
Analytic Number Theory: Homework 1 (2023/24)

(1) Let f : N → C be an arithmetic function.
a) Prove that f is ∗-invertible (i.e., invertible with respect to the Dirichlet ∗ product) if

and only if f(1) ̸= 0.

b) Prove that if f is multiplicative then f is ∗-invertible and f−1 is multiplicative, too.

c) Show with some example that if f is completely multiplicative then in general f−1 is
not completely multiplicative.

d) Describe all functions f which are invertible and such that both f and f−1 are com-
pletely multiplicative.

(2) Let f : C → C, f(z) := sin(πz)
πz (extended by continuity at z = 0). Let

g(z) =

∞∏
n=1

f(z/n).

Prove that the product converges absolutely and uniformly on compact sets of C, so that
g is an entire function. Prove that g is an even function, that g(z) = 0 if and only if
z ∈ Z and that the order of n ∈ N as zero for g is d(n) =

∑
m|n 1.

(3) Let g(s) :=
∑∞

n=0[ζ(n+ s)− 1].
• Prove that the series converges absolutely and uniformly on compact subsets of H1 :=
{s ∈ C : Re(s) > 1}, so that g is a holomorphic function in H1.

• Prove that g can be extend as a meromorphic function on the full complex plane.

• Prove that the resulting function g : C → C has a simple pole at s = 1, at s = 0 and at
s = −n for every n ∈ N, and no other poles.

• Prove that g(2) = 1.

(4) Let g(s) :=
∏∞

n=0 ζ(n+ s).
• Prove that the product converges absolutely and uniformly on compact subsets ofH1 :=
{s ∈ C : Re(s) > 1}, so that g is a holomorphic function in H1.

• Prove that g can be extend as a meromorphic function on the full complex plane.

• Prove that the resulting function g : C → C has a simple pole at s = 1, s = 0 and
s = −1 and no other poles.

hint: for the last claim, recall that if s ∈ (−∞, 0]), then ζ(s) = 0, if and only if s = −2n
with n ∈ N = {1, 2, 3 . . .}.

(5) Using only Mertens’ result (i.e., Eq. 1.7.7 in Notes: PNT not allowed here), prove that∑
p≤x

logk p

p
=

1

k
logk x+O(logk−1 x)

for every k ∈ N, k ≥ 1.

(6) Let µ∗k be the ∗-product of k copies of µ (so that µ∗2 = µ ∗ µ, µ∗3 = µ ∗ µ ∗ µ), with
µ∗0 := 1. Prove that µ∗k is multiplicative and that

µ∗k(pa) =

{
(−1)a

(
k
a

)
when 0 ≤ a ≤ k

0 otherwise.



(7) Let Ω: N → C be the function with

Ω(n) := #{p prime, k ≥ 1: pk|n}
(so that Ω(8) = 3, while ω(8) = 1). Liouville’s function λ is the arithmetic function

such that λ(n) := (−1)Ω(n) for every n. Prove that∑
d|n

λ(d) =

{
1 if n is a square

0 otherwise.

Deduce that for every x > 0,∑
n≤x

λ(n)
⌊x
n

⌋
=

⌊√
x
⌋
.

(8) Prove the identities
∞∑
n=1

φ(n)

ns
=

ζ(s− 1)

ζ(s)
,

∞∑
n=1

λ(n)

ns
=

ζ(2s)

ζ(s)
,

∞∑
n=1

µ(n)2

ns
=

ζ(s)

ζ(2s)
.

(9) Prove that for every couple of arbitrarily fixed numbers τ, ν ∈ C, one has
∞∑
n=1

στ (n)σν(n)

ns
=

ζ(s)ζ(s− τ)ζ(s− ν)ζ(s− τ − ν)

ζ(2s− τ − ν)
.

(10) Let r be any positive integer. An integer n is called r-power free when 1 is the unique
r-power dividing n. Let δr be the characteristic function of r-power free integers (thus,
δr(n) = 1 when n is r-power free, 0 otherwise).

a) Prove that δr is multiplicative.

b) Let F (s) :=
∑∞

n=1 δr(n)/n
s be the Dirichlet series associated with δr, and let H be the

complex function defined in such a way that

F (s) = H(s)ζ(s).

Prove that H may be written both as Euler product and as Dirichlet series.

c) Working out an explicit expression for the Euler product of H, prove that it converges
absolutely for Re(s) > 1/r.

d) Let h be the arithmetical function such that H(s) =
∑∞

n=1 h(n)/n
s. From Step b) one

gets that

δr(n) =
∑
m|n

h(m).

Deduce that ∑
n≤x

δr(n) =
( ∑

m≤x

h(m)

m

)
x+O

( ∑
m≤x

|h(m)|
)
.

e) Use Step c) to prove that∑
m>x

h(m)

m
≪ε x

−1+1/r+ε and
∑
m≤x

|h(m)| ≪ε x
1/r+ε,

for every ε > 0.
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f) Use Steps d) and e) to deduce that∑
n≤x

δr(n) = H(1)x+Oε(x
1/r+ε).

g) From the representation ofH as Euler product deduce thatH(1) =
∏

p(1−
1
pr ) = 1/ζ(r).

Remark: the case r = 2 is quite famous; it proves that the number of squarefree integers
which are ≤ x is = 6

π2x+Oε(x
1/2+ε).

(11) For every positive integer n let f(n) := ♯{x ∈ Z/nZ : x2 = 1 (mod n)}, i.e. the number
of solutions of the equation x2 = 1 in the ring Z/nZ.

a) Prove that f is multiplicative.

b) Prove that f(2) = 1, f(22) = 2, f(2k) = 4 for every k ≥ 3.

c) Prove that f(pk) = 2 when p is odd, for every k.

d) Let F (s) :=
∑∞

n=1 f(n)/n
s be the Dirichlet series associated with f , and let H(s) be

the complex function defined in such a way that

F (s) = H(s)ζ2(s).

Working out an explicit expression for the Euler product ofH(s), prove that it converges
absolutely for Re(s) > 1/2.

e) Let h be the arithmetical function such that H(s) =
∑∞

n=1 h(n)/n
s; imitating the proof

of the previous step, prove that this series converges absolutely for Re(s) > 1/2.

f) Recall that d(n) is the sequence of Dirichlet’s coefficients of ζ2(s), so that from Step d)
one gets that

f(n) =
∑
m|n

h(m)d
( n

m

)
.

Deduce that ∑
n≤x

f(n) =
∑
m,n

mn≤x

h(m)d(n) =
∑
m≤x

h(m)
∑
n≤ x

m

d(n).

g) Use Dirichlet’s result on the mean value of the divisor function, in its easier form
claiming that

∑
n≤y d(n) = y log y +O(y), to deduce that∑

n≤x

f(n) =
( ∑

m≤x

h(m)

m

)
x log x− x

∑
m≤x

h(m) logm

m
+O

(
x
∑
m≤x

|h(m)|
m

)
.

h) Use Steps e) and g) to deduce that∑
n≤x

f(n) =
( ∑

m≤x

h(m)

m

)
x log x+O(x).

i) Use Step e) to deduce that for every ε > 0,∣∣∣ ∑
m>x

h(m)

m

∣∣∣ ≤ ∑
m>x

|h(m)|
m

≪ε
xε

x1/2

so that Step h) gives ∑
n≤x

f(n) = H(1)x log x+O(x).
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l) From the representation of H as Euler product deduce that H(1) =
∏

p(1 − 1
p2
) =

1
ζ(2) =

6
π2 , and conclude that∑

n≤x

f(n) =
6

π2
x log x+O(x).

Hint: For Steps b) and c) recall that (Z/pkZ)∗ is cyclic when p is odd, for every k and
that its order is always even, while (Z/2kZ)∗ for k ≥ 3 is the product of two cyclic groups
of order respectively 2 and 2k−2.
Remark: Using the full strength of Dirichlet’s bound (i.e.

∑
n≤y d(n) = y log y+ (2γ −

1)y +O(
√
y)), the previous argument gives∑

n≤x

f(n) = H(1)x log x+ ((2γ − 1)H(1) +H ′(1))x+Oε(x
1/2+ε).

(12) Let f : N → C be the function with f(n) = 2ω(n) for every n. Following the argument in
Ex. 11 find a formula for

∑
n≤x f(n).

(13) Devise a method to compute the correct value for the first three digits of the number

c :=
∏
p

(
1 +

p2 − 1

p(p+ 1)(p2 + 1)

)
.

Hint: Write c as
∏

p<N (1 + p2−1
p(p+1)(p2+1)

) ·
∏

p≥N (1 p2−1
p(p+1)(p2+1)

) and estimate the second

factor as 1 +R(N) with an explicit (and easily computed) function R(N) decreasing to
0. Then fix N , compute the first factor, and use the estimation for the second factor in
order to compute the maximum error between the true value of c and the value for the
first factor. Adjust N in order to have an error lower than 10−3. For this exercise you
can use a software to perform the computations.
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