The Basic Curves and Surtaces of

Computer Aided Geometric Design

Colm Mulcahy *

Introduction

Computer Aided Geometric Design (CAGD) plays
a major role in the design of cars, airplanes, and
submarines, as well as in many modern manufac-
turing processes. The mathematics behind CAGD
is also indispensable in computer graphics.

We demonstrate the use of Maple V Release 3
as an educational tool in the construction, plotting
and manipulation of the basic curves and surfaces
of CAGD. This can be done using a bare minimum
of Maple, hence anybody who knows a little linear
algebra and multivariate calculus can be introduced
to this important material. Maple’s numerical and
symbolic capabilities take the drudgery out of com-
puting with the formulae, as well as providing im-
mediate visual access to the resulting shapes.

Topics which can easily be explored in this way
include: polynomial and parametric interpolation,
least squares and Bezier curves, Hermite and nat-
ural cubic splines, tensor product surfaces, loft-
ing and Coons surfaces, B-splines, B-spline curves
and surfaces, interpolation with B-spline curves,
least squares B-spline methods, and NURBS (non-
uniform rational B-splines). We provide examples
of many of these constructions, to give the general
flavour of the subject. We concentrate on planar
curves—the extension to space curves is routine.
The emphasis throughout is on (piecewise) polyno-
mial methods, and their rational counterparts.

There are essential aspects of CAGD, which can
also be investigated with the help of Maple, that
we will not have time to touch on, such as recipes
for drawing the curves and surfaces, important and
illuminating connections with projective geometry,
numerical analysis considerations, advanced spline
algorithms, and differential geometry. See [1, 2, 3,
4] for further information.

*Department Of Mathematics, Spelman College, PO
Box 373, 350 Spelman Lane, Atlanta, GA 30314, USA;
email: colm@auc.edu; URL: http://www.auc.edu/~ colm

Polynomial interpolation

The central idea of interpolation is to find a poly-
nomial which goes through prescribed data points
(zi,9:),0 <@ < n. Maple’s interp command uses
Newton interpolation to find the unique y = f(z)
of degree less than or equal to n—one less than the
number of points—which does the job.

We try this for the seven data points (1,32),
(3,34), (4,36), (5,34), (6,39), (8,40), and (9,37):
> xx:=[1, 3, 4, 5, 6, 8, 9]:

> yy:=[32, 34, 36, 34, 39, 40, 371:
> f:=interp(xx,yy,x);

67 ¢ 379 5 41657 , 84127 4
fi=—2’— —x zt — x
20160 320 2880 960
393091 , 48097 1639
zf— ——a+ ——
1440 120 7

While we get no hint as to how the answer was
arrived at, the mathematics involved is elementary
and well known (see [3, Chapter 6] or [4, p. 57]).
Let’s look at this interpolant, along with the data
points. For politeness sake we plot from 0 to 10.
pts:=j—>(xx[j]1,yy[j1): n:=6:
points:=[seq(pts(j),j=1..n+1)]:
POINTS:=plot(points, style=point,

symbol=circle, axes=boxed):

INTERPOL:=plot(£,x=0..10):
with(plots): display({POINTS,INTERPOL});

VVVVYVYV

Computer Aided Geometric Design

Right away, we see that although polynomial
interpolants do the job they are assigned, they do
strange things outside of the range of data points.
They certainly cannot be trusted for extrapolation
purposes! Plotting from 0.8 to 9.2 instead yields:

This highlights another undesirable aspect of our
approach so far: the inevitable wiggling of high de-
gree polynomials within the range of interest. In
addition, the z coordinates need to be distinct.

For an orientation free approach, we could start
with distinct tg,%1,...%,, and obtain a parametric
curve (f(t),g(t)) such that (f(¢;),9(t;)) = (zi, y;)
for all ¢, by taking f(¢) and g(¢) to be the unique
polynomials of degree less than or equal to n such
that f(#;) = @; and g¢(¢;) = y; for all i. For fixed
(zi,9:), different ¢;’s result in different curves, some
of them relatively wiggle-free [4, pp. 201-2].

Bezier Curves

Instead of insisting on interpolation, we could set-
tle for some sort of approximation to our data. We
might ask for a “best fit” polynomial of lower de-
gree. If we seek a cubic, in the case of seven points,
then unless we are lucky, we are not going to get an
exact fit. The method of least squares is one pop-
ular technique used in such circumstances—it can
be explored using Maple’s leastsquare command.

Bezier curves provide another alternative. We
start with points Py, Pq,...,P,—mnote the switch
to vector notation here—and end up with a para-
metric curve which is polynomial of degree less than
or equal to » in each slot.

The Bezier curve associated with control points
Py, Py, ..., P, is defined for 0 <t <1 by

n

n . s

B(t) = Z())tl(l—t)” P,
=0

The functions attached to the points here are known

as the Bernstein basis functions.

Cubic Bezier curves use four control points, and
the basis functions (1 —¢)*,3(1—¢)%¢,3(1 - t)¢2, 3.
These curves have many applications, sometimes
in the equivalent Hermite formulation, specified in
terms of just two control points with specified tan-
gent vectors there [3, pp. 91]. Large curves can be
built up by stringing many such segments together,
with tangent continuity at the joins [3, pp. Chap-
ter 8]). These cubic curves are also the basis of font
design in PostScript [3, p. 130]). Consequently,
every page in this journal is bursting at the seams
with Bezier curves!

Let’slook at the Bezier curve determined by our
original data points, utilizing the binomial com-
mand. We replot the points over an extended range,
making some labelling adjustments on account of
the vector origins of pts and the desired form of
the points P;’s. We take the linear combination of
control points with the help of evalm.
n:=6: P:= i-> [pts(i+1)]:
POINTSE:=plot(points, x=0..10, y=31..41,

style=point,symbol=circle,axes=boxed):
brn:= (i,n,t) —->

binomial(n,i) * t°1i * (1-t)"(n-1):
bez:= t -> evalm

(sum(’brn(i,n,t)*P(i)’, ’i’=0..n)):
BEZ:=plot([bez[1], bez[2], t=0..1]):
display({POINTSE,BEZ});

VVVVVYVVYVYV

40+

38+

34+

32+

Computer Aided Geometric Design

The resulting picture illustrates some standard
properties of Bezier curves. For instance, Bezier
curves always lie within the convex hull of their
control points, since on [0, 1] the Bernstein basis
functions are clearly non-negative and sum to 1.
Maple can verify the latter claim symbolically—
even if we switch from n to the unspecified nn:

> simplify(sum(’brn(i,nn,t)’,’i’=0..nn));

1

As the picture suggests, generally only the first
and last control points are interpolated. The inter-
mediate control points influence the curve’s shape
in a different way, acting more like magnets. There
are various ways to adjust the influence of the con-
trol points. One could repeat some points, i.e., list
them more than once, but increasing the number
of points also increases the degree of the resulting
curve. Another restriction inherent to the Bezier
approach is the fact that the curves change totally
as soon as one control point is moved.

Let’s broaden our horizons, and not restrict our-
selves to polynomials. Given points Pg, Py, ..., P,
and corresponding “weights” wq, w1y, . .., wy, the as-
sociated rational Bezier curve is defined on [0, 1] by

Yo (7;) (1= 1) w Py

R(t) =
2 im0 (]Z) (1 = t)n i
It is an easy matter to modify the definition of bez

above to accommodate the weights and the new
denominator.

40+

38+

34+

32+

The above plot shows the rational curve deter-
mined by our seven data points, taking ws, and ws
to be 5, and the other w;’s to be 1. Note the curve’s
newfound affection for the fourth and sixth points.

If the weights are all equal then the rational
Bezier curve reduces to the ordinary Bezier curve,
since the denominator simplifies to the common
weight. Hence only select control points can be
“emphasized.” Readers who are curious about the
effects of zero or negative weights can experiment
for themselves at this point.

An important application of rational quadratic
Bezier curves is to the construction of (bits of) conic
sections—including circles, ellipses and hyperbolas—
without resorting to trigonometric or hyperbolic
functions [3, pp. 244-8] [4, pp. 155-8].

In our brief tour of Bezier curves, we got more
than a glimpse of things to come. From now on all
curves will be of the form C(¢) = > fi(t)P;, for
control points P;, and basis functions f;(¢). The
interpolation functions considered earlier can also
be realized in this way where the f;(¢) are the well
known Lagrange functions [3, Chapter 6]. In the
polynomial Bezier case, the f;(¢)’s are the Bern-
stein basis functions. It will often happen that
Yoio fi(t) = 1 as well, at least on some parameter
interval, which ties in with the convex hull property
mentioned above when the basis functions are also
non-negative.

Elementary Surface Patches

We can use the interpolation and Bezier construc-
tions already discussed to come up with two broad
classes of surface patches, so-called tensor product
surfaces and lofting surfaces. By a surface patch
we mean a function of two parameters u, v, plotted
over some rectangle in the u, v plane, taking values
in three space. Surfaces of the type z = f(z,y) can
be realized this way, as S(u,v) = [u, v, (f,u,v)].
First we consider a tensor product surface patch
built up from cubic Beziers. We start with a grid of
sixteen control points P; ; (0 < 7,7 < 3), and then
consider the Bernstein functions ﬁu’(l —u)37
and Wij)!vj(l — v)?>77, used in the definitions of
the cubic Bezier curves controlled by Py, Py,
].:'2707 P370, and].:'0707].:'0717 P072, P073, respectively.

Computer Aided Geometric Design

We use the set of all possible products of these
one variable functions as a basis for our surface: for
u,v € [0,1], define S(u,v) to be

(3 3

2,7=0

u'(1—u)* "' (1 — 0)*~'P;

This surface interpolates the corner points Pgp,
Py 3, P30, and P33—its precise shape may be var-
ied by altering these and the other control points.
One way to get control points is to sample a
2 3
surface, say z = — sin(%), on a regular 4 x 4
grid. We construct and save the mesh these points
determine, to aid in visualizing them later.
P:=(x,y)->[x,y,-sin((3*x"2-4%y~3)/40)]:
GRID:=plot3d(P(x,y), x=0..1, y=0..1,
grid=[4,4], axes=box, color=black,
style=wireframe, thickness=2):

vV V V V

We compute and plot the surface, using advance
hindsight to chose a suitable viewing angle.

> sur:=evalm(sum(sum(’brn(i,3,u)*brn(j,3,v)
> *P(i,3j)’,?j’=0..3),7i’=0..3)):
> SUR:=plot3d([sur[1],sur[2],sur[3]1],

> u=0..1, v=0..1, shading=none):

> display({GRID,SUR},orientation=[-140,60]);

A simpler example of a tensor product surface
patch is the bilinear surface patch, which also turns
out to be the easiest example of our second class of
surface patches. We start with linear Beziers, i.e.,
straight lines, connecting four points Qo,0, Q1,0,
Q1,1, Qo,1 (in that order), yielding:

(I—u)(1-2)Qo0 + (1 —u)vQo
Fu(l = v)Q1,0 + uvQy 1

Bil(u,v) =

for w,v € [0,1]. This is the simplest surface joining
four points. It is a ruled surface, and interpolates
the lines which connect the given points.

If we take Qoo = (6,0,0), Q10 = (2,0,3),
Q11 =1(0,2,3), and Qo1 = (0,4,0) we get:

Now suppose we have four curves connecting
the points: say Cy, and Cy 1 joining Qo0 to Q1,0
and Qg 1 to Q1,1 respectively, and Cg v and Cy v
joining Q10 to Q1,1 and Qg0 to Qo o respectively,
where each parameter is in the interval [0, 1]. These
determine a frame, and now we seek a surface patch
which has these as its boundary. Here is such a
frame, drawn using spacecurve and display:

Here Cgy is the Bezier curve (1 — v)?Qgo +
2(1 —v)v(4,4,0)+ v2Qo,1; C1,v is a quarter of the
intersection of the cylinder z* 4+ y* = 2% with the

plane z = 3,i.e., C1y = (2 cos%(g—”),Qsin%(g—”),‘?);

Computer Aided Geometric Design

Cuo = (1 -4)*Qoo + 2(1 — w)u(2,0,0) + «*Qu 0,
and Cy1 = (1-u)?*Qo,1+2(1—u)u(0,2,0)+u*Qy 1.
The parametrization of C;y provoked us to set
numpoints equal to 270 for that spacecurve plot.
We can string a hammock between the curves
Cu,0 and Cy 1 by lofting in the v direction with

Lofty(u,v) = (1 —v)Cy,0 + vCuy,

for u,v € [0,1]. This linearly interpolates between
corresponding points on each curve.

We can also loft in the « direction with

Loft,(u,v) = (1 - u)Coyv + uC1y,

The Coons surface construction gives a surface
patch which interpolates all four of the space curves.
Its parametric equation is given by:

Coons(u,v) = Lofty(u, v)+Lofty(u, v)—Bil(u, v)

for u,v € [0,1]. Our curves yield:

()
N
R,

N

3\
O

|
i
}

i)
i
|
i

W\
i
i

»‘.

That this patch does indeed interpolate the four
ingredient curves can be verified by hand—or we
can let Maple do the work for us. For instance,
with Bil, Loft_u and Loft_v defined as above, and
Coons := evalm(Loft_u + Loft_v - Bil), then
evalf (subs(v=0,eval(Coons))) does indeed yield
(6(1 —u)?) + 4u(1 — u) + 2u?,0,3u?) = Cy .

(We can alleviate the clutter of curves at the top
of the Loft, and Coons plots, by re-parametrizing
the curve Cy y so as to spread out more evenly the
points obtained by uniformly sampling v € [0, 1].
One possibility is to replace each v in the definition

arctan(8v—4)+arctan(4))
of Cl,v by 2 arctan(4) ’)
Designer surfaces for engineering purposes may

be obtained by stitching together lofting, Coons,
and Bezier patches—or the more general B-spline
surfaces or NURBS patches discussed later—subject
to stringent matching conditions across the joins.

B-splines

B-splines are a class of functions made up of pieces
of polynomials, joined together in some fashion. We
start by choosing an m+ 1-tuple 7' = [to,t1,. . ., L]
of non-decreasing real numbers, which is called the
knot vector. We then define the B-splines B;; of
order j recursively, as follows. Set

1 on [t;,ti41)
0 elsewhere

Bi71(t) =

for0 < i < m—1(with By,_11(¢) = Lon [ty_1,15]),
and for any 7 < m, we define

Computer Aided Geometric Design

B, j(1) = w; j(t)Bij—1() +(1—wiy1,j()) Bit1,j-1(¢)

for 0 <@ < m — j, where the w; ; are given by

(t=ti) T .
w; (1) = (titj—1—1t:) if tigj—1 # 4
' 0 otherwise

Given T and k < m, we thus get m — k + 1 piece-
wise polynomials B; (t) of degree at most k — 1.
The pieces which constitute each function join up
at the knots, where they exhibit varying degrees of
smoothness.

Order one B-splines B;1(t) are step functions,
order two B-splines B; 5(1) are zig-zag linears, order
three B-splines B; 3() are piecewise quadratics, and
SO on.

It is difficult for the average reader to find much
comfort or inspiration in the above formulae the
first time around. We need examples and pictures—
and fortunately Maple comes to the rescue. Our
first example turns out to be an old friend.

We force Maple to start counting the array ele-
ments at index 0 to facilitate the standard notation
for the definition of the B-splines.

m:=7: T:=array(0..m, [0,0,0,0,1,1,1,1]):
w:=(i,j,t)->

if T[i+j-11=T[i] then O

else (t-T[il)/(T[i+j-11-T[il) fi:
We start the ball rolling by defining step func-
tions S(a,b,t) on intervals of the form [a,b) with
the help of Maple’s Heaviside command.

vV V V V

S:=(a,b,t)>Heaviside(t-a)-Heaviside(t-b)
B:=(i,j,t)—>
if j=1 then S(T[il,T[i+1],t)
else
w(i,j,t)*B(i,j-1,t) +
(1-w(i+1,j,t))*B(i+1,j-1,t) fi:

(Note: S(a,b,t)is 1 on [a,b) if ¢ < b, and 0
everywhere if @ = . We are being sloppy here and
ignoring possible problems at the right most knot
value).

Maple is primed and ready to compute the B-
splines: let’s examine the cubics, i.e., the B; 4(1)’s.
There should be 7—4 + 1 = 4 of them:

> k:=4: curves:= {seq(B(i,k,t),i=0..(m-k)3}:
> plot(curves, t=0..t.m, axes=boxed);

VVVVYVYV

Here we have four polynomials (no pieces) de-
fined on [0, 1). They are in fact the Bernstein func-
tions (1 —1)3, 3(1 —t)2t, 3(1 — ¢)t2, {3, from earlier.
This can be verified by not suppressing the output
of the curves definition above, and ignoring the
clutter due to the Heaviside functions.

For our second example, we use the new knot
vector [0,1,1,3,4,4,5,6,6,6,9] of length 11, and
again plot the resulting B-splines. Changing m and
T above, and re-executing the code, yields seven
piecewise cubic functions on the interval [0,9]. In
principle each comes in six pieces, switching at ¢ =
1,3,4,5, and 6:

The multiplicity of a given knot (i.e., how often
it is repeated in the knot vector) tells us a lot about
the way the pieces of the B-splines join up there: at
a knot of multiplicity ¢, each B; j is at least k—{—1

Computer Aided Geometric Design

times continuously differentiable [4, p. 174]), [3, p.
169]). If k —£—1 = —1, this is to be interpreted as
a potential discontinuity.

Thus, the spike in the seventh function Bg 4 in
the last plot is not totally unexpected. At that
point, ¢t = 6, the B-splines are only guaranteed to
be 4 — 3 — 1 times continuously differentiable, i.e.,
continuous but not necessarily differentiable. Sim-
ilar considerations apply at t = 1 and at ¢t = 4.

The seven B-spline functions are visibly non-
negative on [0,9], and a plot of their sum suggests
that they sum to 1 on the subinterval [3,6]. (These
are key properties which will soon prompt us to
define B-spline curves.) We can take advantage of
Maple’s symbolic prowess to verify that they sum
to 1 here if we utilize the assume facility to restrict
attention to those ¢ between 3 and 6:

> assume(t>3,t<6);
> simplify(sum(’B(i,k,t)’,’i’=0..(m-k)}:
1

This should work under the assumption that
3 <t <6 (oratleast 3 <t < 6 in view of the
sloppiness commented on earlier) but Maple takes
additional nudging to get that totally right. In gen-
eral, the correct subinterval over which to sum the
m — k + 1 B-splines is [tx—1, tm—r+1]-

B-spline Curves and Surfaces

We have seen how Bernstein functions are special
cases of B-splines, and we already know how to
build parametric curves from the Bernstein func-
tions. It should therefore come as no surprise that
general B-splines can be made to play a similar role.

Given a knot vector T' = [tg,l1,...,1y], and
the corresponding m — k + 1 B-splines B; ;(¢) of
order k, for some fixed k& < m, then if we also have
m — k + 1 control points Pg, Py, ..
put everything together to get a B-spline curve of
degree k — 1 defined on [ty—1,tm—g+1]:

Pk, we can

If7T =10,0,0,0,1,1,1,1] and k = 4, we see that
C(1) is just a cubic Bezier curve; indeed any Bezier
curve can be realized in a similar way.

Let’s look at a cubic B-spline curve based on the
knot vector [0,1,1,3,4,4,5,6,6,6,9] from before.
Since we'll need m —k+1=10—4+4+1 = 7 control
points, we use our seven data points again.

> Dbsp:=evalm(sum(’B(i,k,t)*[P.i]’,

> ’1’=0..(m-k))):

> BSP1:=plot([bspl[1], bspl[2],
>
>

t = T[k-1]..T[m-k+1] 1):
display({POINTS,BSP1});

401

38+

34+

32+

This picture raises further questions. Why is
(9,37) interpolated? How smooth is this piecewise
cubic curve? Where, on the curve itself, are the
various segments joined up? How do the knots and
the control points influence the shape of the curve?
Could we change the knots so that (1,32) doesn’t
get “left out in the cold”? Is there a way to ac-
tually interpolate all seven points with a piecewise
cubic B-spline curve? These are important ques-
tions, and we take a look at some of them in the
last section, An Educational Experience.

Maple has built in spline and bspline libraries,
containing very general routines, which even allow
for symbolic knots. However, we do not explore
them here, in keeping with our philosophy of using
a minimal amout of Maple, while trying to under-
stand how the mathematical pieces fit together.

We finish this section by generalizing the ten-
sor product bicubic Bezier surface patch definition
from earlier, to get B-spline surface patches.

We start with knot vectors U = [ug, u1, . .
V = [’Uo,?)l, ..

9 umu]7
.y U,], of possibly different lengths,
and two curve orders k,, k,. Given a rectangular
mesh of (my —ky, +1) x (m, —k,+ 1) control points

Computer Aided Geometric Design

P

i.j» we can then define

Muy—kut+l me—ke+1

> > Bik (u)Bjr, (v)P;;
=0 7=0

S(u,v) =

for (w,v) € [Uky—1, Umy—kut1] X [Vky—15 Vrmy—ky+1]-
When both knots vectors are [0,0,0,0,1,1,1,1],
and both orders are 4, we get a bicubic Bezier sur-
face patch as seen before.
It should now be fairly obvious how to gener-

ate more exotic examples of surface patches using
Maple.

Non-Uniform Rational B-Splines

Non-uniform rational B-Splines (NURBS) refers to
curve and surface generation using not-necessarily
uniform (equally spaced) knots, in conjunction with
the rational function approach already encountered
in our study of Bezier curves. This leads to in-
creased flexibility in design. We give one example:
the representation of an entire circle as a rational
quadratic B-spline curve.
Our goal is to plot a rational B-spline curve:

ST wi By (1)P;
ST wi By (1)

given weights w; and control points P;. We use the
knot vector [0,0,0,1,1,2,2,3,3,4,4,4] of length 12,
set k = 3, and get the recursively defined B(7,k,1)’s
ready for action.

For our control points we choose m — k+ 1 =
11 — 3+ 1 = 9 points around the perimeter of a
square centered at the origin, and plot these with a
little room to spare. Note that Py and Pg are the
For the weights, we attach 1 at the five(!)
corners of the square, and sin(7/4) =

R(1) =

bl

Salne.

1
—= elsewhere.
NG

P.0:=(-1, 0): P.1:=(-1,-1): P.2:=(0,-1)
P.3:=(1,—1): .4:=(1, 0): 5 =(1, 1)
P.6:=(0, 1): P.7:=(-1, 1): P.8:=(-1, 0)
sq:=[P.(0..(m- k)] s: —1/sqrt(2):
SQ:=plot(sq, style=point, symbol=circle,
x=-1.25..1.25, y=-1.25..1.25,

scaling=constrained, axes=boxed):
ww:=array(0..8, [1,s,1,s,1,s,1,s,1]):
div:=sum(’ww[il*B(i,k,t)’, ’1’=0..(m-k)):

’1’=0..(m-k))):
CIRC:=plot([circ[1],circ[2],

VVVVYVVVVYVYVVYV

circ:=evalm(sum(’ww[il*B(i,k,t)*[P.il/div’,

> t=T[k-1]..T[m-k+1]] ,numpoints=200):
> display({sQ,CIRC});

We upped numpoints to 200, from the default
50, in an attempt to mask the annoying gap above
(=1,0). Our curve is composed of four quarter
circles—each of which is a rational quadratic Bezier
curve. One advantage of the NURBS approach is
clear: we get the entire circle as a single curve.

An Educational Experience

Our final explorations bring out some key proper-
ties of B-spline curves, as well as addressing ques-
tions such as “where are the knots on the curve?”,
“how do the knots influence the curve?” and “how
do the control points influence the curve?”

We look at a new, quadratic B-spline curve, and
mark in the knots, so that we can see the different
polynomial segments which make up the curve.

> m:=11: T:=array(0..m,
> [0,1,2,3,4,5,6,7,8,9,10,11]):

Execute thew:=(1,j,t)->,B:=(i,j,t)-> code,

and pick m—k+4+1=11-3+1 = 9 control points.

P.0:=(0,0): P.1:=(0,2): P.2:=(3,0):
P.3:=(4,1): P.4:=(8,0): P.5:=(7,2):
P.6:=(8,3): P.7:=(9,1): P.8:=(10,4):
k:=3: newpts:=[P.(0..(m-k))]:

NEWPTS:=plot (newpts, style=point,
x=-1..11, y=-1..5,
symbol=circle, axes=boxed):

VVVVYVVYV

We plot on [tg_1,tm—k+1], in which there are
(m—k+1)—(k—1)4+1=m— 2k + 3 knots, i.e.,
the 8 knots from t; = 2 to tg = 9 inclusive. We

Computer Aided Geometric Design

evaluate the B-spline curve at these, and mark in
the corresponding points.

edu:=evalm(sum(’B(i,k,t)*[P.i]’,
’1’=0..(m-k)):
EDU:=plot([edul1],edul2],
t=T[k-1]..T[m-k+11]):

knotsx:=seq(eval(subs(t=T[i],edul1])),

i=(k-1)..(m-k+1)):
knotsy:=seq(eval(subs(t=T[i],edul2])),

i=(k-1)..(m-k+1)):
klist:=j->(knotsx[j],knotsy[j]1):
knots:=[seq(klist(j),j=i..(m-2%k+3))]:
KNOTS:=plot(knots,style=point,symbol=box):
display ({NEWPTS,KNOTS,EDU});

VVVVYVVVVYVYVYVYV

The curve appears to interpolate the midpoints
of the lines joining consecutive control points, and
these lines seem to be tangent to the curve there.
These observations hold for any quadratic B-spline
curve derived from a uniform knot vector.

We now alter one of the control points, say Py,
from (8,0) to (7,0). What changes? We combine
the new and the old plots using display.

Evidently, altering one control point results in
changes in three curve segments. In general, each
control point on a B-spline curve of order k ef-
fects at most k segments of the curve: P; influ-
ences only the segments between ¢; and ¢,y [4, p.
176]. This important property of B-spline curves is
known as “local control,” and is one reason they are
used so much in design: curve modifications can be
made locally without changing other parts already
deemed satisfactory.

A complimentary fact is that each segment of
such curves is controlled by at most k& of the P;’s:
the segment between ¢; and ¢;4; is completely de-
termined by P;_j41,...,P; [4, p. 176].

Next, we entertain the possibility of fiddling
with the knots. Looking back at the original, before
we altered a control point, we see that the knots
t = 5 and t = 6 correspond to points marked on
the curve just before and just after it swings by the
control point (8,0), going from left to right. Now
we change t5 = 5 to 5.75, and see what happens.

Computer Aided Geometric Design

Only two curve segments on either side of the
altered knot changed! Again, there is a general
principle at work here: when we alter one knot in a
B-spline curve of order k, we change at most k — 1
segments of the curve on either side of that knot.

Another thing worth noting here: the two knots
which are closer together seem to be dragging the
curve towards the control point (8,0). If this is so,

we can surely guess what happens when we change

the knot vector to T = [0,1,2,3,4,6,6,7,8,9,10,11].

The double knot at ¢ = 6 resulted in interpola-
tion of one of the control points. Furthermore, the
curve has k — ¢ — 1 =3 -2 -1 = 0 continuous
derivatives at this point, as the picture suggests.

What effect would a triple knot have? First,
let’s have two knots sneak up on ¢t = 6 from different
sides: try T'=10,1,2,3,4,5.75,6,6.25,8,9,10, 11].

The curve seems to be straining to interpolate
two control points, with { = 6 torn between the two
points.

What happens when we push all the way, and
use T'=10,1,2,3,4,6,6,6,8,9,10, 11]7

Our final plot suggests that (8,0) and (7,2) are
both interpolated—but if this is true, which point
on the curve now corresponds to ¢t = 67

The picture is in fact wrong: in reality the curve
jumps from just before (8,0) to (7,2), as t reaches
6 from the left. It’s hard to see at this scale, but
(7,2) is marked as a knot (square) and a control
point (circle), whereas (8,0) is only marked as a
control point. There is actually a whopping big
discontinuity here!

Maple shouldn’t have joined these two control
points with a straight line, but then Maple’s de-

10

Computer Aided Geometric Design

fault way of plotting is to find a bunch of correct
points and then join the dots, effectively assuming
continuity.

In spite of all the danger of believing the first
computer generated picture we see, all is not lost:
the truth of the matter is revealed upon changing
the plot[style] option to points. Maple makes
a graceful recovery given half a chance.

Conclusion

We have shown how Maple can be of assistance in
exploring the principal geometric objects of study
in CAGD (Computer Aided Geometric Design).

Concepts from just outside the standard under-
graduate mathematics curriculum, together with a
little Maple, go a long way in the construction of
the shapes which are fundamental to many engi-
neering design processes.

We have only scratched the surface here, and
we believe that there is a great deal of potential for
further Maple exploration in this area.

Acknowledgments

The author acknowledges the generous support of
Boeing Computer Services, in the planning and run-
ning of an undergraduate seminar on CAGD for
mathematics majors at Spelman College over the
academic years 1993-5. It was in this forum that
the bulk of the current materials was developed. In
particular, Dr. Dave Ferguson of BCS was always
happy to share his expertise at the drop of a hat.

The author would like to thank his Spelman col-
league Dr. Sylvia Bozeman for unwittingly starting
him down this road, Dr. Jeffrey Ehme for many
helpful discussions, and the numerous seminar par-
ticipants for their patience and perseverance while
we grappled with these concepts together.

This manuscript was made possible thanks to
support from the W.K. Kellogg Foundation, through
Spelman College’s Center for Scientific Applications
of Mathematics (CSAM).

The referees made sensible suggestions which
lead to significant strengthenings of this paper, for
which the author is most grateful.

P.S. Editor Ross Taylor provided much appreciated
PostScript advice in the assembly process.

References

[1] Richard Bartels, John Beatty & Brian Barsky,
An Introduction to Splines for Use in Com-
puter Graphics and Geomelric Modeling Mor-
gan Kaufman (1987) [also published in France
as Mathémaliques et Cao, Volume 6, B-Splines
and Mathématiques el Cao, Volume 7, Bela-
Splines, Hermes (1988), translated by Pierre
Bézier]

[2] Carl de Boor, B(asic)-Spline Basics in Funda-
mental Developments Of Compuler-Aided Ge-
ometric Modeling (Les Piegl, editor), Aca-
demic Press (1993)

[3] Gerald Farin, Curves And Surfaces For CAGD
(A Practical Guide), Academic Press, 3rd Edi-
tion (1993)

[4] Josef Hoschek & Dieter Lasser, (Fundamentals
of) Computer Aided Geometric Design, A.K.
Peters (1993).

Biographical Sketch

The author earned the B.Sc. and M.Sc. degrees in
Mathematics from University College Dublin, in
Ireland. His Ph.D. thesis, written both east and
west of there under the direction and guidance of
Alex F.T.W. Rosenberg of Cornell University, con-
cerned an abstract setting for the algebraic reduced
theory of higher level forms over fields.

Recently his mathematical interests have broad-
ened to include computational algebra (Groebner
bases), general algebraic codology, CAGD, image
processing, computer graphics, and wavelets. He
likes Matlab and music, though not necessarily in
that order.

He actively encourages culinary minded readers
to email him reliable, authentically Thai recipes for
Massaman Curry.

11

