gelfand topology) and Ĝ, with t-topology, are homeomor-
phic. According to Theorem 4.4 t-topology and compact-open topology in Ĝ are the same
topology, so that also the last claim follows. ■

Proposition 4.5 The set P(G) is a compact subset of L∞(G) with respect to the weak-*
topology.

Proof. According to the weak-* topology, a sequence of elements {ϕα}α ∈ L∞(G) converges
if and only if ϕα(f) :=

∫︁
G f(s)ϕα(s) dµ(s) converges, for every f ∈ L1(G) (here we are

using the elements in L∞(G) to produce functionals on L1(G)). The set P(G) is bounded
by 1, as subset of L∞(G). It is also weak-* closed. In fact, if the sequence {ϕα}α ∈ P(G)
converges (weak-*) to some ϕ ∈ L∞(G), then by definition

(4.8) lim
α

∫︂
G
ϕα(s)h(s) dµ(s) =

∫︂
G
ϕ(s)h(s) dµ(s) ∀h ∈ L1(G).

10Actually, Proposition 2.3 assumes that the Banach algebra is commutative and unital. The Banach
algebra B is for sure abelian, but not always unital. In order to apply that proposition to the present case
we need to pass through the canonical banach algebra containing B, as we have told in the introduction
of this section.

11It is bounded by 1, by Proposition 2.3 again, but we do not need this point here.



60 CHAPTER 4. DUALITY

First we prove that ϕ satisfies (4.1). In fact, let h ∈ L1(G), and set h̃ ∈ L1(G), with
h̃(s) := h(s−1) (for a.e. s ∈ G). Then each ϕα satisfies (4.1), and using (4.8) twice, with
h̃ and with h, we get∫︂

G
ϕ(s−1)h(s) dµ(s) =

∫︂
G
ϕ(s−1)h(s) dµ(s) =

∫︂
G
ϕ(s)h̃(s) dµ(s)

= lim
α

∫︂
G
ϕα(s)h̃(s) dµ(s) = lim

α

∫︂
G
ϕα(s)h̃(s) dµ(s)

= lim
α

∫︂
G
ϕα(s−1)h(s) dµ(s) = lim

α

∫︂
G
ϕα(s)h(s) dµ(s)

=

∫︂
G
ϕ(s)h(s) dµ(s).

Since this equality holds for every h ∈ L1(G), we conclude that ϕ(s−1) = ϕ(s) holds for
a.e. s, i.e. that ϕ itself satisfies (4.1).
Moreover, Let f ∈ Cc(G) and set f̃ as before. Then f̃ ∗f ∈ L1(G), and for every ψ ∈ L∞(G)
we get ∫︂

G
ψ(s)(f̃ ∗ f)(s) dµ(s) =

∫︂
G
ψ(s)

[︂ ∫︂
G
f̃(u)f(su−1) dµ(u)

]︂
dµ(s)

=

∫︂
G×G

ψ(s)f(u−1)f(su−1) dµ(s) dµ(u)

=

∫︂
G×G

ψ(uv)f(u−1)f(v) dµ(v) dµ(u)

=

∫︂
G×G

ψ(u−1v)f(u)f(v) dµ(v) dµ(u) = ⟨f, f⟩ψ

(in the last two steps we have first set su−1 =: v and then changed u ↦→ u−1). Applying
this computation to ϕ and to each ϕα, by (4.8) with h := f̃ ∗ f we conclude that

⟨f, f⟩ϕ = lim
α

⟨f, f⟩ϕα ∀f ∈ Cc(G).

This proves that ϕ is of positive type, because each ⟨f, f⟩ϕα ≥ 0, and we already know
that ϕ has the property (4.1). The function ϕ is almost everywhere equal to a continuous
function, by Proposition 4.2, and changing its definition in a null set we can consider it as
a continuous function. It is also bounded by 1, because every ϕα is bounded by 1. These
facts prove that P(G) is a weak-* closed subset in the unitary ball of L∞(G), hence it is
weak-* compact by Alaoglu’s theorem. ■

Proposition 4.6 The set Â := {f̂ : f ∈ L1(G)} is a separating, self-adjoint and dense
subalgebra of C0(Ĝ). (For a definition of C0(Ĝ) see Section 2.3).

Proof. Let f ∈ L1(G). Let f̃ : G→ C, f̃(s) := f(s−1). Then f̃ ∈ L1(G), and

f̃̂(χ) =

∫︂
G
f̃(s)χ(s) dµ(s) =

∫︂
G
f(s−1)χ(s) dµ(s)

=

∫︂
G
f(s−1)χ(s) dµ(s) =

∫︂
G
f(s)χ(s) dµ(s) = f̂(χ),

which proves that Â is self-adjoint. It is also separating. In fact, suppose we have two
characters χ ̸= ψ ∈ Ĝ. Then χ − ψ is a non-identically zero in a suitable open set, and
we can always find a function f in Cc(G) with

∫︁
G f(s)(χ− ψ)(s) dµ(s) ̸= 0, hence with

f̂(χ) ̸= f̂(ψ) (for example, take f := (χ− ψ)h where h ∈ G→ [0,+∞) is continuous with
compact support and the open part of the support intersects the open set where χ ̸= ψ).
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Proposition 4.4 identifies Ĝ with B̂, using the map ν̂. So that each map f̂ : Ĝ→ C becomes
a map on B̂, setting f̂(ν̂χ) := f̂(χ).

Ĝ B̂

C
f̂

ν̂

The map generated in this way is continuous, because f̂ is continuous on Ĝ (by Lemma 4.2)
and ν̂ is a homeomorphism (again by Proposition 4.4). This shows that Â is a separating
and self-adjoint subalgebra of C(B̂). If G is discrete, then B (i.e. L1(G)) is unital, and in
this case Gelfand’s theory shows that B̂ is compact so that Â is dense in C(B̂) = C0(B̂) by
Stone–Weierstrass’ theorem.

Suppose that G is not discrete, so that B is not unital. Then B̂ is no more closed: in
fact it coincides with the set of linear functionals on B (i.e. L1(G)) associated with the
characters of G12. Thus the elements in B̂ are still bounded by 1 (because the norm of
the functional equals the sup norm of the character, i.e. 1), but it is no more a weak-*
closed set. However, if ϕ ∈ L∞(G) is the weak-* limit of characters, then it is in any
case bounded by 1 and multiplicative. It is also in P(G) (by Proposition 4.6, because the
characters are in P(G)). In particular it is continuous. Suppose that it is zero in some
point s0, then it zero everywhere, because ϕ(s) = ϕ(ss−1

0 s0) = ϕ(ss−1
0 )ϕ(s0) = 0. This fact

proves that either ϕ is a character, or it is identically zero. In other words, we have proved
that B̂

′
:= B̂ ∪ {0} is the weak-* closure of B̂. The set B̂

′
is also bounded by 1, hence it

is weak-* compact (by Alaoglu theorem). Note that B̂
′
can be identified (as topological

space) with the one-point compactification of B̂.
If we set f̂(0) := 0, then f̂ becomes a continuous function in C(B̂′

) which is zero in 0,
i.e. an element of C0(B̂)13. Moreover, for every character χ ∈ Ĝ, there is an f such that
f̂(ν̂χ) = f̂(χ) ̸= 0 (take f = hχ with any suitable h ∈ Cc(G), and

∫︁
G h(s) dµ(s) = 1). Thus

all assumptions of Corollary 2.2 are satisfied, proving that Â is dense in C0(B̂) (and hence
in C0(Ĝ)). ■

4.5. The Fourier transform of character measures

Let σ̂ be any complex Radon on Ĝ which is also a finite measure, i.e. such that
|σ̂|(Ĝ) < +∞14. Then, for every s ∈ G we set

Tσ̂ : G −→ C,
s ↦→ Tσ̂(s) :=

∫︁
Ĝ χ(s) dσ̂(χ),

which is called the Fourier transform of the measure σ̂. By assumption it is bounded,
being |Tσ̂(χ)| ≤

∫︁
Ĝ |dσ̂(χ)| = |σ̂|(Ĝ). It is also a continuous function (see Exercise 4.2).

Exercise. 4.2 Let σ̂ be any complex Radon measure on Ĝ. The following argument proves
that Tσ̂ : G→ C is a continuous function.

i. Pick any compact neighborhood K of e in G and any compact neighborhood K̂ of
χ0 (the trivial character) in Ĝ. Prove that the map K × K̂ → C, (s, χ) ↦→ χ(s) is

12By Proposition 4.4 each element in B̂ is of the type ν̃χ for some χ, and its value on f is
∫︁
G
f(s)χ(s) dµ(s).

13The continuity comes from an application of the dominated convergence theorem: if ν̂χα is a net of
elements in B̂ converging to 0 in the weak-* topology, and hence pointwise, then f̂(ν̂χα) = f̂(χα) =∫︁
G
f(s)χα(s) dµ(s) goes to zero, because the family fχα is dominated by f ∈ L1(G).

14Complex Radon measure means that σ̂(E) ∈ C, not necessarily in [0,+∞]. Recall that every finite
complex Radon measure can be written as

∑︁3
k=0 i

kσ̂ik where each σ̂ik is a positive and finite Radon
measure.
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uniformly continuous, and deduce that for every ϵ > 0 there are open neighborhoods
U of e in K and Û of χ0 in K̂ such that

st−1 ∈ U, χη−1 ∈ Û =⇒ |χ(s)− η(t)| ≤ ϵ.

Pick t = e (and η = χ), and deduce that

s ∈ U, χ ∈ K̂ =⇒ |χ(s)− 1| ≤ ϵ.

ii. Fix ϵ > 0, and let K̂ be a compact in Ĝ such that |σ̂|(Kc) ≤ ϵ: such a compact exists
because |σ̂| is a Radon (in particular it is inner regular) and finite measure. Let U be
as in Step [i.], and note that for st−1 ∈ U we have

|Tσ̂(s)− Tσ̂(t)| ≤
∫︂
K̂
|χ(s)− χ(t)| d|σ̂|(χ) +

∫︂
K̂

c
|χ(s)− χ(t)| d|σ̂|(χ)

≤ ϵ(|σ̂|(Ĝ) + 2).

An application of the Fubini-Tonelli theorems shows that for every f ∈ L1(G),∫︂
G
f(s)Tσ̂(s) dµ(s) =

∫︂
G
f(s)

∫︂
Ĝ
χ(s) dσ̂(χ) dµ(s)

=

∫︂
Ĝ

∫︂
G
f(s)χ(s) dµ(s) dσ̂(χ) =

∫︂
Ĝ
f̂(χ) dσ̂(χ)(4.9)

(the computation is correct since f̂ is bounded and f(s)χ(s) is measurable by Lemma 4.3).
The following proposition shows that the measure is completely determined by its trans-
form.

Proposition 4.7 If Tσ̂(s) = 0 for every s, then σ̂ = 0.

Proof. In fact, if Tσ̂(s) = 0 identically, then∫︂
Ĝ
f̂(χ) dσ̂(χ) = 0

for every f ∈ L1(G), by (4.9). According to Proposition 4.6 the set of Fourier transforms
of functions in L1(G) is a dense subset of C0(Ĝ), therefore∫︂

Ĝ
g(χ) dσ̂(χ) = 0

for every g ∈ C0(Ĝ), and hence σ̂ = 015. ■

The following surprising connection was discovered by Bochner.

Theorem 4.5 (Bochner) The set P(G) coincides with the set of the Fourier transforms of
all positive Radon measures on Ĝ with total mass ≤ 1.

Proof. Let
M := {Tσ̂ : σ̂ positive Radon measure, σ̂(G) ≤ 1}.

We already know that Tσ̂ is a continuous function, with ∥Tσ̂∥∞ = σ̂(G) ≤ 1. Directly from
it definition we see that

Tσ̂(s−1) =

∫︂
Ĝ
χ(s−1) dσ̂(χ) =

∫︂
Ĝ
χ(s−1) dσ̂(χ) =

∫︂
Ĝ
χ(s) dσ̂(χ) = Tσ̂(s),

15Recall that the set of finite Radon measures is the topological dual of the space C0(Ĝ) (see [HR1], p. 170),
with the norm of the functional associated to the measure σ̂ which is always equal to |σ̂|(Ĝ); if you are not
aware of this result, you can try a direct proof: if the Radon measure is not identically zero, then there
is a compact K̂ ⊆ Ĝ with non zero measure and contained into an open set Û with |σ̂(Û\K̂)| < |σ̂(K̂)|.
Select a nonnegative and continuous function g : Ĝ → [0, 1] which is 1 in K and 0 outside U (Urysohn
lemma) and show that

∫︁
G
g(χ) dσ̂(χ) ̸= 0. This contradicts the assumption.
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which proves that Tσ̂ has the property (4.1).
Moreover, for every f ∈ Cc(G) we have (by Fubini-Tonelli in G × G × Ĝ with product
measure µ(s)µ(t)σ̂(χ))∫︂

G×G
Tσ̂(s

−1t)f(s)f(t) dµ(s) dµ(t) =

∫︂
G×G

[︂ ∫︂
Ĝ
χ(s−1t) dσ̂(χ)

]︂
f(s)f(t) dµ(s) dµ(t)

=

∫︂
Ĝ

[︂ ∫︂
G×G

χ(s−1t)f(s)f(t) dµ(s) dµ(t)
]︂
dσ̂(χ)

=

∫︂
Ĝ
⟨f, f⟩χ dσ̂(χ).

We know that ⟨f, f⟩χ ≥ 0 for every f , thus the computation makes evident that Tσ̂ is of
positive type. This proves that Tσ̂ ∈ P(G) for every σ̂, i.e. that M ⊆ P(G).
On the other hand, when σ̂ is the Dirac measure δη supported at a character η, we have

Tδη(s) =

∫︂
Ĝ
χ(s) dδη(χ) = η(s),

which proves that M contains the characters. It is also a convex set, because the set of
positive Radon measures with total mass ≤ 1 is itself a convex set and T is linear in the
measure. This proves that M is a convex subset of P(G) containing the characters (and
the null function, of course). By Theorem 4.2 these are the extremal points on P(G),
which is a weak-* compact by Proposition 4.5; thus whether we are able to prove that M
is weak-* closed, then we can conclude that M = P(G) by Krein–Milman’s theorem.
Suppose we have any net {Tσ̂α}α weak-* converging to some ϕ ∈ L∞(G). By definition,
this means that

lim
α

∫︂
G
Tσ̂α(s)h(s) dµ(s) =

∫︂
G
ϕ(s)h(s) dµ(s) ∀h ∈ L1(G).

According to (4.9), this means that

lim
α

∫︂
Ĝ
ĥ(χ) dσ̂α(χ) =

∫︂
G
ϕ(s)h(s) dµ(s) ∀h ∈ L1(G);

in particular the limit of
∫︁
Ĝ ĥ(χ) dσ̂α(χ) exists for every h ∈ L1(G). Since the Fourier

transform of L1(G) functions is dense in C0(Ĝ) (by Proposition 4.6), we conclude that
actually the limit of

∫︁
Ĝ k(χ) dσ̂α(χ) exists for every k ∈ C0(Ĝ). Since complex Radon

measures on Ĝ are the topological dual of C0(Ĝ) (see [HR1], p. 170), this proves that there
exists a complex Radon measure σ̂ such that limα

∫︁
Ĝ k(χ) dσ̂α(χ) =

∫︁
Ĝ k(χ) dσ̂(χ), for

every k. The measure σ̂ has total mass ≤ 1, because each σ̂α does, and actually it is a
positive measure, because each σ̂α does. Therefore Tσ̂ is well defined, and when k is the
Fourier transform of any h ∈ L1(G), this equality becomes

lim
α

∫︂
G
Tσ̂α(s)h(s) dµ(s) =

∫︂
G
Tσ̂(s)h(s) dµ(s) ∀h ∈ L1(G),

by (4.9). This shows that {Tσ̂α}α weak-* converges to Tσ̂. This proves that M is weak-*
closed. ■

Let f ∈ V (G), so that it is a C-linear combination of functions of positive type.
According to Theorem 4.5 there is a complex Radon measure σ̂f with finite total mass (i.e.
|σ̂f |(Ĝ) < +∞), such that f is the Fourier transform of σ̂f , i.e.

(4.10) f(s) =

∫︂
Ĝ
χ(s) dσ̂f (χ) ∀s ∈ G.

The following lemma shows that the association f ↦→ σ̂f satisfies a kind of duality.
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Lemma 4.4 Let f, g ∈ V 1(G) := V (G) ∩ L1(G). Then

ĝ dσ̂f = f̂ dσ̂g

(equality as measures).

Proof. Proposition 4.7 shows that the measures are uniquely determined by their Fourier
transform, hence it is sufficient to verify that their Fourier transform are equal. We have

Tĝ dσ̂f
(s) =

∫︂
Ĝ
χ(s)ĝ(χ) dσ̂f (χ)

=

∫︂
Ĝ
χ(s)

[︂ ∫︂
G
g(t)χ(t) dµ(t)

]︂
dσ̂f (χ)

=

∫︂
G
g(t)

[︂ ∫︂
Ĝ
χ(st−1) dσ̂f (χ)

]︂
dµ(t)

=

∫︂
G
g(t)f(st−1) dµ(t) = (g ∗ f)(s).

In our setting this is equal to (f ∗ g)(s), and the same computation proves that it is
Tf̂ dσ̂g

(s). ■

We introduce two further sets. Let Cb(Ĝ) ⊆ C(Ĝ) be the subset of bounded functions.
Let F be the set of functions ϕ ∈ Cb(Ĝ) for which there exists some complex Radon measure
τ̂ϕ on Ĝ such that the equality

(4.11) ϕ dσ̂f = f̂ dτ̂ϕ

holds for all f ∈ V 1(G), as measures. Lemma 4.4 shows that F contains the Fourier
transform of V 1(G) functions: in that case the measure τ̂ ĝ associated to ĝ is actually σ̂g.

Lemma 4.5 the set F has the following properties:
i. if ϕ ∈ F , then the associated measure τ̂ϕ is unique;
ii. if ϕ ∈ F is positive, then the associated measure τ̂ϕ is positive;

iii. the set F is a module over the Cb(Ĝ), with the map ϕ ↦→ τ̂ϕ as morphism of modules.
In particular,

τ̂ϕ+γ = τ̂ϕ + τ̂γ , τ̂aϕ = aτ̂ϕ

for every a ∈ Cb(Ĝ) and ϕ, γ ∈ F ;
iv. let η ∈ Ĝ and let Lη : Cb(Ĝ) → Cb(Ĝ) with (Lηϕ)(χ) := ϕ(η−1χ) for every χ ∈ Ĝ.

Then Lη(F) ⊆ F , with
τ̂Lηϕ = Lη τ̂ϕ

where for any measure τ̂ on Ĝ, the measure Lη τ̂ is defined as the one such that
(Lη τ̂)(E) := τ̂(η−1E) for every measurable set E.

v. Cc(Ĝ) ⊆ F .

Proof.
i.-ii. There is a net {fα}α of functions in V 1(G) whose Fourier transform converges to

the constant function 1 uniformly on the compact sets (See [RV], Exr. 12 p. 129, or
Exercise 4.3 here below), and whose Radon measure σ̂fα is a positive measure. Using
this family in the role of f in (4.11), we conclude that

lim
α
ϕ dσ̂fα = dτ̂ϕ.

This equality shows that dτ̂ϕ is completely determined by ϕ. This formula also shows
that the measure is positive when ϕ is positive.

iii. This is an easy computation;



4.6. PROOF OF THE FOURIER INVERSION FORMULA 65

iv. Let η ∈ Ĝ and f ∈ V 1(G). Then the definition of τ̂ f gives

(ηf)(s) =

∫︂
Ĝ
(ηχ)(s) dτ̂ f (χ) =

∫︂
Ĝ
χ(s) dτ̂ f (η

−1χ) =

∫︂
Ĝ
χ(s) d(Lη τ̂ f )(χ)

proving that Lη τ̂ f = τ̂ηf .
Let h ∈ Cc(Ĝ) and f ∈ V 1(Ĝ). Then∫︂

Ĝ
h(χ)(Lηϕ)(χ) dτ̂ f (χ) =

∫︂
Ĝ
h(χ)ϕ(η−1χ) dτ̂ f (χ) =

∫︂
Ĝ
h(ηχ)ϕ(χ) dτ̂ f (ηχ)

=

∫︂
Ĝ
h(ηχ)ϕ(χ) d

(︁
Lη−1 τ̂ f

)︁
(χ) =

∫︂
Ĝ
h(ηχ)ϕ(χ) d

(︁
τ̂η−1f

)︁
(χ)

=

∫︂
Ĝ
h(ηχ)ˆ︁η−1f(χ) d

(︁
τ̂ϕ

)︁
(χ) =

∫︂
Ĝ
h(ηχ)f̂(ηχ) d

(︁
τ̂ϕ

)︁
(χ)

=

∫︂
Ĝ
h(χ)f̂(χ) d

(︁
Lη τ̂ϕ

)︁
(χ)

which proves the claim.
v. Let γ ∈ Cc(Ĝ). Let K̂ be a compact in Ĝ containing the support of γ. Let f ∈ V 1(G)

be a function whose Fourier transform stays away from zero in K̂: such a function exists
because we know that there exists a net of such functions whose Fourier transforms
converge (uniformly on compact sets) to the constant 1 function (See [RV], Exr. 12
p. 129, or Exercise 4.3 here below). Then a := γ/f̂ is a well defined function in
Cc(Ĝ) ⊆ Cb(Ĝ); f̂ is in F (because it is the Fourier transform of f ∈ V 1(G)), hence
γ = af̂ is in F , as well (by property iii.).

■

Exercise. 4.3 Let {Kα}α be a net of compact neighborhoods of e inG, with ∩αKα = {e} (it
exists, by local compactness). Let gα : G→ [0,+∞) be any continuous function supported
in Kα, with

∫︁
G gα(s) dµ(s) = 1.

i. Pick any compact neighborhood K of e in G and any compact neighborhood K̂ of
χ0 (the trivial character) in Ĝ. Prove that the map K × K̂ → C, (s, χ) ↦→ χ(s) is
uniformly continuous, and deduce that for every ϵ > 0 there are open neighborhoods
U of e in K and Û of χ0 in K̂ such that

st−1 ∈ U, χη−1 ∈ Û =⇒ |χ(s)− η(t)| ≤ ϵ.

Pick t = e (and η = χ), and deduce that

s ∈ U, χ ∈ K̂ =⇒ |χ(s)− 1| ≤ ϵ.

ii. Use the previous step to conclude that {ĝα}α converges to the constant function 1,
uniformly on compact subsets of Ĝ.

iii. Let fα := gα ∗ g̃α, where g̃α(s) := gα(s−1). Verify that fα ∈ Cc(G), and that it is of
positive type, so that fα ∈ V 1(G).

iv. Verify that f̂α = |ĝα|2; deduce that {fα}α is a net of functions in V 1(G) whose Fourier
transform converges to 1 uniformly on compact sets. Note that the Radon measure
σ̂fα is a positive Radon measure.

4.6. Proof of the Fourier inversion formula

According to the property [v.] of the previous lemma the set Cc(Ĝ) is a subset of F .
This allows to associate to each function γ in Cc(Ĝ) the unique (by [i.]) measure τ̂γ . This
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shows that the map
Cc(Ĝ)

Λ−→ C
γ ↦→ Λ(γ) :=

∫︁
Ĝ 1 dτ̂γ(χ)

is well defined. This map is a linear functional (by [iii.]) on Cc(Ĝ), which is positive for
positive argument (by [ii.]).16 Take any f ∈ P(G) ∩ L1(G), not identically zero. Then the
measure τf̂ is σ̂f , which is nonzero by (4.10) and positive by Bochner’s theorem. Let K̂ be
a compact set in Ĝ whose σ̂f measure is not zero (it exists, since σ̂f is a nonzero Radon
measure). Take any a ∈ Cc(K̂) ⊆ Cc(Ĝ). Then af̂ ∈ Cc(Ĝ) and a dσ̂f is its measure. Thus

Λ(af̂) =

∫︂
Ĝ
1 dτ̂af̂ (χ) =

∫︂
Ĝ
a(χ) dσ̂f (χ).

The sup value of this integral when a ranges in Cc(K̂)∩{a : a(χ) ∈ [0, 1]∀χ ∈ Ĝ} is σ̂f (K̂),
which is strictly positive by our assumption on K̂. This proves that Λ is not identically
zero. It is also Lη-invariant for every character η, because equality [iv.] yields:

Λ(Lηγ) =

∫︂
Ĝ
1 dτ̂Lηγ(χ) =

∫︂
Ĝ
1 dLη τ̂γ(χ) =

∫︂
Ĝ
1 dτ̂γ(η

−1χ)

=

∫︂
Ĝ
(Lη1)(χ) dτ̂γ(χ) =

∫︂
Ĝ
1 dτ̂γ(χ) = Λ(γ).

This proves that the measure associated with Λ is actually a Haar measure on Ĝ. We
adopt this measure as standard measure µ̂ on Ĝ. Thus we can write∫︂

Ĝ
1 dτ̂γ(χ) = Λ(γ) =

∫︂
Ĝ
γ(χ) dµ̂(χ), ∀γ ∈ Cc(Ĝ).

Let ϕ ∈ F and a ∈ Cc(Ĝ). Then aϕ ∈ Cc(Ĝ) as well (because F ⊆ Cb(Ĝ), by design), and
the previous identity shows that∫︂

Ĝ
a(χ)ϕ(χ) dµ̂(χ) = Λ(aϕ) =

∫︂
Ĝ
1 dτ̂ (aϕ)(χ) =

∫︂
Ĝ
a(χ) dτ̂ϕ(χ)

(using [iii.]). This shows that ϕ dµ̂ = dτ̂ϕ, which describes the measure associated with ϕ
in terms of the Haar measure and ϕ itself. Then, for every f ∈ V 1(G),

f̂ dµ̂ = dτ̂ f̂ = dσ̂f ,

and hence, by (4.10), we get

f(s) =

∫︂
Ĝ
χ(s) dσ̂f (χ) =

∫︂
Ĝ
f̂(χ)χ(s) dµ̂(χ).

This proves the formula in Theorem 4.3.

The following corollary gives a first nontrivial result toward the proof of the second
part of Theorem 4.3 identifying V 1(G) with V 1(Ĝ).

Corollary 4.2 Let f ∈ L1(G). Then
i. if f is continuous and of positive type, then f̂ is positive and integrable; in particular∫︁

G f(s) dµ(s) ≥ 0;

ii. if f is positive then f̂ is of positive type.
Thus the Fourier transform defines an injection of V 1(G) into V 1(Ĝ).

Proof.

16Recall that positive does not mean that it strictly positive, in particular it is possible that Λ is the null
functional. The computation following this footnote shows that this is not the case.
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i. By hypothesis f is continuous and of positive type, then the Radon measure σ̂f which
is associated to f is finite and positive (by Bochner’s theorem). The previous compu-
tation shows that in terms of the Haar measure µ̂ we have selected in Ĝ one has

dσ̂f = f̂ dµ̂.

Since σ̂f and µ̂ are both positive and Radon measures, we conclude that f̂ is positive.
It is also integrable, since dσ̂f is a finite measure.

ii. This is an easy computation: firstly we note that

f̂(χ−1) =

∫︂
G
f(s)χ−1(s) dµ(s) =

∫︂
G
f(s)χ(s) dµ(s) =

∫︂
G
f(s)χ(s) dµ(s) = f̂(χ)

(in the last steps we have used the assumption that f(s) ∈ R), proving that f̂ satisfies
the identity (4.1). Moreover, for every function h ∈ Cc(Ĝ) we have∫︂

Ĝ×Ĝ
f̂(χψ−1)h(χ)h(ψ) dµ̂(χ) dµ̂(ψ)

=

∫︂
Ĝ×Ĝ

[︂ ∫︂
G
f(s)(χψ−1)(s) dµ(s)

]︂
h(χ)h(ψ) dµ̂(χ) dµ̂(ψ)

=

∫︂
G
f(s)

[︂ ∫︂
Ĝ×Ĝ

χ(s)ψ(s)h(χ)h(ψ) dµ̂(χ) dµ̂(ψ)
]︂
dµ(s)

=

∫︂
G
f(s)

⃓⃓⃓ ∫︂
Ĝ
χ(s)h(χ) dµ̂(χ)

⃓⃓⃓2
dµ(s) ≥ 0

(the last step holds since f(s) ≥ 0 for every s ∈ G).
Let f ∈ V 1(G). It is a C-linear combination of functions in P(G), and each function in
P(G) is a sum of continuous and positive functions in P(G)17. By [ii.] we conclude that f̂
(which is a continuous and bounded function) is also a C-linear combination of functions in
P(Ĝ), i.e. it is a function in V (Ĝ). It is also in L1(Ĝ), applying to the same decomposition
the conclusions in [i.]. This proves that the Fourier transform maps V 1(G) → V 1(Ĝ). ■

4.7. Pontryagin Duality

Once again, let G be a locally compact abelian group. Then also Ĝ is a locally compact
abelian group, so that Ĝ itself may be considered as the stem group for a new leap moving
from Ĝ towards is dual: Ĝ̂. There is a natural map from G to Ĝ̂ given by the evaluation
map:

α : G −→ Ĝ̂,

y ↦→ α(y) : Ĝ −→ C, α(y)(χ) := χ(y).

The famous result of Pontryagin states that this procedure generates all elements in Ĝ̂, in
a continuous way.

Theorem 4.6 The map α : G→ Ĝ̂ is an isomorphism of topological groups, so that G and
Ĝ are mutually dual.

Its proof will interact with the remaining part of Theorem 4.3 we still have to prove.
The following lemma gives a first glimpse in the subject.

Lemma 4.6 The map α is injective.

17This is a consequence of the decomposition z =
∑︁3

k=0 i
k max(0,Re(ikz)), which is true for every z ∈

C, and the fact that max(0,Re(ikf(s))) is a continuous and nonnegative function of s whenever f is
continuous.
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Proof. In other words, we have to prove that Ĝ separates the points of G, and since G is a
group, it is sufficient to prove that Ĝ separates z from e, when z ̸= e. Suppose that this is
not true, i.e. that z ̸= e but that χ(z) = 1 for all χ ∈ Ĝ. Let f be any function in L1(G);
then

f̂(χ) = χ(z)ˆ︃Lzf(χ) = ˆ︃Lzf(χ), ∀χ ∈ Ĝ.

If further we assume that f ∈ V (G), then by inversion formula we deduce that f = Lzf ,
for every f ∈ V 1(G)18. This is impossible: in fact, let U be an open neighborhood of e such
that Uz ∩U = ∅: such an open set exists, because G is a Hausdorff space. It is possible to
produce a nonzero function f in V 1(G) supported in U19: for such a function the equality
f = Lzf is impossible. ■

Let K̂ be a compact neighborhood of the identity in Ĝ, and V be an open neighborhood
of 1 in S1. By construction, the sets

W (K̂, V ) := {ψ ∈ Ĝ̂ : ψ(χ) ⊆ V for all χ ∈ K̂}

and their translates give a base for the topology of Ĝ̂. Lemma 4.6 allows to consider G as
a subset of Ĝ̂; with this identification we can consider

WG(K̂, V ) :=W (K̂, V ) ∩ α(G)
as a subset of (α(G), and hence of) G. We use these sets to prove that α is a homeomor-
phism onto its image.

Proposition 4.8 The sets WG(K̂, V ) and their translates are a base for the topology of G.
As a consequence, the map α is bicontinuous, so that it defines a homeomorphism on its
image.

Proof. Let U be an open neighborhood of e inG, and let g be a function in V 1(G) supported
in U and which is of positive type, with g(e) = 1 (such a function exists, see the argument
we have used in the footnote of the proof of Lemma 4.6). Then

∫︁
Ĝ ĝ(χ) dµ̂(χ) = g(e) = 1

(by inversion formula), and ĝ is positive (by Corollary 4.2[i]). Let ϵ > 0, and let K̂ be a
compact in Ĝ such that

∫︁
K̂

c ĝ(χ) dµ̂(χ) ≤ ϵ: such a compact exists, since ĝ dµ̂ is a Radon
(hence inner regular) measure on Ĝ. Then

|g(s)− 1| = |g(s)− g(e)| ≤
∫︂
K̂
ĝ(χ)|χ(s)− 1|dµ̂(χ) +

∫︂
K̂

c
ĝ(χ)|χ(s)− 1| dµ̂(χ)

≤
∫︂
K̂
ĝ(χ)|χ(s)− 1| dµ̂(χ) + 2ϵ.

If we choose V = {ω ∈ C : |ω − 1| < ϵ}, then also the remaining integral is bounded by ϵ
whenever s ∈WG(K̂, V ), so that

|g(s)| ≥ 1− 3ϵ.

18Note that we cannot easily deduce the claim from the injectivity property of the Fourier map in V 1(G)
claimed in Corollary 4.2, because we have not proved that Lzf ∈ V 1(G) when f ∈ V 1(G). However, for
such an f we have the equality

f(s) =

∫︂
Ĝ

f̂(χ)χ(s) dµ̂(χ).

Setting s ↦→ z−1s in this equality we get

Lzf(s) = f(z−1s) =

∫︂
Ĝ

f̂(χ)χ(z−1s) dµ̂(χ). =

∫︂
Ĝ

f̂(χ)χ(z)χ(s) dµ̂(χ). =

∫︂
Ĝ

ˆ︃Lzf(χ)χ(s) dµ̂(χ).

These equalities show that the equality f̂(χ) = ˆ︃Lzf(χ) implies the equality f = Lzf .
19Take V be an open and symmetric neighborhood of e such that V 2 ⊆ U . Let K be a compact and

symmetric neighborhood of e contained in V . Let g be a nonzero continuous function supported in K,
and take f := g ∗ g̃. Then f is not zero, it is supported in KK−1 = K2 ⊆ V 2 ⊆ U and is of positive
type, so that f ∈ V 1(G).
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By construction U contains the support of g, so that we have proved that WG(K̂, V ) ⊆ U .
On the other hand, let K̂ be any compact neighborhood of the identity in Ĝ. Let K be
a compact neighborhood of e in G. The map K × K̂ → C such that (y, χ) ↦→ χ(y) is
uniformly continuous, hence for every open neighborhood V of 1 in S1, there are open
neighborhoods U , and Û such that

st−1 ∈ U, χη−1 ∈ Û =⇒ χ(s)η−1(t) ∈ V.

Choosing t = e this equality shows that

s ∈ U, χ ∈ K̂ =⇒ χ(s) ∈ V.

In other words, it proves that U ⊆WG(K̂, V ). This completes the proof of the equivalence
of the topologies. The fact that α is a homeomorphism onto its image is immediate. ■

Corollary 4.3 The image of α is closed in Ĝ̂.

Proof. Let H := α(G), the closure of α(G) in Ĝ̂. Then H is a closed subgroup in Ĝ̂, and
α(G) is dense in H. The image α(G) is also locally compact in the subspace topology of Ĝ̂
(because G is locally compact and α is a homeomorphism), and hence also in the subspace
topology of H (because H is closed). By a standard argument of general topology20 this
implies that α(G) is open in H. But α(G) is a subgroup of H, hence it is also closed in H
(see Proposition 1.4[5.]). Since H is closed in Ĝ̂, we conclude that α(G) coincides with H,
and hence α(G) is closed in Ĝ̂. ■

4.8. Plancherel theorem

Let f ∈ L1(G) and let f̃(s) := f(s−1). We know that f̃̂ = f̂ . Let g := f ∗ f̃ . Then
g ∈ L1(G) and ĝ = |f̂ |2. If f belongs also to L2(G), then g is also continuous21, bounded22

and of positive type23. Hence g is in V 1(G), and the inversion formula gives∫︂
G
|f(s)|2 dµ(s) = g(e) =

∫︂
Ĝ
ĝ(χ) dµ̂(χ) =

∫︂
Ĝ
|f̂(χ)|2 dµ̂(χ).

20The argument is the following. Let H be a Hausdorff topological space, and let X ⊆ H be a dense and
locally compact subspace. Then X is open in H.

Proof. In fact, pick any a ∈ X. Let K be a compact neighborhood of a in X: compactness here is with
respect to the subspace topology of X as subset of H. Note that K exists, by the locally compactness
assumed for X. K is compact also as subset of H (because the inclusion of X in H is a continuous map
when the subspace topology is used in X). In particular it is closed, since H is Hausdorff.
We have the inclusions a ∈ K̊ ⊆ K ⊆ X. Let B be the open set in H such that K̊ = X∩B. Then a ∈ B.
The intersection B ∩Kc is empty; in fact, it is an open set such that X ∩ (B ∩Kc) = (X ∩ B) ∩Kc =

K̊ ∩Kc = ∅. Thus, in case B ∩Kc ̸= ∅ we get a contradiction with the assumed density of X in H. As
a consequence, B = B ∩K, or, which is the same, B ⊆ K. Since K ⊆ X, the set B is an open set such
that a ∈ B ⊆ X. This proves that X is open in H. ■

21In fact,

|g(s)− g(t)| =
⃓⃓⃓ ∫︂

G

(f(su−1)− f(tu−1))f̃(u) dµ(u)
⃓⃓⃓
≤ ∥Ls−1f − Lt−1f∥L2(G) · ∥f̃∥L2(G)

= ∥Lts−1f − f∥L2(G) · ∥f∥L2(G)

and the first term goes to zero when t goes to s (along any net) (see Footnote 4).
22In fact

|g(s)| =
⃓⃓⃓ ∫︂

G

f(su−1)f̃(u) dµ(u)
⃓⃓⃓
≤ ∥Ls−1f∥L2(G) · ∥f̃∥L2(G) = ∥f∥2L2(G) ∀s ∈ G.

23This is a direct computation: the definition g = f ∗ f̃ gives g(s) =
∫︁
G
f(su)f(u) dµ(u) so that

g(s−1) =

∫︂
G

f(s−1u)f(u) dµ(u) =

∫︂
G

f(u)f(su) dµ(u) =

∫︂
G

f(u)f(su) dµ(u) = g(s)
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This proves that the Fourier transform induces a map

L1(G) ∩ L2(G) −→ L2(Ĝ),

f ↦→ f̂

which is an isometry onto its image. Let

Â1,2 := {f̂ : f ∈ L1(G) ∩ L2(G)}

which we consider as a subspace of L2(Ĝ), via the previous map.

Lemma 4.7 Â1,2 is a dense subspace of the Hilbert space L2(Ĝ).

Proof. It is sufficient to prove that 0 is the only element in L2(Ĝ) which is orthogonal
to Â1,2. Assume that g ∈ L2(Ĝ) is orthogonal to Â1,2. Pick any f ∈ L1(G) ∩ L2(G),
and notice that the equality (α(s)f̂)(χ) = χ(s)f̂(χ) = ˆ︃Lsf(χ) for all χ ∈ Ĝ shows that
α(s)f̂ ∈ Â1,2, for every s ∈ G. Therefore, the supposed orthogonality implies that∫︂

Ĝ
g(χ)f̂(χ)χ(s) dµ̂(χ) = 0 ∀s ∈ G.

This formula shows that the Fourier transform of the measure gf̂ dµ̂ is zero. Note that
the product gf̂ is in L1(Ĝ) (because f̂ , g ∈ L2(Ĝ)), hence the measure is a complex Radon
measure on Ĝ, and the previous identity states that its Fourier transform is zero. By
Proposition 4.7, we conclude that gf̂ is a.e. zero. This happens for every f with f̂ ∈ Â1,2.
Suppose that g is not a.e. null. Then it is nonzero on a set having positive measure, which
we can take compact (by inner regularity). It is always possible to produce a function
f ∈ L1(G) ∩ L2(G) such that f̂ is not zero in a given compact set24. This contradicts the
fact that gf̂ is 0 almost everywhere. Hence g is zero a.e. and the claim is proved. ■

Theorem 4.7 (Plancherel) Let G be an abelian locally compact group. Then the Fourier
transform can be extend to an isometry of Hilbert spaces from L2(G) onto L2(Ĝ).

Proof. The claim follows immediately from Lemma 4.7 and the fact that L1(G) ∩ L2(G)
is dense in L2(G) (for example because Cc(G) is dense both in L1(G) and in L2(G)). ■

Corollary 4.4 (Parseval’s identity) For all f, g ∈ L2(G), we have∫︂
G
f(s)g(s) dµ(s) =

∫︂
Ĝ
f̂(χ)ĝ(χ) dµ̂(χ).

Proof. An isometry is necessarily unitary. ■

Corollary 4.5 Let f, g ∈ L2(G), and set h := fg. Note that h ∈ L1(G). Then ĥ = f̂ ∗ ĝ.

Proof. Let η ∈ Ĝ. The Fourier transform of gη is ĝ(ηχ−1), and by Pereseval’s identity in
Corollary 4.4 we get

ĥ(η) =

∫︂
G
f(s)g(s)η(s) dµ(s) =

∫︂
G
f(s)g(s)η(s) dµ(s)

proving (4.1), and∫︂
G×G

g(s−1t)h(s)h(t) dµ(s) dµ(t) =

∫︂
G×G×G

f(s−1tu)f(u)h(s)h(t) dµ(s) dµ(t) dµ(u)

=

∫︂
G×G×G

f(tu)f(su)h(s)h(t) dµ(s) dµ(t) dµ(u)

=

∫︂
G

[︂ ∫︂
G

f(tu)h(t) dµ(t)
]︂2

dµ(u) ≥ 0

(Fubini–Tonelli used here, and the change u ↦→ su in the second line).
24For example, the sequence of functions we have proposed in Ex. 4.3 are in Cc(G) (hence in L1(G)∩L2(G)),

and their Fourier transform converges to the constant 1 uniformly on the compact sets.
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=

∫︂
Ĝ
f̂(χ)ĝ(ηχ−1) dµ̂(χ) = (f̂ ∗ ĝ)(η).

■

Corollary 4.6 The ring Â of Fourier transforms of L1(G) functions coincides with the set
of convolution products of functions in L2(Ĝ).

Proof. Let h ∈ L1(G). Then h = r|r|, where

r(s) :=

{︄
h(s)/

√︁
|h(s)| if h(s) ̸= 0

0 otherwise,

and r ∈ L2(G). Corollary 4.5 shows that ĥ is the convolution of the Fourier transforms of
r and |r|, and both transforms belong to L2(Ĝ) (because r ∈ L2(G)). On the other hand,
the convolution of two functions in L2(Ĝ) has the form f̂ ∗ ĝ for suitable f, g ∈ L2(G),
by Plancherel theorem. Hence it is the Fourier transform of fg, which is in L1(G). This
proves that f̂ ∗ ĝ ∈ Â. ■

Proposition 4.9 Let Û be any nonempty open subset of Ĝ. Then there exists a nonzero
function f̂ ∈ Â with support in Û .

Proof. The measure of Û is positive. By inner regularity, there is a compact set K̂ ⊆ Û
with positive measure. There is an open neighborhood V̂ of the identity in Ĝ, such that
V̂ K̂ ⊆ Û (apply Lemma 1.1 to the locally compact group Ĝ). We can further assume
that V̂ is finite measured (for example intersecting V̂ with an open subset of a compact
neighborhood of e). Define f ′ as the convolution of the characteristic functions of K̂ and V̂ ,
respectively. Then it is in Â, by Corollary 4.6 (the characteristic functions are in L2(Ĝ)),
hence there exists a function f in L1(G) such that f ′ = f̂ . Its support is in K̂V̂ , and hence
in Û . Moreover,∫︂

Ĝ
f ′(χ) dµ̂(χ) =

∫︂
Ĝ
(δK̂ ∗ δV̂ )(χ) dµ̂(χ) = µ̂(K̂)µ̂(V̂ ) > 0,

proving that f̂ is nonzero on a set of positive measure. ■

4.9. Proof of Pontryagin theorem

Corollary 4.3 states that α(G) is closed in Ĝ̂. Suppose that it is not Ĝ̂. Then the open
set Û̂ := α(G)c is not empty. By Proposition 4.9 (applied to the group Ĝ) there exists
a function ϕ ∈ L1(Ĝ) whose Fourier transform ϕ̂ is nonzero and is supported in Û̂ . In
particular it is zero in α(G). Let η̂ ∈ Ĝ̂. Then

ϕ̂(η̂) =

∫︂
Ĝ
ϕ(χ)η̂(χ) dµ̂(χ).

The assumption that ϕ̂ vanishes on α(G) means that

0 = ϕ̂(α(s)) =

∫︂
Ĝ
ϕ(χ)α(s)(χ) dµ̂(χ) =

∫︂
Ĝ
ϕ(χ)χ(s−1) dµ̂(χ) ∀s ∈ G.

By assumption ϕ ∈ L1(Ĝ), thus ϕ dµ̂ is a complex Radon measure on L1(Ĝ) and the
previous identity states that its Fourier transform is zero. By Proposition 4.7, this implies
that ϕ = 0 almost everywhere, so that ϕ̂ = 0. This contradicts the assumptions on ϕ
showing that the assumptions are impossible. This proves the claim.
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4.10. Proof of the second part of Theorem 4.3

We complete the proof of Theorem 4.3, showing that the Fourier transform gives a
bijection of V 1(G) with V 1(Ĝ). We already know that it is injective. Let F ∈ V 1(Ĝ), and
set

f(s) :=

∫︂
Ĝ
F (χ)χ(s) dµ̂(χ).

The identification of Ĝ̂ with G shows that f(s) = F̂ (s−1). Hence f ∈ V 1(G), by Corol-
lary 4.2 (because F̂ is in V 1(Ĝ̂) which is isomorphic to V 1(G)). We identify Ĝ̂ with G

(via the map α). In particular, the dual measure dµ̂̂ (i.e., the Haar measure in Ĝ̂ which is
able to produce the inversion Fourier transform for Ĝ→ Ĝ̂), is a constant multiple of the
Haar measure in G. This happens because both are Haar measures, which are uniquely
determined up to a positive constant. In a formula, we have

dµ̂̂ = cdµ

for some positive constant c. Then, by the Fourier inversion formula for F we get

F (χ) =

∫︂
Ĝ
ˆ
F̂ (α(s))α(s)(χ) dµ̂̂(α(s))

= c

∫︂
G
F̂ (s)χ(s) dµ(s)

= c

∫︂
G
f(s−1)χ(s) dµ(s)

=

∫︂
G
cf(s)χ(s) dµ(s)

which shows that F is the Fourier transform of cf . Hence V 1(Ĝ) is contained into the
image of V 1(G), and the claim is proved. Finally, we can prove that c = 1 by applying this
computation to functions in V 1(G) and comparing the original Fourier transform formula
and the one we get using Ĝ̂. This proves that measures dµ and dµ̂ are mutually dual.
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