Analytic Number Theory: Homework 1 (2019)

(1) Liouville's function λ is defined via $\lambda(n)=(-1)^{\Omega(n)}$, for every $n \in \mathbb{N}$. Prove that

$$
\sum_{d \mid n} \lambda(d)= \begin{cases}1 & \text { if } n \text { is a square } \\ 0 & \text { otherwise }\end{cases}
$$

Hint: recall that $\Omega(n)$ is the number of prime divisors of n, multiplicity included. In other words, $\Omega\left(p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{k}^{a_{k}}\right)=a_{1}+a_{2}+\cdots+a_{k}$.
(2) Recall that $M(x):=\sum_{n \leq x} \mu(n)$, and let $L(x):=\sum_{n \leq x} \lambda(n)$. Notice that they are similar since $\omega(n)=\Omega(n)$ for squarefree integers so that $\mu(n)=\lambda(n)$ for them. Prove that

$$
L(x)=\sum_{d^{2} \leq x} M\left(\frac{x}{d^{2}}\right) \quad \text { and that } \quad M(x)=\sum_{d^{2} \leq x} \mu(d) L\left(\frac{x}{d^{2}}\right) .
$$

(3) For $r \geq 1$, let $J_{r}(n)$ be the number of r-uples of integers a_{j} with $1 \leq a_{j} \leq n$ for $j=1, \ldots, r$, and $\left(a_{1}, \ldots, a_{r}, n\right)=1$. Prove that

$$
J_{r}(n)=n^{r} \prod_{p \mid n}\left(1-\frac{1}{p^{r}}\right) .
$$

This is Jordan's totient function. When $r=1$ it coincides with Euler's function φ. Hint: First prove that J_{r} is multiplicative, then compute $J_{r}\left(p^{k}\right)$.
(4) Let $M(x)$ and $L(x)$ be as in Ex. 2. Prove that

$$
\forall A>0, \quad L(x)<_{A} \frac{x}{\log ^{A} x} \quad \Longleftrightarrow \quad \forall A>0, \quad M(x) \ll_{A} \frac{x}{\log ^{A} x}
$$

when $x \rightarrow \infty$.
Hint: Use identities in Exercise 2.
(5) For every integer n, let $\operatorname{rad}(n)$ be the product of all distinct primes dividing n (with $\operatorname{rad}(1):=1)$. It is called the radical of n. Prove that

$$
\sum_{n \leq x} \log (\operatorname{rad}(n))=x \log x+O(x) .
$$

Hint: recall the identity $\log =1 * \Lambda$, so that $\sum_{n \leq x} \log (\operatorname{rad}(n))=\sum_{n \leq x} \sum_{d \mid \operatorname{rad}(n)} \Lambda(d)$.
(6) Using only Mertens' result (PNT not allowed here), prove that

$$
\sum_{p \leq x} \frac{\log ^{2} p}{p}=\frac{1}{2} \log ^{2} x+O(\log x)
$$

(7) Let $\alpha \geq 1$. Let F_{α} be the Dirichlet series

$$
F_{\alpha}(s)=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\left\lceil n^{\alpha}\right\rceil^{s}}
$$

where $\lceil x\rceil:=\inf \{n \in \mathbb{Z}: x \leq n\}$. Prove that for this series $\sigma_{c}=0$ and $\sigma_{a}=1 / \alpha$.
(8) Let $g: \mathbb{N} \rightarrow \mathbb{C}$ be the arithmetical function giving the Dirichlet coefficients of the Dirichlet series $1 / \zeta(2 s)$.
a) Prove that $g\left(k^{2}\right)=\mu(k)$ for every integer k, and that $g(k)=0$ when k is not a square.
b) Prove that $|\mu(n)|=\sum_{d \mid n} g(d)$. Deduce that

$$
\sum_{n \leq x}|\mu(n)|=\sum_{\substack{n, m \\ n m \leq x}} g(m)=\sum_{\substack{n, k \\ n k^{2} \leq x}} \mu(k)=\sum_{k \leq \sqrt{x}} \mu(k) \sum_{n \leq x / k^{2}} 1=\sum_{k \leq \sqrt{x}} \mu(k)\left\lfloor\frac{x}{k^{2}}\right\rfloor
$$

c) Use the previous equality to deduce that

$$
\sharp\{n \in \mathbb{N}: n \leq x, n \text { is squarefree }\}=\sum_{n \leq x}|\mu(n)|=\frac{x}{\zeta(2)}+O(\sqrt{x}) .
$$

d) Deduce that for every $\theta>1 / 2$ there exists $x_{0}=x_{0}(\theta)$ such that

$$
\left\{n \in \mathbb{N}: n \in\left[x, x+x^{\theta}\right], n \text { is squarefree }\right\} \neq \emptyset \quad \forall x \geq x_{0}
$$

(9) The previous exercise shows that if $\theta>1 / 2$, there is a squarefree integer in each interval $\left[x, x+x^{\theta}\right]$, if x is large enough. That argument is rooted in the general formula in Ex.8.c, and therefore it does not allow to get the claim for any $\theta \leq 1 / 2$. The next steps will prove the claim also for smaller values of θ.
a) Let $h>0$, and observe that

$$
\sharp\{n \in \mathbb{N}: n \in(x, x+h], n \text { is squarefree }\}=\sum_{n \in(x, x+h]}|\mu(n)| .
$$

b) As in Ex. 8 b , prove that

$$
\sum_{n \in(x, x+h]}|\mu(n)|=\sum_{x<n k^{2} \leq x+h} \mu(k),
$$

and split the range to get

$$
\sum_{n \in(x, x+h]}|\mu(n)|=\sum_{k \leq x^{1 / 3}} \mu(k) \sum_{x<n k^{2} \leq x+h} 1+\sum_{k>x^{1 / 3}} \mu(k) \sum_{x<n k^{2} \leq x+h} 1=: S_{1}+S_{2}
$$

c) Prove that

$$
S_{1}=\sum_{k \leq x^{1 / 3}} \mu(k)\left(\left\lfloor\frac{x+h}{k^{2}}\right\rfloor-\left\lfloor\frac{x}{k^{2}}\right\rfloor\right)=\frac{h}{\zeta(2)}+O\left(h / x^{1 / 3}\right)+O\left(x^{1 / 3}\right) .
$$

d) Prove that
$\sharp\left\{(n, k) \in \mathbb{N}^{2}: x<n k^{2} \leq x+h, k>x^{1 / 3}\right\} \leq \sharp\left\{(n, k) \in \mathbb{N}^{2}: n<x^{1 / 3}+\frac{h}{x^{2 / 3}}, \sqrt{\frac{x}{n}}<k \leq \sqrt{\frac{x+h}{n}}\right\}$.
Under the assumption $h \leq \sqrt{x}$, prove that the interval $\left(\sqrt{\frac{x}{n}}, \sqrt{\frac{x+\hbar}{n}}\right]$ contains one integer, at most.
e) Assume $h \leq \sqrt{x}$ and deduce that

$$
S_{2}=O\left(x^{1 / 3}\right)
$$

e) Hence

$$
\sum_{n \in(x, x+h]}|\mu(n)|=\frac{h}{\zeta(2)}+O\left(x^{1 / 3}\right)
$$

and conclude that if $\theta>1 / 3$, then there is a squarefree integer in each interval $\left[x, x+x^{\theta}\right]$, if x is large enough.
(10) Let r be any positive integer. Let $f(n):=\frac{J_{r}(n)}{n^{r}}$ (see Ex. 3 for the definition of J_{r}).
a) Prove that f is multiplicative.
b) Let $F(s):=\sum_{n=1}^{\infty} f(n) / n^{s}$ be the Dirichlet series associated with $f(n)$, and let $H(s)$ be the complex function defined in such a way that

$$
F(s)=H(s) \zeta(s)
$$

Prove that $H(s)$ may be written as Euler product and as Dirichlet series.
c) Working out an explicit expression for the Euler product of $H(s)$, prove that it converges absolutely for $\operatorname{Re}(s)>1-r$.
d) Let $h(n)$ be the sequence of numbers such that $H(s)=\sum_{n=1}^{\infty} h(n) / n^{s}$. From Step b) one gets that

$$
f(n)=\sum_{m \mid n} h(m)
$$

Deduce that

$$
\sum_{n \leq x} f(n)=\sum_{\substack{m, n \\ m n \leq x}} h(m)=\sum_{m \leq x} h(m) \sum_{n \leq \frac{x}{m}} 1
$$

so that

$$
\sum_{n \leq x} f(n)=\left(\sum_{m \leq x} \frac{h(m)}{m}\right) x+O\left(\sum_{m \leq x}|h(m)|\right)
$$

e) Use Step c) to prove that

$$
\sum_{m>x} \frac{h(m)}{m} \lll \eta x^{-r+\eta} \quad \text { and } \quad \sum_{m \leq x}|h(m)|<_{\eta} x^{1-r+\eta}
$$

for every $\eta>0$.
f) Use Steps d) and e) to deduce that

$$
\sum_{n \leq x} f(n)=\left(H(1)-\sum_{m>x} \frac{h(m)}{m}\right) x+O_{\eta}\left(x^{1-r+\eta}\right)=H(1) x+O_{\eta}\left(x^{1-r+\eta}\right)
$$

g) From the representation of $H(s)$ as Euler product deduce that $H(1)=\prod_{p}\left(1-\frac{1}{p^{r+1}}\right)=$ $1 / \zeta(r+1)$.
h) Use Steps f) and g) and the partial summation formula to deduce that

$$
\sum_{n \leq x} J_{r}(n)=\frac{x^{r+1}}{(r+1) \zeta(r+1)}+O_{\eta}\left(x^{1+\eta}\right)
$$

(11) Set $a \in \mathbb{C}$, and let $f_{a}: \mathbb{N} \rightarrow \mathbb{C}$ be the function with

$$
f_{a}(1):=1 \quad \text { and } \quad f_{a}\left(p_{1}^{\nu_{1}} p_{2}^{\nu_{2}} \cdots p_{k}^{\nu_{k}}\right):=\left(\nu_{1} \nu_{2} \cdots \nu_{k}\right)^{a}
$$

Following Steps a-g in Ex. 10 find a formula for $\sum_{n \leq x} f_{a}(n)$.
(12) Let $\left\{p_{n}\right\}_{n \in \mathbb{N}}$ be the sequence of prime numbers, so that $p_{1}=2, p_{2}=3$, and so on. For every $n \in \mathbb{N}$, let $a_{n}:=p_{p_{n}}$. Prove that

$$
\sum_{n: a_{n} \leq x} 1=\#\left\{n: a_{n} \leq x\right\} \sim \frac{x}{\log ^{2} x}
$$

Hint: Use PNT to deduce that $p_{n} \sim n \log n$, then deduce the asymptotic for a_{n} and compute.

