Analytic Number Theory: Homework 1 (2021/22)

(1) Let $f: \mathbb{N} \rightarrow \mathbb{C}$ be an arithmetic function.
a) Prove that f is $*$-invertible (i.e., invertible with respect to the Dirichlet $*$ product) if and only if $f(1) \neq 0$.
b) Prove that if f is multiplicative then f is $*$-invertible and f^{-1} is multiplicative, too.
c) Show with some example that if f is completely multiplicative then in general f^{-1} is not completely multiplicative.
d) Characterize all functions f which are invertible and such that both f and f^{-1} are completely multiplicative.
Hint: recall that the function f which is identically zero satisfies the multiplicative property $f(m n)=f(m) f(n)$ for every $m, n=1$, but it is not a multiplicative function, by definition.
(2) Using only Mertens' result (i.e., Eq. 1.7.7 in Notes: PNT not allowed here), prove that

$$
\sum_{p \leq x} \frac{\log ^{k} p}{p}=\frac{1}{k} \log ^{k} x+O\left(\log ^{k-1} x\right)
$$

for every $k \in \mathbb{N}, k \geq 1$.
(3) Prove the identity

$$
\sum_{n=1}^{\infty} \frac{\varphi(n)}{n^{s}}=\frac{\zeta(s-1)}{\zeta(s)} .
$$

(4) Let $\alpha \geq 1$. Let F_{α} be the Dirichlet series

$$
F_{\alpha}(s)=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\left\lceil n^{\alpha}\right\rceil^{s}}
$$

where $\lceil x\rceil:=\inf \{n \in \mathbb{Z}: x \leq n\}$. Prove that for this series $\sigma_{c}=0$ and $\sigma_{a}=1 / \alpha$.
(5) Suppose that the Dirichlet series $F(s):=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}$ converges in some right half-plane H of the complex plane. Suppose that some a_{n} is not zero and let $\bar{n}:=\min \left\{n: a_{n} \neq 0\right\}$. Prove that

$$
F(s)=\frac{a_{\bar{n}}+o(1)}{\bar{n}^{s}} \quad \text { as } \operatorname{Re}(s) \rightarrow+\infty, s \in H .
$$

Use this remark to prove that if $F(s):=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}$ and $G(s):=\sum_{n=1}^{\infty} \frac{b_{n}}{n^{s}}$ are two Dirichlet series converging in some domain (not necessarily the same) define the same function in the common domain, then $a_{n}=b_{n}$ for every n.
(6) Let r be any positive integer. An integer n is called r-power free when 1 is the unique r-power dividing n. Let δ_{r} be the characteristic function of r-power free integers (thus, $\delta_{r}(n)=1$ when n is r-power free, 0 otherwise).
a) Prove that δ_{r} is multiplicative.
b) Let $F(s):=\sum_{n=1}^{\infty} \delta_{r}(n) / n^{s}$ be the Dirichlet series associated with $\delta_{r}(n)$, and let H be the complex function defined in such a way that

$$
F(s)=H(s) \zeta(s)
$$

Prove that H may be written both as Euler product and as Dirichlet series.
c) Working out an explicit expression for the Euler product of H, prove that it converges absolutely for $\operatorname{Re}(s)>1 / r$.
d) Let h be the arithmetical function such that $H(s)=\sum_{n=1}^{\infty} h(n) / n^{s}$. From Step b) one gets that

$$
\delta_{r}(n)=\sum_{m \mid n} h(m)
$$

Deduce that

$$
\sum_{n \leq x} \delta_{r}(n)=\sum_{\substack{m, n \\ m n \leq x}} h(m)=\sum_{m \leq x} h(m) \sum_{n \leq \frac{x}{m}} 1
$$

so that

$$
\sum_{n \leq x} \delta_{r}(n)=\left(\sum_{m \leq x} \frac{h(m)}{m}\right) x+O\left(\sum_{m \leq x}|h(m)|\right)
$$

e) Use Step c) to prove that

$$
\sum_{m>x} \frac{h(m)}{m} \ll \eta_{\eta} x^{-1+1 / r+\eta} \quad \text { and } \quad \sum_{m \leq x}|h(m)|<_{\eta} x^{1 / r+\eta}
$$

for every $\eta>0$.
f) Use Steps d) and e) to deduce that

$$
\sum_{n \leq x} \delta_{r}(n)=\left(H(1)-\sum_{m>x} \frac{h(m)}{m}\right) x+O_{\eta}\left(x^{1 / r+\eta}\right)=H(1) x+O_{\eta}\left(x^{1 / r+\eta}\right)
$$

g) From the representation of H as Euler product deduce that $H(1)=\prod_{p}\left(1-\frac{1}{p^{r}}\right)=1 / \zeta(r)$.
(7) Set $a \in \mathbb{C}$, and let $f_{a}: \mathbb{N} \rightarrow \mathbb{C}$ be the function with

$$
f_{a}(1):=1 \quad \text { and } \quad f_{a}\left(p_{1}^{\nu_{1}} p_{2}^{\nu_{2}} \cdots p_{k}^{\nu_{k}}\right):=\left(\nu_{1} \nu_{2} \cdots \nu_{k}\right)^{a} .
$$

Following Steps a-g in Ex. 6 find a formula for $\sum_{n \leq x} f_{a}(n)$.
(8) For every integer n, let $\operatorname{rad}(n)$ be the product of all distinct primes dividing n (with $\operatorname{rad}(1):=1)$. It is called the radical of n. Prove that

$$
\sum_{n \leq x} \operatorname{rad}(n)=\frac{c}{2} x^{2}+O_{\eta}\left(x^{3 / 2+\eta}\right)
$$

for every $\eta>0$, with $c:=\prod_{p}\left(1-\frac{1}{p(p+1)}\right)$.
Hint: Use the same technology of Exercises $6 / 7$, but with $\zeta(s-1)$ in place of $\zeta(s)$ (Why?).
(9) Devise a method to compute the correct value for the first three digits of the value of $c:=\prod_{p}\left(1-\frac{1}{p(p+1)}\right)$.
Hint: Write c as $\prod_{p<N}\left(1-\frac{1}{p(p+1)}\right) \cdot \prod_{p \geq N}\left(1-\frac{1}{p(p+1)}\right)$ and estimate the second factor as $1+R(N)$ with an explicit (and easily computed) function $R(N)$ decreasing to 0 . Then fix N, compute the first factor, and use the estimation for the second factor in order to compute the maximum error between the true value of c and the value for the first
factor. Adjust N in order to have an error lower than 10^{-3}. For this exercise you can use a software to perform the computations.
(10) Recall that

$$
\zeta(s)=\frac{1}{s-1}+\frac{1}{2}-s \int_{1}^{-\infty} \frac{B_{1}(x)}{x^{s+1}} \mathrm{~d} x \quad \operatorname{Re}(s)>0
$$

a) Deduce that

$$
|\zeta(s)| \geq \frac{|s+1|}{2|s-1|}-\frac{|s|}{2 \operatorname{Re}(s)} \quad \operatorname{Re}(s)>0
$$

b) Set $x=u+i v$ with $u, v \in \mathbb{R}$ in previous formula, and deduce that

$$
\text { if }\left\{\begin{array}{l}
v^{4}+v^{2}(u-1)^{2}-4 u^{3}<0 \\
u>0
\end{array} \quad \text { then } \quad \zeta(u+i v) \neq 0\right.
$$

Make a plot of this zero-free region.
Optional: Repeat the exercise using the identities

$$
\begin{array}{ll}
\zeta(s)=\frac{1}{s-1}+\frac{1}{2}-\frac{s}{12}-\frac{1}{2} s(s+1) \int_{1}^{-\infty} \frac{B_{2}(x)}{x^{s+2}} \mathrm{~d} x & \operatorname{Re}(s)>-1 \\
\zeta(s)=\frac{1}{s-1}+\frac{1}{2}-\frac{s}{12}+\frac{1}{6} s(s+1)(s+2) \int_{1}^{-\infty} \frac{B_{3}(x)}{x^{s+3}} \mathrm{~d} x & \operatorname{Re}(s)>-2:
\end{array}
$$

in these cases the resulting formulas are again of algebraic type in u, v but quite complicated. In order to produce a graph of the zero free region, a software is probably necessary.

