Analytic Number Theory: Homework 2

(1) Let $f: \mathbb{N} \rightarrow \mathbb{C}$ be a multiplicative function which is supported on squarefree integers. Suppose that there exists $\alpha>0$ such that

$$
f(p)=1+O\left(p^{-\alpha}\right) \quad \text { as } \quad p \rightarrow \infty .
$$

Let $\theta:=\min (1 / 2, \alpha)$ and let $c:=\prod_{p}(1+f(p) / p)(1-1 / p)$. Prove that

$$
\sum_{n \leq x} f(n)=c x+O_{\eta}\left(x^{1-\theta+\eta}\right) \quad \text { as } \quad x \rightarrow \infty
$$

for every $\eta>0$.
Hint: Let $F(s):=\sum_{n=1}^{\infty} f(n) n^{-s}$, write this function as Euler product and follow Exercise 10 in Homework 1.
(2) Let $f: \mathbb{N} \rightarrow \mathbb{C}$ be a multiplicative function which is supported on squarefree integers. Suppose that there exists $\alpha>0$ such that

$$
f(p)=\frac{1}{p}\left(1+O\left(p^{-\alpha}\right)\right) \quad \text { as } \quad p \rightarrow \infty
$$

Let $\theta:=\min (1 / 2, \alpha)$ and let $c:=\prod_{p}(1+f(p))(1-1 / p)$. Prove that there exists a constant d such that

$$
\sum_{n \leq x} f(n)=c \log x+d+O_{\eta}\left(x^{-\theta+\eta}\right) \quad \text { as } \quad x \rightarrow \infty,
$$

for every $\eta>0$.
Hint: Notice that the function $g: \mathbb{N} \rightarrow \mathbb{C}$ with $g(n)=n f(n)$ for every n satisfies the hypothesis in Exercise 1. Write $\sum_{n \leq x} f(n)$ as $\sum_{n \leq x} n f(n) \cdot \frac{1}{n}$ and apply the partial summation formula.
Notice that $c=1$ when $f(n)=\mu(n)^{2} / \varphi(n)$ (hence this computation improves Lemma 3.1 of the notes).
(3) Prove that for every couple of coprime integers a, q, there is a constant $\gamma_{a, q}$ such that

Prove that

$$
\sum_{\substack{a=1 \\(a, q)=1}}^{q} \gamma_{a, q}=\gamma+\sum_{p \mid q} \log (1-1 / p)
$$

where γ is Euler-Mascheroni constant.
Hint: Use what we have proved for prime numbers in linear progressions.
(4) Let χ be a real character modulo $q, \chi \neq \chi_{0}$. The following steps give an alternative proof of the fact that $L(1, \chi) \neq 0$.
a) Let $f(n):=(1 * \chi)(n)=\sum_{d \mid n} \chi(d)$. Prove that f is multiplicative, that $f(n) \geq 0$ for every n, and that $f\left(n^{2}\right) \geq 1$ for every n.
b) Let $F(z):=\sum_{n=1}^{\infty} f(n) e^{-n / z}$. Prove that F is well defined for all $z \geq 1$, and that

$$
F(z) \geq \sum_{n \leq z / 2} f(n) e^{-n / z} \gg \sum_{n \leq z / 2} f(n) \gg \sqrt{z} \quad \text { as } z \rightarrow \infty .
$$

c) Show that
$F(z)=\sum_{n=1}^{+\infty} \sum_{m=1}^{+\infty} \chi(n) e^{-m n / z}=\sum_{n=1}^{+\infty} \frac{\chi(n)}{e^{n / z}-1}=z \sum_{n=1}^{+\infty} \frac{\chi(n)}{n}+\sum_{n=1}^{\infty} \chi(n)\left[\frac{1}{e^{n / z}-1}-\frac{z}{n}\right]$.
d) Apply the partial summation formula to conclude that

$$
\left|\sum_{n=1}^{+\infty} \chi(n)\left[\frac{1}{e^{n / z}-1}-\frac{z}{n}\right]\right|<_{q} \int_{1}^{+\infty}\left|\left(\frac{1}{e^{x / z}-1}-\frac{z}{x}\right)^{\prime}\right| \mathrm{d} x<_{q} 1 \quad \text { as } z \rightarrow \infty
$$

e) From Steps b), c) and d) deduce that

$$
\sqrt{z} \ll F(z)=z L(1, \chi)+O_{q}(1) \quad \text { as } z \rightarrow \infty,
$$

and conclude that $L(1, \chi) \neq 0$.
Hint: For Step d recall that $A(x):=\sum_{n \leq x} \chi(n)$ is a bounded function, and prove that $\frac{1}{e^{y}-1}-\frac{1}{y}$ is a negative and increasing function in $y \geq 0$. Thus $\int_{1}^{+\infty}\left|\left(\frac{1}{e^{x} / z-1}-\frac{z}{x}\right)^{\prime}\right| \mathrm{d} x=$ $\int_{1}^{+\infty}\left(\frac{1}{e^{x / z}-1}-\frac{z}{x}\right)^{\prime} \mathrm{d} x=z-\frac{1}{e^{1 / z}-1}$ which stays bounded as $z \rightarrow \infty$ (Prove it!).
(5) Let G be a finite group with n elements.
a) Suppose G cyclic, and let g be a generator. Let ζ be any primitive nth root of the unity. For each $j=1, \ldots, n$ let $\chi_{j}(g):=\zeta^{j}$ and extend χ_{j} multiplicatively to G (i.e. set $\left.\chi_{j}\left(g^{2}\right):=\chi_{j}(g)^{2}, \chi_{j}\left(g^{3}\right):=\chi_{j}(g)^{3}, \ldots\right)$. Prove that each χ_{j} is a character for G and that $\left\{\chi_{j}\right\}_{j=1}^{n}$ is the full set of characters.
b) Let G and χ_{j} be as in Step a. Show that \hat{G} is cyclic, and that χ_{j} is a generator of \hat{G} if and only if j is coprime with n.
c) Let G_{1}, G_{2} be finite abelian groups. Prove that $\widehat{G_{1} \times G_{2}}$ and $\hat{G_{1}} \times \hat{G_{2}}$ are (canonically) isomorphic. Deduce that \hat{G} is (not canonically) isomorphic to G, for every finite abelian group G.
(6) Fix $q \in \mathbb{N}$. Let $N_{2}(q)$ be the number of Dirichlet character modulo q which are real. Prove that

$$
N_{2}(q)=2^{\omega_{2}(q)} \cdot 2^{\omega_{\text {odd }}(q)} \quad \text { where } \quad \omega_{2}(q):= \begin{cases}0 & \text { if } 2 \nmid q \\ 0 & \text { if } 2 \| q \\ 1 & \text { if } 2^{2} \| q \\ 2 & \text { if } 2^{3} \mid q\end{cases}
$$

and $\omega_{\text {odd }}(q)$ is the number of odd primes dividing q.
Hint: Use Ex. 5 to conclude that $N_{2}(q)$ is also the number of solutions of $x^{2}=1$ in $(\mathbb{Z} / q \mathbb{Z})^{*}$. Then recall the cyclic decomposition of $\left(\mathbb{Z} / p^{\nu} \mathbb{Z}\right)^{*}$ when p is a prime (see for example Th. 2.4.4.6 p. 33, in Fine and Rosenberg Number theory, Birkhäuser 2007).
(7) Let q be an odd prime. Let $G:=(\mathbb{Z} / q \mathbb{Z})^{*}$.
a) Prove that every finite group which is contained in the multiplicative group of a field is always cyclic. Deduce that G is cyclic.
b) Prove that there are only two real Dirichlet characters modulo q, i.e. characters χ such that $\chi^{2}=\chi_{0}$.
c) Let $\chi_{2, q}$ be the real character modulo q which is not χ_{0} : compute the values of $\chi_{2, q}(n)$ for $n=1, \ldots, q$ when $q=3,5,7,11,13,17$.
d) Using the results in Step c show that

$$
L\left(1, \chi_{2, q}\right)=\sum_{n=1}^{+\infty} \frac{\chi_{2, q}(n)}{n}>0
$$

for $q=3,5,7,11,13,17$.
Hint: For Step d, use Step c to prove that $\sum_{k=1}^{q} \frac{\chi_{2, q}(k)}{k+q \ell}>0$ for every $\ell \in \mathbb{N}$, then deduce the claim.
(8) Let q be an odd prime. This exercise gives two classical formulas for $L\left(1, \chi_{2, q}\right)$, which are due to Dirichlet.
a) Prove that

$$
\frac{1}{q} \sum_{\ell=0}^{q-1} e^{\frac{2 \pi i k}{q} \ell}= \begin{cases}1 & \text { when } k=0 \quad(\bmod q) \\ 0 & \text { otherwise }\end{cases}
$$

This identity is a special case of the orthogonal relation for the characters of the group $\mathbb{Z} / q \mathbb{Z}$, but a direct proof is probably easier.
b) Let $z \in \mathbb{C}$, with $|z|=1$ and $z \neq 1$. Prove that

$$
\lim _{N \rightarrow \infty} \sum_{n=1}^{N} \frac{z^{n}}{n}=-\log (1-z)
$$

where \log is the holomorphic extension to $\mathbb{C} \backslash\{(-\infty, 0]\}$ of the real logarithm. (If you are not familiar with complex analysis, note that actually we will need this equality only for the case where z is a q th roots of 1 , and that in this case the conclusion follows from an application of the summation by parts formula).
c) Let $\chi_{2, q}$ be the real and non trivial character modulo q. Note that

$$
\begin{aligned}
L\left(1, \chi_{2, q}\right) & =\lim _{N \rightarrow \infty} \sum_{n=1}^{N} \frac{\chi_{2, q}(n)}{n}=\lim _{N \rightarrow \infty} \sum_{a=1}^{q} \chi_{2, q}(a) \sum_{\substack{n=1 \\
n=a(q)}}^{N} \frac{1}{n} \\
& =\frac{1}{q} \lim _{N \rightarrow \infty} \sum_{\ell=0}^{q-1} \sum_{a=1}^{q} \chi_{2, q}(a) \sum_{n=1}^{N} \frac{e^{\frac{2 \pi i(n-a)}{q} \ell}}{n} .
\end{aligned}
$$

d) Prove that the term with $\ell=0$ does not contribute in the previous sum (here the condition $\chi_{2, q} \neq \chi_{0}$ is used). Deduce that

$$
L\left(1, \chi_{2, q}\right)=\frac{-1}{q} \sum_{\ell=1}^{q-1} \sum_{a=1}^{q} \chi_{2, q}(a) e^{\frac{-2 \pi i a}{q} \ell} \log \left(1-e^{\frac{2 \pi i}{q} \ell}\right)
$$

e) Let $\tau_{q}:=\sum_{a=1}^{q} \chi_{2, q}(a) e^{\frac{2 \pi i a}{q}}$. Then, for every ℓ which is coprime to q, prove that

$$
\sum_{a=1}^{q} \chi_{2, q}(a) e^{\frac{-2 \pi i a}{q} \ell}=\chi_{2, q}(-\ell) \tau_{q}
$$

Thus,

$$
L\left(1, \chi_{2, q}\right)=\frac{-\tau_{q}}{q} \sum_{\ell=1}^{q-1} \chi_{2, q}(-\ell) \log \left(1-e^{\frac{2 \pi i}{q} \ell}\right)
$$

This is already a formula giving $L\left(1, \chi_{2, q}\right)$ as a finite sum of explicitly computable numbers, but it can be further simplified.
f) Using the standard properties of the logarithm, deduce that

$$
L\left(1, \chi_{2, q}\right)=\frac{-\tau_{q}}{q} \sum_{\ell=1}^{q-1} \chi_{2, q}(-\ell)\left[\log \left(\sin \left(\frac{\pi \ell}{q}\right)\right)+\log \left(-2 i e^{\frac{\pi i}{q} \ell}\right)\right]
$$

g) Use the identity $\sum_{\ell=1}^{q-1} \chi_{2, q}(-\ell)=0$ to deduce that

$$
L\left(1, \chi_{2, q}\right)=\frac{-\tau_{q}}{q} \sum_{\ell=1}^{q-1} \chi_{2, q}(-\ell)\left[\log \left(\sin \left(\frac{\pi \ell}{q}\right)\right)+\frac{\pi i}{q} \ell\right] .
$$

h) Suppose that $\chi_{2, q}$ is an even character, i.e. that $\chi_{2, q}(-1)=1$: prove that

$$
\sum_{\ell=1}^{q-1} \chi_{2, q}(-\ell) \ell=0
$$

so that in this case

$$
L\left(1, \chi_{2, q}\right)=\frac{-\tau_{q}}{q} \sum_{\ell=1}^{q-1} \chi_{2, q}(\ell) \log \left(\sin \left(\frac{\pi \ell}{q}\right)\right)
$$

i) Suppose that $\chi_{2, q}$ is an odd character, i.e. that $\chi_{2, q}(-1)=-1$: prove that

$$
\sum_{\ell=1}^{q-1} \chi_{2, q}(-\ell) \log \left(\sin \left(\frac{\pi \ell}{q}\right)\right)=0
$$

so that in this case

$$
L\left(1, \chi_{2, q}\right)=\frac{i \pi \tau_{q}}{q^{2}} \sum_{\ell=1}^{q-1} \chi_{2, q}(\ell) \ell
$$

j) Test the formulas with $q=5$ and $q=7$.
(The value of $L\left(1, \chi_{2, q}\right)$ approximated within two decimal digits may be computed following Step d, and using a software package for the computations).
(9) Let q be an odd prime. Prove that $\chi_{2, q}$ is even when $q=1(\bmod 4)$ and is odd when $q=3(\bmod 4)$.
(10) Let q be an odd prime. Let τ_{q} as in the previous exercise; it is called the Gauss quadratic sum for the prime q. Prove that $\left|\tau_{q}\right|=\sqrt{q}$.
Remark: This is a standard but not elementary computation. You can find it in every text on number theory. A more complicated result states that $\tau_{q}=\sqrt{q}$ when $\chi_{2, q}$ is even, and $\tau_{q}=i \sqrt{q}$ when $\chi_{2, q}$ is odd, but needs deeper tools. (A proof of Dirichlet based on Poisson formula is in Davenport Multiplicative number theory GTM 74, Springer 2000 pp. 12-16. The original Gauss' argument is reproduced in Berndt, Evans and Williams Gauss and Jacobi sums, John Wiley \& Sons Inc. 1998 pp. 18-24, and a different proof of Schur based on the matrix theory is reproduced in the same book in exercises 26-29 pp. 47-48).
(11) Let q be a prime. Let $S_{q}:=\sum_{\ell=1}^{q-1} \chi_{2, q}(\ell) \ell$. Note that S_{q} is an integer. Prove that S_{q} is always divisible by q when $q>3$.
(12) Let q be an odd prime. We know that $L\left(1, \chi_{2, q}\right) \neq 0$; deduce that $L\left(1, \chi_{2, q}\right)>0$. Collecting the previous exercises conclude that

$$
L\left(1, \chi_{2, q}\right) \geq \frac{\pi}{\sqrt{q}}
$$

when $\chi_{2, q}(-1)=-1$ and $q>3$.
Remark: This bound is called the trivial lower bound for $L\left(1, \chi_{2, q}\right)$, but actually it is not trivial at all. Any similar lower bound in terms of q for the case of an even real character would be rich of important consequences, but its search has been essentially fruitless up to now.
(13) Let $q>3$ be a prime which is congruent to 3 modulo 4. Let $S_{q}=\sum_{\ell=1}^{q-1} \chi_{2, q}(\ell) \ell$. Compute S_{q} for $q=7,11,19,23,31$. Computations show that $S_{q}<0$; collecting the results in the previous exercises (and the remark in Ex. 10), prove that this is true in general.
Remark: The celebrated Dirichlet's class number formula says that $-S_{q} / q$ is the class number of the quadratic field $\mathbb{Q}[\sqrt{-q}]$ for every prime $q=3(\bmod 4), q>3$.
(14) Let a_{n} be any real sequence. Let $A_{1}(x):=\sum_{n \leq x} a_{n}$ (with $A_{1}(x)=0$ for $x<1$).
a) Using the partial summation formula prove that

$$
\sum_{n=1}^{L} \frac{a_{n}}{n^{s}}=\frac{A_{1}(L)}{L^{s}}-\sum_{n=1}^{L-1} A_{1}(n)\left(\frac{1}{(n+1)^{s}}-\frac{1}{n^{s}}\right)
$$

for every integer L.
b) Set $A_{2}(x):=\sum_{n \leq x} A_{1}(x)$. Iterating the previous formula prove that

$$
\sum_{n=1}^{L} \frac{a_{n}}{n^{s}}=\frac{A_{1}(L)}{L^{s}}-A_{2}(L-1)\left(\frac{1}{L^{s}}-\frac{1}{(L-1)^{s}}\right)+\sum_{n=1}^{L-2} A_{2}(n)\left(\frac{1}{(n+2)^{s}}-\frac{2}{(n+1)^{s}}+\frac{1}{n^{s}}\right)
$$

c) Suppose $A_{1}(x)$ bounded. From the previous formulas deduce that

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}=s \int_{1}^{+\infty} \frac{A_{1}(x)}{x^{s+1}} \mathrm{~d} x \quad \forall s \in \mathbb{C}, \operatorname{Re} s>0 \\
& \sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}=s(s+1) \int_{1}^{+\infty} \int_{x}^{x+1} \frac{A_{2}(x)}{u^{s+2}} \mathrm{~d} u \mathrm{~d} x \quad \forall s \in \mathbb{C}, \operatorname{Re} s>0
\end{aligned}
$$

d) Let q be an odd prime and $\chi_{2, q}$ be the nontrivial quadratic character modulo q. For each $q \leq 41$ prove that $L\left(s, \chi_{2, q}\right)>0$ when $s \in \mathbb{R}, s>0$.
Hint: For Step d apply formulas in Step c with $a_{n}=\chi_{2, q}(n)$ and show that for all q in the list the sequence $A_{1}(n)$ (or at least the sequence $A_{2}(n)$) is non negative.
Remark: Chowla conjectured that $L\left(s, \chi_{2, q}\right)>0$ in $(0,+\infty)$ for every q (so that, in particular, $\left.L\left(1 / 2, \chi_{2, q}\right)>0\right)$. If proved, this conjecture would have extraordinary consequences (for example it rules out the Siegel zero). The approach illustrated in the exercise can be generalized introducing sequences $A_{3}(x):=\sum_{n \leq x} A_{2}(n), A_{4}(x):=$ $\sum_{n \leq x} A_{3}(n)$ and so on, but it is not at all evident that for every given q there is some index k for which A_{k} is nonnegative. The conjecture is wildly open.

