
Analytic Number Theory: Homework 2

(1) Let f : N → C be a multiplicative function which is supported on squarefree integers.
Suppose that there exists α > 0 such that

f(p) = 1 +O(p−α) as p → ∞.

Let θ := min(1/2, α) and let c :=
∏

p

(
1 + f(p)/p

)(
1− 1/p

)
. Prove that∑

n≤x

f(n) = c x+Oη(x
1−θ+η) as x → ∞,

for every η > 0.
Hint: Let F (s) :=

∑∞
n=1 f(n)n

−s, write this function as Euler product and follow
Exercise 10 in Homework 1.

(2) Let f : N → C be a multiplicative function which is supported on squarefree integers.
Suppose that there exists α > 0 such that

f(p) =
1

p
(1 +O(p−α)) as p → ∞.

Let θ := min(1/2, α) and let c :=
∏

p

(
1 + f(p)

)(
1 − 1/p

)
. Prove that there exists a

constant d such that∑
n≤x

f(n) = c log x+ d+Oη(x
−θ+η) as x → ∞,

for every η > 0.
Hint: Notice that the function g : N → C with g(n) = nf(n) for every n satisfies the
hypothesis in Exercise 1. Write

∑
n≤x f(n) as

∑
n≤x nf(n) ·

1
n and apply the partial

summation formula.
Notice that c = 1 when f(n) = µ(n)2/φ(n) (hence this computation improves Lemma 3.1
of the notes).

(3) Prove that for every couple of coprime integers a, q, there is a constant γa,q such that∏
p≤x

p=a (mod q)

(
1− 1

p

)−1
∼ eγa,q(log x)1/φ(q) as x → +∞.

Prove that
q∑

a=1
(a,q)=1

γa,q = γ +
∑
p|q

log(1− 1/p),

where γ is Euler–Mascheroni constant.
Hint: Use what we have proved for prime numbers in linear progressions.

(4) Let χ be a real character modulo q, χ ̸= χ0. The following steps give an alternative
proof of the fact that L(1, χ) ̸= 0.
a) Let f(n) := (1 ∗ χ)(n) =

∑
d|n χ(d). Prove that f is multiplicative, that f(n) ≥ 0

for every n, and that f(n2) ≥ 1 for every n.

b) Let F (z) :=
∑∞

n=1 f(n)e
−n/z. Prove that F is well defined for all z ≥ 1, and that

F (z) ≥
∑

n≤z/2

f(n)e−n/z ≫
∑

n≤z/2

f(n) ≫
√
z as z → ∞.



c) Show that

F (z) =
+∞∑
n=1

+∞∑
m=1

χ(n)e−mn/z =
+∞∑
n=1

χ(n)

en/z − 1
= z

+∞∑
n=1

χ(n)

n
+

∞∑
n=1

χ(n)
[ 1

en/z − 1
− z

n

]
.

d) Apply the partial summation formula to conclude that∣∣∣ +∞∑
n=1

χ(n)
[ 1

en/z − 1
− z

n

]∣∣∣ ≪q

∫ +∞

1

∣∣∣( 1

ex/z − 1
− z

x

)′∣∣∣dx ≪q 1 as z → ∞.

e) From Steps b), c) and d) deduce that
√
z ≪ F (z) = zL(1, χ) +Oq(1) as z → ∞,

and conclude that L(1, χ) ̸= 0.
Hint: For Step d recall that A(x) :=

∑
n≤x χ(n) is a bounded function, and prove that

1
ey−1 − 1

y is a negative and increasing function in y ≥ 0. Thus
∫ +∞
1 |( 1

ex/z−1
− z

x)
′|dx =∫ +∞

1 ( 1
ex/z−1

− z
x)

′ dx = z − 1
e1/z−1

which stays bounded as z → ∞ (Prove it!).

(5) Let G be a finite group with n elements.
a) Suppose G cyclic, and let g be a generator. Let ζ be any primitive nth root of the

unity. For each j = 1, . . . , n let χj(g) := ζj and extend χj multiplicatively to G (i.e.
set χj(g

2) := χj(g)
2,χj(g

3) := χj(g)
3,. . . ). Prove that each χj is a character for G

and that {χj}nj=1 is the full set of characters.

b) Let G and χj be as in Step a. Show that Ĝ is cyclic, and that χj is a generator of

Ĝ if and only if j is coprime with n.

c) Let G1, G2 be finite abelian groups. Prove that Ĝ1 ×G2 and Ĝ1 × Ĝ2 are (canon-

ically) isomorphic. Deduce that Ĝ is (not canonically) isomorphic to G, for every
finite abelian group G.

(6) Fix q ∈ N. Let N2(q) be the number of Dirichlet character modulo q which are real.
Prove that

N2(q) = 2ω2(q) · 2ωodd(q) where ω2(q) :=


0 if 2 ∤ q
0 if 2∥q
1 if 22∥q
2 if 23|q

and ωodd(q) is the number of odd primes dividing q.
Hint: Use Ex. 5 to conclude that N2(q) is also the number of solutions of x2 = 1 in
(Z/qZ)∗. Then recall the cyclic decomposition of (Z/pνZ)∗ when p is a prime (see for
example Th. 2.4.4.6 p. 33, in Fine and Rosenberg Number theory, Birkhäuser 2007).

(7) Let q be an odd prime. Let G := (Z/qZ)∗.
a) Prove that every finite group which is contained in the multiplicative group of a field

is always cyclic. Deduce that G is cyclic.

b) Prove that there are only two real Dirichlet characters modulo q, i.e. characters χ
such that χ2 = χ0.

c) Let χ2,q be the real character modulo q which is not χ0: compute the values of
χ2,q(n) for n = 1, . . . , q when q = 3, 5, 7, 11, 13, 17.
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d) Using the results in Step c show that

L(1, χ2,q) =
+∞∑
n=1

χ2,q(n)

n
> 0

for q = 3, 5, 7, 11, 13, 17.

Hint: For Step d, use Step c to prove that
∑q

k=1

χ2,q (k)

k+qℓ > 0 for every ℓ ∈ N, then deduce

the claim.

(8) Let q be an odd prime. This exercise gives two classical formulas for L(1, χ2,q), which
are due to Dirichlet.
a) Prove that

1

q

q−1∑
ℓ=0

e
2πik
q

ℓ
=

{
1 when k = 0 (mod q)

0 otherwise

This identity is a special case of the orthogonal relation for the characters of the
group Z/qZ, but a direct proof is probably easier.

b) Let z ∈ C, with |z| = 1 and z ̸= 1. Prove that

lim
N→∞

N∑
n=1

zn

n
= − log(1− z)

where log is the holomorphic extension to C\{(−∞, 0]} of the real logarithm.
(If you are not familiar with complex analysis, note that actually we will need this
equality only for the case where z is a qth roots of 1, and that in this case the
conclusion follows from an application of the summation by parts formula).

c) Let χ2,q be the real and non trivial character modulo q. Note that

L(1, χ2,q) = lim
N→∞

N∑
n=1

χ2,q(n)

n
= lim

N→∞

q∑
a=1

χ2,q(a)

N∑
n=1

n=a (q)

1

n

=
1

q
lim

N→∞

q−1∑
ℓ=0

q∑
a=1

χ2,q(a)

N∑
n=1

e
2πi(n−a)

q
ℓ

n
.

d) Prove that the term with ℓ = 0 does not contribute in the previous sum (here the
condition χ2,q ̸= χ0 is used). Deduce that

L(1, χ2,q) =
−1

q

q−1∑
ℓ=1

q∑
a=1

χ2,q(a)e
−2πia

q
ℓ
log(1− e

2πi
q

ℓ
).

e) Let τq :=
∑q

a=1 χ2,q(a)e
2πia
q . Then, for every ℓ which is coprime to q, prove that

q∑
a=1

χ2,q(a)e
−2πia

q
ℓ
= χ2,q(−ℓ)τq.

Thus,

L(1, χ2,q) =
−τq
q

q−1∑
ℓ=1

χ2,q(−ℓ) log(1− e
2πi
q

ℓ
).
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This is already a formula giving L(1, χ2,q) as a finite sum of explicitly computable
numbers, but it can be further simplified.

f) Using the standard properties of the logarithm, deduce that

L(1, χ2,q) =
−τq
q

q−1∑
ℓ=1

χ2,q(−ℓ)
[
log

(
sin

(πℓ
q

))
+ log(−2ie

πi
q
ℓ
)
]

g) Use the identity
∑q−1

ℓ=1 χ2,q(−ℓ) = 0 to deduce that

L(1, χ2,q) =
−τq
q

q−1∑
ℓ=1

χ2,q(−ℓ)
[
log

(
sin

(πℓ
q

))
+

πi

q
ℓ
]
.

h) Suppose that χ2,q is an even character, i.e. that χ2,q(−1) = 1: prove that

q−1∑
ℓ=1

χ2,q(−ℓ)ℓ = 0

so that in this case

L(1, χ2,q) =
−τq
q

q−1∑
ℓ=1

χ2,q(ℓ) log
(
sin

(πℓ
q

))
.

i) Suppose that χ2,q is an odd character, i.e. that χ2,q(−1) = −1: prove that

q−1∑
ℓ=1

χ2,q(−ℓ) log
(
sin

(πℓ
q

))
= 0

so that in this case

L(1, χ2,q) =
iπτq
q2

q−1∑
ℓ=1

χ2,q(ℓ)ℓ.

j) Test the formulas with q = 5 and q = 7.
(The value of L(1, χ2,q) approximated within two decimal digits may be computed
following Step d, and using a software package for the computations).

(9) Let q be an odd prime. Prove that χ2,q is even when q = 1 (mod 4) and is odd when
q = 3 (mod 4).

(10) Let q be an odd prime. Let τq as in the previous exercise; it is called the Gauss quadratic
sum for the prime q. Prove that |τq| =

√
q.

Remark: This is a standard but not elementary computation. You can find it in every
text on number theory. A more complicated result states that τq =

√
q when χ2,q is even,

and τq = i
√
q when χ2,q is odd, but needs deeper tools. (A proof of Dirichlet based on

Poisson formula is in Davenport Multiplicative number theory GTM 74, Springer 2000
pp. 12–16. The original Gauss’ argument is reproduced in Berndt, Evans and Williams
Gauss and Jacobi sums, John Wiley & Sons Inc. 1998 pp. 18–24, and a different proof
of Schur based on the matrix theory is reproduced in the same book in exercises 26–29
pp. 47–48).

4



(11) Let q be a prime. Let Sq :=
∑q−1

ℓ=1 χ2,q(ℓ)ℓ. Note that Sq is an integer. Prove that Sq is
always divisible by q when q > 3.

(12) Let q be an odd prime. We know that L(1, χ2,q) ̸= 0; deduce that L(1, χ2,q) > 0.
Collecting the previous exercises conclude that

L(1, χ2,q) ≥
π
√
q

when χ2,q(−1) = −1 and q > 3.
Remark: This bound is called the trivial lower bound for L(1, χ2,q), but actually it is
not trivial at all. Any similar lower bound in terms of q for the case of an even real
character would be rich of important consequences, but its search has been essentially
fruitless up to now.

(13) Let q > 3 be a prime which is congruent to 3 modulo 4. Let Sq =
∑q−1

ℓ=1 χ2,q(ℓ)ℓ.
Compute Sq for q = 7, 11, 19, 23, 31. Computations show that Sq < 0; collecting the
results in the previous exercises (and the remark in Ex. 10), prove that this is true in
general.
Remark: The celebrated Dirichlet’s class number formula says that −Sq/q is the class
number of the quadratic field Q[

√
−q] for every prime q = 3 (mod 4), q > 3.

(14) Let an be any real sequence. Let A1(x) :=
∑

n≤x an (with A1(x) = 0 for x < 1).

a) Using the partial summation formula prove that

L∑
n=1

an
ns

=
A1(L)

Ls
−

L−1∑
n=1

A1(n)
( 1

(n+ 1)s
− 1

ns

)
for every integer L.

b) Set A2(x) :=
∑

n≤xA1(x). Iterating the previous formula prove that

L∑
n=1

an
ns

=
A1(L)

Ls
−A2(L− 1)

( 1

Ls
− 1

(L− 1)s

)
+

L−2∑
n=1

A2(n)
( 1

(n+ 2)s
− 2

(n+ 1)s
+

1

ns

)
c) Suppose A1(x) bounded. From the previous formulas deduce that

∞∑
n=1

an
ns

= s

∫ +∞

1

A1(x)

xs+1
dx ∀s ∈ C, Res > 0;

∞∑
n=1

an
ns

= s(s+ 1)

∫ +∞

1

∫ x+1

x

A2(x)

us+2
dudx ∀s ∈ C, Res > 0.

d) Let q be an odd prime and χ2,q be the nontrivial quadratic character modulo q. For
each q ≤ 41 prove that L(s, χ2,q) > 0 when s ∈ R, s > 0.

Hint: For Step d apply formulas in Step c with an = χ2,q(n) and show that for all q in
the list the sequence A1(n) (or at least the sequence A2(n)) is non negative.
Remark: Chowla conjectured that L(s, χ2,q) > 0 in (0,+∞) for every q (so that,
in particular, L(1/2, χ2,q) > 0). If proved, this conjecture would have extraordinary
consequences (for example it rules out the Siegel zero). The approach illustrated in
the exercise can be generalized introducing sequences A3(x) :=

∑
n≤xA2(n), A4(x) :=∑

n≤xA3(n) and so on, but it is not at all evident that for every given q there is some
index k for which Ak is nonnegative. The conjecture is wildly open.
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