Analytic Number Theory: Homework 1 (2019)

(1) Liouville's function λ is defined via $\lambda(n) = (-1)^{\Omega(n)}$, for every $n \in \mathbb{N}$. Prove that

$$\sum_{d|n} \lambda(d) = \begin{cases} 1 & \text{if } n \text{ is a square} \\ 0 & \text{otherwise.} \end{cases}$$

Hint: recall that $\Omega(n)$ is the number of prime divisors of n, multiplicity included. In other words, $\Omega(p_1^{a_1}p_2^{a_2}\cdots p_k^{a_k}) = a_1 + a_2 + \cdots + a_k$.

(2) Recall that $M(x) := \sum_{n \leq x} \mu(n)$, and let $L(x) := \sum_{n \leq x} \lambda(n)$. Notice that they are similar since $\omega(n) = \Omega(n)$ for squarefree integers so that $\mu(n) = \lambda(n)$ for them. Prove that

$$L(x) = \sum_{d^2 \le x} M\left(\frac{x}{d^2}\right)$$
 and that $M(x) = \sum_{d^2 \le x} \mu(d) L\left(\frac{x}{d^2}\right).$

(3) For $r \ge 1$, let $J_r(n)$ be the number of r-uples of integers a_j with $1 \le a_j \le n$ for $j = 1, \ldots, r$, and $(a_1, \ldots, a_r, n) = 1$. Prove that

$$J_r(n) = n^r \prod_{p|n} \left(1 - \frac{1}{p^r}\right).$$

This is Jordan's totient function. When r = 1 it coincides with Euler's function φ . **Hint:** First prove that J_r is multiplicative, then compute $J_r(p^k)$.

(4) Let M(x) and L(x) be as in Ex. 2. Prove that

$$\forall A > 0, \quad L(x) \ll_A \frac{x}{\log^A x} \qquad \Longleftrightarrow \qquad \forall A > 0, \quad M(x) \ll_A \frac{x}{\log^A x}$$

when $x \to \infty$.

Hint: Use identities in Exercise 2.

(5) For every integer n, let rad(n) be the product of all distinct primes dividing n (with rad(1) := 1). It is called the *radical* of n. Prove that

$$\sum_{n \le x} \log(\mathrm{rad}(n)) = x \log x + O(x).$$

Hint: recall the identity $\log = 1 * \Lambda$, so that $\sum_{n \leq x} \log(\operatorname{rad}(n)) = \sum_{n \leq x} \sum_{d \mid \operatorname{rad}(n)} \Lambda(d)$.

(6) Using only Mertens' result (PNT not allowed here), prove that

$$\sum_{p \le x} \frac{\log^2 p}{p} = \frac{1}{2} \log^2 x + O(\log x).$$

(7) Let $\alpha \geq 1$. Let F_{α} be the Dirichlet series

$$F_{\alpha}(s) = \sum_{n=1}^{\infty} \frac{(-1)^n}{\left\lceil n^{\alpha} \right\rceil^s}$$

where $\lceil x \rceil := \inf\{n \in \mathbb{Z} : x \leq n\}$. Prove that for this series $\sigma_c = 0$ and $\sigma_a = 1/\alpha$.

- (8) Let $g: \mathbb{N} \to \mathbb{C}$ be the arithmetical function giving the Dirichlet coefficients of the Dirichlet series $1/\zeta(2s)$.
 - a) Prove that $g(k^2) = \mu(k)$ for every integer k, and that g(k) = 0 when k is not a square.
 - b) Prove that $|\mu(n)| = \sum_{d|n} g(d)$. Deduce that

$$\sum_{n \le x} |\mu(n)| = \sum_{\substack{n,m \\ nm \le x}} g(m) = \sum_{\substack{n,k \\ nk^2 \le x}} \mu(k) = \sum_{k \le \sqrt{x}} \mu(k) \sum_{n \le x/k^2} 1 = \sum_{k \le \sqrt{x}} \mu(k) \left\lfloor \frac{x}{k^2} \right\rfloor.$$

c) Use the previous equality to deduce that

$$\sharp\{n \in \mathbb{N} \colon n \le x, \ n \text{ is squarefree}\} = \sum_{n \le x} |\mu(n)| = \frac{x}{\zeta(2)} + O(\sqrt{x}).$$

d) Deduce that for every $\theta > 1/2$ there exists $x_0 = x_0(\theta)$ such that

$$\{n \in \mathbb{N} \colon n \in [x, x + x^{\theta}], n \text{ is squarefree}\} \neq \emptyset \qquad \forall x \ge x_0.$$

- (9) The previous exercise shows that if $\theta > 1/2$, there is a squarefree integer in each interval $[x, x + x^{\theta}]$, if x is large enough. That argument is rooted in the general formula in Ex.8.c, and therefore it does not allow to get the claim for any $\theta \le 1/2$. The next steps will prove the claim also for smaller values of θ .
 - a) Let h > 0, and observe that

$$\sharp\{n \in \mathbb{N} \colon n \in (x, x+h], n \text{ is squarefree}\} = \sum_{n \in (x, x+h]} |\mu(n)|.$$

b) As in Ex.8b, prove that

$$\sum_{n \in (x,x+h]} |\mu(n)| = \sum_{x < nk^2 \le x+h} \mu(k),$$

and split the range to get

$$\sum_{n \in (x,x+h]} |\mu(n)| = \sum_{k \le x^{1/3}} \mu(k) \sum_{x < nk^2 \le x+h} 1 + \sum_{k > x^{1/3}} \mu(k) \sum_{x < nk^2 \le x+h} 1 =: S_1 + S_2.$$

c) Prove that

$$S_1 = \sum_{k \le x^{1/3}} \mu(k) \left(\left\lfloor \frac{x+h}{k^2} \right\rfloor - \left\lfloor \frac{x}{k^2} \right\rfloor \right) = \frac{h}{\zeta(2)} + O(h/x^{1/3}) + O(x^{1/3}).$$

d) Prove that

 $\sharp\{(n,k)\in\mathbb{N}^2\colon x< nk^2\leq x+h,\ k>x^{1/3}\}\leq \sharp\{(n,k)\in\mathbb{N}^2\colon n< x^{1/3}+\frac{h}{x^{2/3}},\ \sqrt{\frac{x}{n}}< k\leq\sqrt{\frac{x+h}{n}}\}.$ Under the assumption $h\leq\sqrt{x}$ prove that the interval $(\sqrt{\frac{x}{n}},\sqrt{\frac{x+h}{n}})$ contains one interval.

- Under the assumption $h \leq \sqrt{x}$, prove that the interval $(\sqrt{\frac{x}{n}}, \sqrt{\frac{x+h}{n}}]$ contains one integer, at most.
- e) Assume $h \leq \sqrt{x}$ and deduce that

$$S_2 = O(x^{1/3}).$$

e) Hence

$$\sum_{n \in (x,x+h]} |\mu(n)| = \frac{h}{\zeta(2)} + O(x^{1/3})$$

and conclude that if $\theta > 1/3$, then there is a squarefree integer in each interval $[x, x+x^{\theta}]$, if x is large enough.

- (10) Let r be any positive integer. Let $f(n) := \frac{J_r(n)}{n^r}$ (see Ex.3 for the definition of J_r). a) Prove that f is multiplicative.
 - b) Let $F(s) := \sum_{n=1}^{\infty} f(n)/n^s$ be the Dirichlet series associated with f(n), and let H(s) be the complex function defined in such a way that

$$F(s) = H(s)\zeta(s).$$

Prove that H(s) may be written as Euler product and as Dirichlet series.

- c) Working out an explicit expression for the Euler product of H(s), prove that it converges absolutely for $\operatorname{Re}(s) > 1 r$.
- d) Let h(n) be the sequence of numbers such that $H(s) = \sum_{n=1}^{\infty} h(n)/n^s$. From Step b) one gets that

$$f(n) = \sum_{m|n} h(m).$$

Deduce that

$$\sum_{n \le x} f(n) = \sum_{\substack{m,n \\ mn \le x}} h(m) = \sum_{m \le x} h(m) \sum_{n \le \frac{x}{m}} 1$$

so that

$$\sum_{n \le x} f(n) = \Big(\sum_{m \le x} \frac{h(m)}{m}\Big)x + O\Big(\sum_{m \le x} |h(m)|\Big).$$

e) Use Step c) to prove that

$$\sum_{m>x} \frac{h(m)}{m} \ll_{\eta} x^{-r+\eta} \quad \text{and} \quad \sum_{m \le x} |h(m)| \ll_{\eta} x^{1-r+\eta},$$

for every $\eta > 0$.

f) Use Steps d) and e) to deduce that

$$\sum_{n \le x} f(n) = \left(H(1) - \sum_{m > x} \frac{h(m)}{m} \right) x + O_{\eta}(x^{1-r+\eta}) = H(1)x + O_{\eta}(x^{1-r+\eta}).$$

- g) From the representation of H(s) as Euler product deduce that $H(1) = \prod_{p} (1 \frac{1}{p^{r+1}}) = 1/\zeta(r+1).$
- h) Use Steps f) and g) and the partial summation formula to deduce that

$$\sum_{n \le x} J_r(n) = \frac{x^{r+1}}{(r+1)\zeta(r+1)} + O_\eta(x^{1+\eta})$$

(11) Set $a \in \mathbb{C}$, and let $f_a \colon \mathbb{N} \to \mathbb{C}$ be the function with

$$f_a(1) := 1$$
 and $f_a(p_1^{\nu_1} p_2^{\nu_2} \cdots p_k^{\nu_k}) := (\nu_1 \nu_2 \cdots \nu_k)^a.$

Following Steps a–g in Ex. 10 find a formula for $\sum_{n < x} f_a(n)$.

(12) Let $\{p_n\}_{n\in\mathbb{N}}$ be the sequence of prime numbers, so that $p_1 = 2, p_2 = 3$, and so on. For every $n \in \mathbb{N}$, let $a_n := p_{p_n}$. Prove that

$$\sum_{n: a_n \le x} 1 = \#\{n: a_n \le x\} \sim \frac{x}{\log^2 x}.$$

Hint: Use PNT to deduce that $p_n \sim n \log n$, then deduce the asymptotic for a_n and compute.