Analytic Number Theory: Homework 1 (2019)

(1) Liouville’s function X is defined via A(n) = (—1)%(), for every n € N. Prove that

Z)‘(d): {1 if n is a square

0 otherwise.
din

Hint: recall that (n) is the number of prime divisors of n, multiplicity included. In
other words, Q(p{'ps> - pi*) = a1 +az + -+ + ay.

(2) Recall that M(z) := > -, u(n), and let L(z) := > . A(n). Notice that they are
similar since w(n) = Q(n) for squarefree integers so that u(n) = A(n) for them. Prove
that

L(z) = Z M(%) and that M(z) = Z ,u(d)L(%).

d?<zx d?<z

(3) For r > 1, let J.(n) be the number of r-uples of integers a; with 1 < a; < n for
j=1,...,r,and (ai,...,a,,n) = 1. Prove that

) 1
Jr(n) =n g(l-ﬁ).

This is Jordan’s totient function. When r = 1 it coincides with Euler’s function ¢.
Hint: First prove that .J, is multiplicative, then compute .J,(p").

(4) Let M(z) and L(x) be as in Ex. 2. Prove that

VA>0, L(z)<a —e <  VA>0, M(z)<a

log? z logA x

when z — oo.
Hint: Use identities in Exercise 2.

(5) For every integer n, let rad(n) be the product of all distinct primes dividing n (with
rad(1) := 1). It is called the radical of n. Prove that

Z log(rad(n)) = xlogx + O(x).

n<x

Hint: recall the identity log = 1% A, so that 3_, _ log(rad(n)) = 3=, <, >~ 4 rad(n) A(d)-
(6) Using only Mertens’ result (PNT not allowed here), prove that

log’p 1
Z %8 P _ Qlog2x+0(log:c).

p<w

(7) Let a > 1. Let F, be the Dirichlet series

Fale) =3 e

where [z] :=inf{n € Z: x < n}. Prove that for this series 0. = 0 and 0, = 1/a.

n=1



(8) Let g: N — C be the arithmetical function giving the Dirichlet coefficients of the Dirichlet
series 1/((2s).
a) Prove that g(k?) = u(k) for every integer k, and that g(k) = 0 when k is not a square.

b) Prove that |p(n)| = > 4, 9(d). Deduce that

Solum)l =" gtm)= > utk)= 3" pk) o 1= 3 k) |-
n<x n%?x n:Qsz k<\z n<z/k? k<yz

c¢) Use the previous equality to deduce that

#{n € N: n <z, n is squarefree} = Z lu(n)| = ﬁ
n<x

d) Deduce that for every 6 > 1/2 there exists o = o(#) such that

+0(Vz).

{n €N:n e x,z+ 1%, nis squarefree} # 0 Va > xg.

(9) The previous exercise shows that if # > 1/2, there is a squarefree integer in each interval
[z, z+2%], if  is large enough. That argument is rooted in the general formula in Ex.8.c,
and therefore it does not allow to get the claim for any § < 1/2. The next steps will
prove the claim also for smaller values of 6.

a) Let h > 0, and observe that

#{n € N: n € (z,z + h], n is squarefree} = Z lpe(n)].

né€(z,x+h]
b) As in Ex.8b, prove that

Sooqum) = > uk),

ne(x,z+h] z<nk2<z+h

and split the range to get

S o= 3 ak) S 1+ Y ouk) Y 1=Si+5.

né€(z,x+h] k<gzl/3 r<nk2<z+h k>ax1/3 z<nk?<z+h

c) Prove that

Si = kgz/ u(k)( V;hJ - %J ) = C(};) +O(h/23) + O(/3).

d) Prove that

#H{(n, k) e N2: o < nk? < az+h, k> 23} < #{(n, k) e N2: n<x1/3—|—x2h/3, \/%< k< \/%}.

Under the assumption h < \/z, prove that the interval (\/% ,/E] contains one inte-
ger, at most.

e) Assume h < /x and deduce that
Sy = O(z'/3).

e) Hence
_ R 13
negih} lu(n)| = oM O(x/?)

and conclude that if @ > 1/3, then there is a squarefree integer in each interval [z, 2+2%],
if x is large enough.



(10) Let r be any positive integer. Let f(n) := %f) (see Ex.3 for the definition of J;).
a) Prove that f is multiplicative.
b) Let F(s) := >, f(n)/n® be the Dirichlet series associated with f(n), and let H(s)
be the complex function defined in such a way that
F(s) = H(s)C(s).
Prove that H(s) may be written as Euler product and as Dirichlet series.

¢) Working out an explicit expression for the Euler product of H (s), prove that it converges
absolutely for Re(s) > 1 —r.

d) Let h(n) be the sequence of numbers such that H(s) = .-, h(n)/n®. From Step b)

one gets that
f(n) =" h(m).

mln
Deduce that
Sty = 3 him) =3 him)
so that : m””; : -
S rm=(> (::))x+0< > nm)l).

e) Use Step c) to prove that

h(m) —r+n 1—r+n
Z - < and Z |h(m)]| <5 x ,
m>x m<x
for every n > 0.
f) Use Steps d) and e) to deduce that

Z fn) = (H(l) N Z h(mm))‘T + Oy (z' ") = H(1)z + Oy (z' 7).

n<x m>x
g) From the representation of H(s) as Euler product deduce that H(1) = [],(1 - #) =
1/¢(r+1).
h) Use Steps f) and g) and the partial summation formula to deduce that
xr—f—l

> ) = r+1)C(r+1)

n<x

+ Oy ().

(11) Set a € C, and let f,: N — C be the function with
fa(l):=1 and fa(PY' D52 - ppF) == (e -+ )%
Following Steps a-g in Ex. 10 find a formula for ), . fa(n).

(12) Let {pp}nen be the sequence of prime numbers, so that p; = 2, po = 3, and so on. For
every n € N, let a,, := p,,. Prove that

Z 1=#{n:a, <z}~

n: an<x

x

log?z

Hint: Use PNT to deduce that p, ~ nlogn, then deduce the asymptotic for a, and
compute.



