Analytic Number Theory: Homework 1 (2023/24)

(1) Let f: N— C be an arithmetic function.
a) Prove that f is s-invertible (i.e., invertible with respect to the Dirichlet * product) if
and only if f(1) # 0.
b) Prove that if f is multiplicative then f is *-invertible and f~! is multiplicative, too.
c¢) Show with some example that if f is completely multiplicative then in general f~! is
not completely multiplicative.

d) Describe all functions f which are invertible and such that both f and f~! are com-
pletely multiplicative.

(2) Let f: C—C, f(2) := sin(rz) (extended by continuity at z = 0). Let

=

g(=) = T £(2/m).
n=1

Prove that the product converges absolutely and uniformly on compact sets of C, so that
g is an entire function. Prove that g is an even function, that g(z) = 0 if and only if
z € Z and that the order of n € N as zero for g is d(n) =3, 1.

(3) Let g(s) :=> 07 4[C(n+s)—1].
e Prove that the series converges absolutely and uniformly on compact subsets of H; :=
{s € C: Re(s) > 1}, so that g is a holomorphic function in Hj.

mln

e Prove that g can be extend as a meromorphic function on the full complex plane.

e Prove that the resulting function g: C — C has a simple pole at s = 1, at s = 0 and at
s = —n for every n € N, and no other poles.

e Prove that g(2) = 1.
(4) Let g(s) = TI2o C(n + 5).

e Prove that the product converges absolutely and uniformly on compact subsets of Hy :=
{s € C: Re(s) > 1}, so that g is a holomorphic function in H;.

e Prove that g can be extend as a meromorphic function on the full complex plane.

e Prove that the resulting function g: C — C has a simple pole at s = 1, s = 0 and
s = —1 and no other poles.
hint: for the last claim, recall that if s € (—o00,0]), then {(s) = 0, if and only if s = —2n
withn e N={1,2,3...}.

(5) Using only Mertens’ result (i.e., Eq. 1.7.7 in Notes: PNT not allowed here), prove that

log® 1
Z 8 P _ P logk T+ O(logk_1 x)
p<z

for every k € N, k > 1.

(6) Let u** be the x-product of k copies of y (so that u*? = p* p, u*3 = p* p* p), with
w*0 := 1. Prove that p** is multiplicative and that

ks a (71)“(’;) when 0 <a <k
pw(p®) = .
0 otherwise.



(7) Let Q: N — C be the function with
Q(n) := #{p prime, k> 1: p¥|n}

(so that Q(8) = 3, while w(8) = 1). Liouville’s function X is the arithmetic function
such that A\(n) := (—1)™ for every n. Prove that

Z)\(d) _ {1 if n is a square

0 otherwise.
dn

Deduce that for every x > 0,

(8) Prove the identities

-~ e(n) _ (s 1) -~ An) _ ((29) o A(m)? _ ((s)
ns C(s) n; s Z o

Lo e l(s) = me ((2s)

(9) Prove that for every couple of arbitrarily fixed numbers 7, v € C, one has

=, g, ))<= T)Cls — (s — 7 — )
Z ns N C(2s—7—v) )

n=1

(10) Let r be any positive integer. An integer n is called r-power free when 1 is the unique
r-power dividing n. Let J, be the characteristic function of r-power free integers (thus,
dr(n) =1 when n is r-power free, 0 otherwise).

a) Prove that ¢, is multiplicative.

b) Let F(s) := > o2, d;(n)/n® be the Dirichlet series associated with ¢,, and let H be the
complex function defined in such a way that
F(s) = H(s)((s).
Prove that H may be written both as Euler product and as Dirichlet series.

¢) Working out an explicit expression for the Euler product of H, prove that it converges
absolutely for Re(s) > 1/r.

d) Let h be the arithmetical function such that H(s) = > 2, h(n)/n®. From Step b) one

gets that
Sr(n) = h(m).
Deduce that "
D bn(n) = ( > h(mm))x+ 0( > |h(m)|).

e) Use Step c) to prove that

h(m) —1+1/r+e 1/
E — < " d E h AR
o L T an |h(m)| <e x

m>x m<zx

for every € > 0.



(11

f) Use Steps d) and e) to deduce that
> 6n(n (D) + O (z1/77).

n<zx

. _ 1y
g) From the representation of H as Euler product deduce that H(1) = [],(1—5-) = 1/¢(r).

Remark: the case r = 2 is quite famous; it proves that the number of squarefree integers
which are < z is = %x + Oe(xl/“e)_

) For every positive integer n let f(n) := f#{z € Z/nZ: 2> = 1 (mod n)}, i.e. the number
of solutions of the equation #? = 1 in the ring Z/nZ.
a) Prove that f is multiplicative.

)

b) Prove that f(2) =1, f(22) = 2, f(2¥) = 4 for every k > 3.
¢) Prove that f(p*) = 2 when p is odd, for every k.

d) Let F(s) := > .2, f(n)/n® be the Dirichlet series associated with f, and let H(s) be
the complex function defined in such a way that
F(s) = H(s)(*(s)-

Working out an explicit expression for the Euler product of H (s), prove that it converges
absolutely for Re(s) > 1/2.

e) Let h be the arithmetical function such that H(s) = ) 7, h(n)/n®; imitating the proof
of the previous step, prove that this series converges absolutely for Re(s) > 1/2.

f) Recall that d(n) is the sequence of Dirichlet’s coefficients of ¢(?(s), so that from Step d)

one gets that
n
=S d(—).
> mpa(
Deduce that

S fm) =3 hm)d(n) = 3 him) 3 d(n).

n<x m,n m<zx n<
mn<x

s

g) Use Dirichlet’s result on the mean value of the divisor function, in its easier form
claiming that)_, . d(n) = ylogy + O(y), to deduce that

57101 = (32 )t 3o MR 3 )

h) Use Steps e) and g) to deduce that

Zf(”) = ( Z h(;:))mlogw%—O(x).

n<x m<zx

i) Use Step e) to deduce that for every ¢ > 0,

£

T Y <

m>x

so that Step h) gives
Z f(n )z logz + O(z).

n<x



1) From the representation of H as Euler product deduce that H(1) = [],(1 — 1) =

(12)

(13)

6

P and conclude that

Zf(n) _ 8 zlogx + O(x).

T2

1
¢(2)

n<x

Hint: For Steps b) and c) recall that (Z/p*Z)* is cyclic when p is odd, for every k and
that its order is always even, while (Z/2FZ)* for k > 3 is the product of two cyclic groups
of order respectively 2 and 252,

Remark: Using the full strength of Dirichlet’s bound (i.e. Zn<y d(n) =ylogy+ (2y —
1)y + O(\/y)), the previous argument gives -

> f(n) = H)zlogz + ((2y — DH(1) + H'(1))x + O (z'/¥).

n<x

Let f: N — C be the function with f(n) = 2¢( for every n. Following the argument in
Ex. 11 find a formula for >, . f(n).

Devise a method to compute the correct value for the first three digits of the number

— Pl
C’_l;[<1+p(p+ 1)(p2+1))'

Hint: Write c as [[,_ (1 + m) - HPZN(lﬁ(*plQH)) and estimate the second

factor as 1 + R(N) with an explicit (and easily computed) function R(N) decreasing to
0. Then fix N, compute the first factor, and use the estimation for the second factor in
order to compute the maximum error between the true value of ¢ and the value for the
first factor. Adjust N in order to have an error lower than 1073, For this exercise you
can use a software to perform the computations.




