
Analytic Number Theory: Homework 1 (2019)

(1) Liouville’s function λ is defined via λ(n) = (−1)Ω(n), for every n ∈ N. Prove that∑
d|n

λ(d) =

{
1 if n is a square

0 otherwise.

Hint: recall that Ω(n) is the number of prime divisors of n, multiplicity included. In
other words, Ω(pa11 p

a2
2 · · · p

ak
k ) = a1 + a2 + · · ·+ ak.

(2) Recall that M(x) :=
∑

n≤x µ(n), and let L(x) :=
∑

n≤x λ(n). Notice that they are

similar since ω(n) = Ω(n) for squarefree integers so that µ(n) = λ(n) for them. Prove
that

L(x) =
∑
d2≤x

M
( x
d2

)
and that M(x) =

∑
d2≤x

µ(d)L
( x
d2

)
.

(3) For r ≥ 1, let Jr(n) be the number of r-uples of integers aj with 1 ≤ aj ≤ n for
j = 1, . . . , r, and (a1, . . . , ar, n) = 1. Prove that

Jr(n) = nr
∏
p|n

(
1− 1

pr

)
.

This is Jordan’s totient function. When r = 1 it coincides with Euler’s function ϕ.
Hint: First prove that Jr is multiplicative, then compute Jr(p

k).

(4) Let M(x) and L(x) be as in Ex. 2. Prove that

∀A > 0, L(x)�A
x

logA x
⇐⇒ ∀A > 0, M(x)�A

x

logA x

when x→∞.
Hint: Use identities in Exercise 2.

(5) For every integer n, let rad(n) be the product of all distinct primes dividing n (with
rad(1) := 1). It is called the radical of n. Prove that∑

n≤x
log(rad(n)) = x log x+O(x).

Hint: recall the identity log = 1 ∗Λ, so that
∑

n≤x log(rad(n)) =
∑

n≤x
∑

d| rad(n) Λ(d).

(6) Using only Mertens’ result (PNT not allowed here), prove that∑
p≤x

log2 p

p
=

1

2
log2 x+O(log x).

(7) Let α ≥ 1. Let Fα be the Dirichlet series

Fα(s) =

∞∑
n=1

(−1)n

dnαes

where dxe := inf{n ∈ Z : x ≤ n}. Prove that for this series σc = 0 and σa = 1/α.



(8) Let g : N→ C be the arithmetical function giving the Dirichlet coefficients of the Dirichlet
series 1/ζ(2s).

a) Prove that g(k2) = µ(k) for every integer k, and that g(k) = 0 when k is not a square.

b) Prove that |µ(n)| =
∑

d|n g(d). Deduce that∑
n≤x
|µ(n)| =

∑
n,m
nm≤x

g(m) =
∑
n,k

nk2≤x

µ(k) =
∑
k≤
√
x

µ(k)
∑

n≤x/k2
1 =

∑
k≤
√
x

µ(k)
⌊ x
k2

⌋
.

c) Use the previous equality to deduce that

]{n ∈ N : n ≤ x, n is squarefree} =
∑
n≤x
|µ(n)| = x

ζ(2)
+O(

√
x).

d) Deduce that for every θ > 1/2 there exists x0 = x0(θ) such that

{n ∈ N : n ∈ [x, x+ xθ], n is squarefree} 6= ∅ ∀x ≥ x0.

(9) The previous exercise shows that if θ > 1/2, there is a squarefree integer in each interval
[x, x+xθ], if x is large enough. That argument is rooted in the general formula in Ex.8.c,
and therefore it does not allow to get the claim for any θ ≤ 1/2. The next steps will
prove the claim also for smaller values of θ.

a) Let h > 0, and observe that

]{n ∈ N : n ∈ (x, x+ h], n is squarefree} =
∑

n∈(x,x+h]

|µ(n)|.

b) As in Ex.8b, prove that ∑
n∈(x,x+h]

|µ(n)| =
∑

x<nk2≤x+h

µ(k),

and split the range to get∑
n∈(x,x+h]

|µ(n)| =
∑

k≤x1/3
µ(k)

∑
x<nk2≤x+h

1 +
∑

k>x1/3

µ(k)
∑

x<nk2≤x+h

1 =: S1 + S2.

c) Prove that

S1 =
∑

k≤x1/3
µ(k)

(⌊x+ h

k2

⌋
−
⌊ x
k2

⌋)
=

h

ζ(2)
+O(h/x1/3) +O(x1/3).

d) Prove that

]{(n, k) ∈ N2 : x < nk2 ≤ x+h, k > x1/3} ≤ ]
{

(n, k) ∈ N2 : n < x1/3 + h
x2/3

,
√

x
n < k ≤

√
x+h
n

}
.

Under the assumption h ≤
√
x, prove that the interval (

√
x
n ,
√

x+h
n ] contains one inte-

ger, at most.

e) Assume h ≤
√
x and deduce that

S2 = O(x1/3).

e) Hence ∑
n∈(x,x+h]

|µ(n)| = h

ζ(2)
+O(x1/3)

and conclude that if θ > 1/3, then there is a squarefree integer in each interval [x, x+xθ],
if x is large enough.
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(10) Let r be any positive integer. Let f(n) := Jr(n)
nr (see Ex.3 for the definition of Jr).

a) Prove that f is multiplicative.

b) Let F (s) :=
∑∞

n=1 f(n)/ns be the Dirichlet series associated with f(n), and let H(s)
be the complex function defined in such a way that

F (s) = H(s)ζ(s).

Prove that H(s) may be written as Euler product and as Dirichlet series.

c) Working out an explicit expression for the Euler product ofH(s), prove that it converges
absolutely for Re(s) > 1− r.

d) Let h(n) be the sequence of numbers such that H(s) =
∑∞

n=1 h(n)/ns. From Step b)
one gets that

f(n) =
∑
m|n

h(m).

Deduce that ∑
n≤x

f(n) =
∑
m,n
mn≤x

h(m) =
∑
m≤x

h(m)
∑
n≤ x

m

1

so that ∑
n≤x

f(n) =
( ∑
m≤x

h(m)

m

)
x+O

( ∑
m≤x
|h(m)|

)
.

e) Use Step c) to prove that∑
m>x

h(m)

m
�η x

−r+η and
∑
m≤x
|h(m)| �η x

1−r+η,

for every η > 0.

f) Use Steps d) and e) to deduce that∑
n≤x

f(n) =
(
H(1)−

∑
m>x

h(m)

m

)
x+Oη(x

1−r+η) = H(1)x+Oη(x
1−r+η).

g) From the representation of H(s) as Euler product deduce that H(1) =
∏
p(1−

1
pr+1 ) =

1/ζ(r + 1).

h) Use Steps f) and g) and the partial summation formula to deduce that∑
n≤x

Jr(n) =
xr+1

(r + 1)ζ(r + 1)
+Oη(x

1+η).

(11) Set a ∈ C, and let fa : N→ C be the function with

fa(1) := 1 and fa(p
ν1
1 p

ν2
2 · · · p

νk
k ) := (ν1ν2 · · · νk)a.

Following Steps a–g in Ex. 10 find a formula for
∑

n≤x fa(n).

(12) Let {pn}n∈N be the sequence of prime numbers, so that p1 = 2, p2 = 3, and so on. For
every n ∈ N, let an := ppn . Prove that∑

n : an≤x
1 = #{n : an ≤ x} ∼

x

log2 x
.

Hint: Use PNT to deduce that pn ∼ n log n, then deduce the asymptotic for an and
compute.
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