Analytic Number Theory: Homework 1 (2023/24)

(1) Let $f: \mathbb{N} \rightarrow \mathbb{C}$ be an arithmetic function.
a) Prove that f is $*$-invertible (i.e., invertible with respect to the Dirichlet $*$ product) if and only if $f(1) \neq 0$.
b) Prove that if f is multiplicative then f is $*$-invertible and f^{-1} is multiplicative, too.
c) Show with some example that if f is completely multiplicative then in general f^{-1} is not completely multiplicative.
d) Describe all functions f which are invertible and such that both f and f^{-1} are completely multiplicative.
(2) Let $f: \mathbb{C} \rightarrow \mathbb{C}, f(z):=\frac{\sin (\pi z)}{\pi z}$ (extended by continuity at $z=0$). Let

$$
g(z)=\prod_{n=1}^{\infty} f(z / n)
$$

Prove that the product converges absolutely and uniformly on compact sets of \mathbb{C}, so that g is an entire function. Prove that g is an even function, that $g(z)=0$ if and only if $z \in \mathbb{Z}$ and that the order of $n \in \mathbb{N}$ as zero for g is $d(n)=\sum_{m \mid n} 1$.
(3) Let $g(s):=\sum_{n=0}^{\infty}[\zeta(n+s)-1]$.

- Prove that the series converges absolutely and uniformly on compact subsets of H_{1} := $\{s \in \mathbb{C}: \operatorname{Re}(s)>1\}$, so that g is a holomorphic function in H_{1}.
- Prove that g can be extend as a meromorphic function on the full complex plane.
- Prove that the resulting function $g: \mathbb{C} \rightarrow \mathbb{C}$ has a simple pole at $s=1$, at $s=0$ and at $s=-n$ for every $n \in \mathbb{N}$, and no other poles.
- Prove that $g(2)=1$.
(4) Let $g(s):=\prod_{n=0}^{\infty} \zeta(n+s)$.
- Prove that the product converges absolutely and uniformly on compact subsets of H_{1} := $\{s \in \mathbb{C}: \operatorname{Re}(s)>1\}$, so that g is a holomorphic function in H_{1}.
- Prove that g can be extend as a meromorphic function on the full complex plane.
- Prove that the resulting function $g: \mathbb{C} \rightarrow \mathbb{C}$ has a simple pole at $s=1, s=0$ and $s=-1$ and no other poles.
hint: for the last claim, recall that if $s \in(-\infty, 0])$, then $\zeta(s)=0$, if and only if $s=-2 n$ with $n \in \mathbb{N}=\{1,2,3 \ldots\}$.
(5) Using only Mertens' result (i.e., Eq. 1.7.7 in Notes: PNT not allowed here), prove that

$$
\sum_{p \leq x} \frac{\log ^{k} p}{p}=\frac{1}{k} \log ^{k} x+O\left(\log ^{k-1} x\right)
$$

for every $k \in \mathbb{N}, k \geq 1$.
(6) Let $\mu^{* k}$ be the $*$-product of k copies of μ (so that $\mu^{* 2}=\mu * \mu, \mu^{* 3}=\mu * \mu * \mu$), with $\mu^{* 0}:=1$. Prove that $\mu^{* k}$ is multiplicative and that

$$
\mu^{* k}\left(p^{a}\right)= \begin{cases}(-1)^{a}\binom{k}{a} & \text { when } 0 \leq a \leq k \\ 0 & \text { otherwise }\end{cases}
$$

(7) Let $\Omega: \mathbb{N} \rightarrow \mathbb{C}$ be the function with

$$
\Omega(n):=\#\left\{p \text { prime, } k \geq 1: p^{k} \mid n\right\}
$$

(so that $\Omega(8)=3$, while $\omega(8)=1$). Liouville's function λ is the arithmetic function such that $\lambda(n):=(-1)^{\Omega(n)}$ for every n. Prove that

$$
\sum_{d \mid n} \lambda(d)= \begin{cases}1 & \text { if } n \text { is a square } \\ 0 & \text { otherwise }\end{cases}
$$

Deduce that for every $x>0$,

$$
\sum_{n \leq x} \lambda(n)\left\lfloor\frac{x}{n}\right\rfloor=\lfloor\sqrt{x}\rfloor .
$$

(8) Prove the identities

$$
\sum_{n=1}^{\infty} \frac{\varphi(n)}{n^{s}}=\frac{\zeta(s-1)}{\zeta(s)}, \quad \sum_{n=1}^{\infty} \frac{\lambda(n)}{n^{s}}=\frac{\zeta(2 s)}{\zeta(s)}, \quad \sum_{n=1}^{\infty} \frac{\mu(n)^{2}}{n^{s}}=\frac{\zeta(s)}{\zeta(2 s)} .
$$

(9) Prove that for every couple of arbitrarily fixed numbers $\tau, \nu \in \mathbb{C}$, one has

$$
\sum_{n=1}^{\infty} \frac{\sigma_{\tau}(n) \sigma_{\nu}(n)}{n^{s}}=\frac{\zeta(s) \zeta(s-\tau) \zeta(s-\nu) \zeta(s-\tau-\nu)}{\zeta(2 s-\tau-\nu)}
$$

(10) Let r be any positive integer. An integer n is called r-power free when 1 is the unique r-power dividing n. Let δ_{r} be the characteristic function of r-power free integers (thus, $\delta_{r}(n)=1$ when n is r-power free, 0 otherwise).
a) Prove that δ_{r} is multiplicative.
b) Let $F(s):=\sum_{n=1}^{\infty} \delta_{r}(n) / n^{s}$ be the Dirichlet series associated with δ_{r}, and let H be the complex function defined in such a way that

$$
F(s)=H(s) \zeta(s) .
$$

Prove that H may be written both as Euler product and as Dirichlet series.
c) Working out an explicit expression for the Euler product of H, prove that it converges absolutely for $\operatorname{Re}(s)>1 / r$.
d) Let h be the arithmetical function such that $H(s)=\sum_{n=1}^{\infty} h(n) / n^{s}$. From Step b) one gets that

$$
\delta_{r}(n)=\sum_{m \mid n} h(m) .
$$

Deduce that

$$
\sum_{n \leq x} \delta_{r}(n)=\left(\sum_{m \leq x} \frac{h(m)}{m}\right) x+O\left(\sum_{m \leq x}|h(m)|\right) .
$$

e) Use Step c) to prove that

$$
\sum_{m>x} \frac{h(m)}{m}<_{\varepsilon} x^{-1+1 / r+\varepsilon} \quad \text { and } \quad \sum_{m \leq x}|h(m)|<_{\varepsilon} x^{1 / r+\varepsilon},
$$

for every $\varepsilon>0$.
f) Use Steps d) and e) to deduce that

$$
\sum_{n \leq x} \delta_{r}(n)=H(1) x+O_{\varepsilon}\left(x^{1 / r+\varepsilon}\right)
$$

g) From the representation of H as Euler product deduce that $H(1)=\prod_{p}\left(1-\frac{1}{p^{r}}\right)=1 / \zeta(r)$.

Remark: the case $r=2$ is quite famous; it proves that the number of squarefree integers which are $\leq x$ is $=\frac{6}{\pi^{2}} x+O_{\varepsilon}\left(x^{1 / 2+\varepsilon}\right)$.
(11) For every positive integer n let $f(n):=\sharp\left\{x \in \mathbb{Z} / n \mathbb{Z}: x^{2}=1(\bmod n)\right\}$, i.e. the number of solutions of the equation $x^{2}=1$ in the ring $\mathbb{Z} / n \mathbb{Z}$.
a) Prove that f is multiplicative.
b) Prove that $f(2)=1, f\left(2^{2}\right)=2, f\left(2^{k}\right)=4$ for every $k \geq 3$.
c) Prove that $f\left(p^{k}\right)=2$ when p is odd, for every k.
d) Let $F(s):=\sum_{n=1}^{\infty} f(n) / n^{s}$ be the Dirichlet series associated with f, and let $H(s)$ be the complex function defined in such a way that

$$
F(s)=H(s) \zeta^{2}(s)
$$

Working out an explicit expression for the Euler product of $H(s)$, prove that it converges absolutely for $\operatorname{Re}(s)>1 / 2$.
e) Let h be the arithmetical function such that $H(s)=\sum_{n=1}^{\infty} h(n) / n^{s}$; imitating the proof of the previous step, prove that this series converges absolutely for $\operatorname{Re}(s)>1 / 2$.
f) Recall that $d(n)$ is the sequence of Dirichlet's coefficients of $\zeta^{2}(s)$, so that from Step d) one gets that

$$
f(n)=\sum_{m \mid n} h(m) d\left(\frac{n}{m}\right)
$$

Deduce that

$$
\sum_{n \leq x} f(n)=\sum_{\substack{m, n \\ m n \leq x}} h(m) d(n)=\sum_{m \leq x} h(m) \sum_{n \leq \frac{x}{m}} d(n)
$$

g) Use Dirichlet's result on the mean value of the divisor function, in its easier form claiming that $\sum_{n \leq y} d(n)=y \log y+O(y)$, to deduce that

$$
\sum_{n \leq x} f(n)=\left(\sum_{m \leq x} \frac{h(m)}{m}\right) x \log x-x \sum_{m \leq x} \frac{h(m) \log m}{m}+O\left(x \sum_{m \leq x} \frac{|h(m)|}{m}\right)
$$

h) Use Steps e) and g) to deduce that

$$
\sum_{n \leq x} f(n)=\left(\sum_{m \leq x} \frac{h(m)}{m}\right) x \log x+O(x)
$$

i) Use Step e) to deduce that for every $\varepsilon>0$,

$$
\left|\sum_{m>x} \frac{h(m)}{m}\right| \leq \sum_{m>x} \frac{|h(m)|}{m} \ll \varepsilon_{\varepsilon} \frac{x^{\varepsilon}}{x^{1 / 2}}
$$

so that Step h) gives

$$
\sum_{n \leq x} f(n)=H(1) x \log x+O(x)
$$

1) From the representation of H as Euler product deduce that $H(1)=\prod_{p}\left(1-\frac{1}{p^{2}}\right)=$ $\frac{1}{\zeta(2)}=\frac{6}{\pi^{2}}$, and conclude that

$$
\sum_{n \leq x} f(n)=\frac{6}{\pi^{2}} x \log x+O(x)
$$

Hint: For Steps b) and c) recall that $\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)^{*}$ is cyclic when p is odd, for every k and that its order is always even, while $\left(\mathbb{Z} / 2^{k} \mathbb{Z}\right)^{*}$ for $k \geq 3$ is the product of two cyclic groups of order respectively 2 and 2^{k-2}.
Remark: Using the full strength of Dirichlet's bound (i.e. $\sum_{n \leq y} d(n)=y \log y+(2 \gamma-$ 1) $y+O(\sqrt{y})$), the previous argument gives

$$
\sum_{n \leq x} f(n)=H(1) x \log x+\left((2 \gamma-1) H(1)+H^{\prime}(1)\right) x+O_{\varepsilon}\left(x^{1 / 2+\varepsilon}\right)
$$

(12) Let $f: \mathbb{N} \rightarrow \mathbb{C}$ be the function with $f(n)=2^{\omega(n)}$ for every n. Following the argument in Ex. 11 find a formula for $\sum_{n \leq x} f(n)$.
(13) Devise a method to compute the correct value for the first three digits of the number

$$
c:=\prod_{p}\left(1+\frac{p^{2}-1}{p(p+1)\left(p^{2}+1\right)}\right) .
$$

Hint: Write c as $\prod_{p<N}\left(1+\frac{p^{2}-1}{p(p+1)\left(p^{2}+1\right)}\right) \cdot \prod_{p \geq N}\left(1 \frac{p^{2}-1}{p(p+1)\left(p^{2}+1\right)}\right)$ and estimate the second factor as $1+R(N)$ with an explicit (and easily computed) function $R(N)$ decreasing to 0 . Then fix N, compute the first factor, and use the estimation for the second factor in order to compute the maximum error between the true value of c and the value for the first factor. Adjust N in order to have an error lower than 10^{-3}. For this exercise you can use a software to perform the computations.

