
Analytic Number Theory: Homework 2

(1) Let Sk be the set of integers which are divisible only by k distinct primes, i.e.

Sk := {n : ∃p1 . . . , pk ∈ P, ∃ν1, . . . , νk ∈ N, n = pν11 · · · pνkk }.
A more compact notation for the same set is Sk := {n : ω(n) = k}. From the Prime
Number Theorem we know that #{S1∩ [0, x]} ∼ π(x) ∼ x

log x . Landau was able to prove

that for every k,

#{Sk ∩ [0, x]} ∼k
x

log x

(log log x)k−1

(k − 1)!
as x → ∞.

(The result is not uniform in k). The following argument proves this formula for k = 2.
a) Prove that S2 ∩ [0, x] =

⋃
a,b{p, q ∈ P : p < q, paqb ≤ x}.

b) Prove that if a, b ≥ 2, then

#{p, q ∈ P : p < q, paqb ≤ x} ≤ #{m,n ∈ N : m2n2 ≤ x} ≪ x1/2 log x.

c) Prove that if (a, b) = (2, 1) or (1, 2), then

#{p, q ∈ P : p < q, paqb ≤ x} ≤ #{m ∈ N, q ∈ P : m2q ≤ x} ≪ x

log x
.

d) Deduce that
∑
a,b

(a,b)̸=(1,1)

#{p, q ∈ P : p < q, paqb ≤ x} ≪ x

log x
.

e) Prove that #{p, q ∈ P : p < q, pq ≤ x} = 1
2#{p, q ∈ P : pq ≤ x}+O(

√
x).

f) Prove that

#{p, q ∈ P : pq ≤ x} ∼ 2
x log log x

log x
.

g) Conclude.
Hint: You can deal with Step f) by proving that

#{p, q ∈ P : pq ≤ x} =
∑

2≤p≤x/2

π
(x
p

)
=

∑
2≤p≤x/2

x/p

log(x/p)
+ error

= −
∫ x/2

2

d

dp

[ x/p

log(x/p)

] p

log p
dp+ error

=

∫ x/2

2

x dp

p log p log(x/p)
+ error = 2

x log log x

log x
+ error.

where “error” denotes a remaining term that has to be estimated and which will be
smaller than the main term.
Integrals

∫ x/2
2

xdp
p log p logj(x/p)

with any j (here you have j = 1 and j = 2) can be computed

via the change of variable p = ez.

(2) Optional: Prove Landau’s asymptotic relation we have mentioned in previous exercise,
for every k.
Hint: The proof is by induction on k, and is similar to what you have done for Ex. 1,
but now there are a lot of minor details that make the computation quite long and com-
plicated. For example, the integrals are no more explicitly computable and to get their



value one needs to introduce the series representation of 1
log(x/p) = 1

log x

∑∞
ℓ=0

( log p
log x

)ℓ
,

which converges uniformly for p ∈ [2, x/2]. Try this exercise only if you are strongly
motivated or you have a lot of spare time!

(3) Let f : N → C be a multiplicative function which is supported on squarefree integers.
Suppose that there exists α > 0 such that

f(p) = 1 +O(p−α) as p → ∞.

Let θ := min(1/2, α) and let c :=
∏

p

(
1 + f(p)/p

)(
1− 1/p

)
. Prove that∑

n≤x

f(n) = c x+Oη(x
1−θ+η) as x → ∞,

for every η > 0.
Hint: Let F (s) :=

∑∞
n=1 f(n)n

−s, write this function as Euler product and follow
Exercises 6/7/8 in Homework 1.

(4) Let f : N → C be a multiplicative function which is supported on squarefree integers.
Suppose that there exists α > 0 such that

f(p) =
1

p
(1 +O(p−α)) as p → ∞.

Let θ := min(1/2, α) and let c :=
∏

p

(
1 + f(p)

)(
1 − 1/p

)
. Prove that there exists a

constant d such that∑
n≤x

f(n) = c log x+ d+Oη(x
−θ+η) as x → ∞,

for every η > 0.
Hint: Notice that the function g : N → C with g(n) = nf(n) for every n satisfies the
hypothesis in Exercise 1. Write

∑
n≤x f(n) as

∑
n≤x nf(n) ·

1
n and apply the partial

summation formula.
Notice that c = 1 when f(n) = µ(n)2/φ(n) (hence this computation improves Lemma 3.1
of the notes).

(5) Let χ be a real character modulo q, χ ̸= χ0. The following steps give an alternative
proof of the fact that L(1, χ) ̸= 0.
a) Let f(n) := (1 ∗ χ)(n) =

∑
d|n χ(d). Prove that f is multiplicative, that f(n) ≥ 0

for every n, and that f(n2) ≥ 1 for every n.

b) Let F (z) :=
∑∞

n=1 f(n)e
−n/z. Prove that F is well defined for all z ≥ 1, and that

F (z) ≥
∑

n≤z/2

f(n)e−n/z ≫
∑

n≤z/2

f(n) ≫
√
z as z → ∞.

c) Show that

F (z) =

+∞∑
n=1

+∞∑
m=1

χ(n)e−mn/z =

+∞∑
n=1

χ(n)

en/z − 1
= z

+∞∑
n=1

χ(n)

n
+

∞∑
n=1

χ(n)
[ 1

en/z − 1
− z

n

]
.

d) Apply the partial summation formula to conclude that∣∣∣ +∞∑
n=1

χ(n)
[ 1

en/z − 1
− z

n

]∣∣∣ ≪q

∫ +∞

1

∣∣∣( 1

ex/z − 1
− z

x

)′∣∣∣dx ≪q 1 as z → ∞.
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e) From Steps b), c) and d) deduce that
√
z ≪ F (z) = zL(1, χ) +Oq(1) as z → ∞,

and conclude that L(1, χ) ̸= 0.
Hint: For Step d recall that A(x) :=

∑
n≤x χ(n) is a bounded function, and prove that

1
ey−1 − 1

y is a negative and increasing function in y ≥ 0. Thus
∫ +∞
1 |( 1

ex/z−1
− z

x)
′|dx =∫ +∞

1 ( 1
ex/z−1

− z
x)

′ dx = z − 1
e1/z−1

which stays bounded as z → ∞ (Prove it!).

(6) Let k be a positive even integer greater than 1. Show that the number of primes p ≤ x
such that kp+ 1 is also prime is

≪ x

log2 x

∏
p|k

(
1 +

1

p

)
uniformly in k (i.e. the implicit constant is independent of k (and of x, of course).
Hint: Follow the proof of Theorem 3.4 in the notes (no need to repeat all computations
for Proposition 3.3).

(7) Set D ∈ N, D ≥ 2. Let

SD := {n ∈ N : ∃p ∈ P, k ∈ N s.t. n = p+Dk}
(i.e. the of integers which can be represented as a sum of a prime and a D power). Prove
that

lim inf
x→∞

1

x
#(SD ∩ [0, x]) > 0.

Hint: Follow the proof of Romanoff’s theorem in the notes.
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