1. **The Haar System**

Let \(\psi(x) \) be the function
\[
\psi(x) = \chi_{[0, \frac{1}{2})}(x) - \chi_{[\frac{1}{2}, 1)}(x),
\]
and for all \(k, j \in \mathbb{Z} \) we set
\[
\psi_{j,k}(x) = 2^{j/2} \psi(2^j x - k).
\]

Theorem 1.1. The system \(\{\psi_{j,k} : j, k \in \mathbb{Z}\} \) is a complete orthonormal system in \(L^2(\mathbb{R}) \).

Proof. We begin with noticing that the function \(\psi_{j,k} \) has support in the interval
\[
I_{j,k} = [k2^{-j}, (k + 1)2^{-j}),
\]
that has length \(2^{-j} \), that is \(|I_{j,k}| = 2^{-j} \). Moreover,
\[
\int_{\mathbb{R}} \psi_{j,k} \, dx = \int_{I_{j,k}} \psi_{j,k} \, dx = 0.
\]

We make a few remarks and observations about the intervals \(I_{j,k} \).
- The index \(j \) denotes the “generation”, while \(k \) denotes its “position” in the generation.
- If \(k \neq k' \), \(I_{j,k} \cap I_{j,k'} = \emptyset \).
- Given an index \(j \), the intervals \(\{I_{j+1,k}\}_{k \in \mathbb{Z}} \) are obtained by bisecting the intervals \(\{I_{j,k}\}_{k \in \mathbb{Z}} \). In particular, bisecting the interval \(I_{j,k} \) gives rise to the intervals \(I_{j,k+1} \) and \(I_{j,k+1} \) in the subsequent generation.
- As a consequence, when \(j' > j \) and the intervals \(I_{j,k} \) and \(I_{j',k'} \) are not disjoint, then \(I_{j,k} \supseteq I_{j',k'} \) and in fact \(I_{j',k'} \) is contained in either the first or the second half of \(I_{j,k} \).

We now prove the orthonormality of the Haar system \(\{\psi_{j,k}\} \).

Let \((j, k), (j', k') \) be two pairs of indices.

Suppose first \(j = j' \). If \(k \neq k' \), so that \(I_{j,k} \cap I_{j,k'} = \emptyset \), then
\[
(\psi_{j,k}, \psi_{j',k'}) = 0.
\]

If \(k = k' \), then
\[
(\psi_{j,k}, \psi_{j,k}) = \| \psi_{j,k} \|^2 = 2^j \int_{I_{j,k}} \psi_{j,k} \, dx = 1.
\]

If \(j < j' \), then, by the last observation above,
\[
| (\psi_{j,k}, \psi_{j',k'}) | = 2^{j/2} | \int_{I_{j',k'}} \psi_{j',k'} \, dx | = 0.
\]

Thus, the orthonormality follows.

Next, we wish to show that the system is complete, that is that \(\text{span} \{\psi_{k,j} : j, k \in \mathbb{Z}\} \) is dense in \(L^2(\mathbb{R}) \).

We define
\[
V_j = \text{span} \{\chi_{I_{j,k}} : k \in \mathbb{Z}\}.
\]

It is well known that simple functions are dense in \(L^2 \). Hence, finite linear combinations of characteristic functions of intervals are also dense in \(L^2 \). It is easy to see that for every interval \(I \), the function \(\chi_I \) can be approximated by functions in \(\bigcup_{j \in \mathbb{Z}} V_j \) (show this). Therefore, the closure in \(L^2 \) of \(\text{span} \{V_j : j \in \mathbb{Z}\} \) is all of \(L^2 \).
Furthermore, we observe that:
(1) for every \(j \in \mathbb{Z} \), \(V_{j-1} \subseteq V_j \);
(2) as a consequence, \(\lim_{N \to +\infty} V_N = L^2(\mathbb{R}) \) (notice that this means that given \(f \in L^2 \) and \(\varepsilon > 0 \) there exist \(N \in \mathbb{N} \) and \(g \in V_N \) such that \(\| f - g \|_{L^2} < \varepsilon \));
(3) moreover, \(\cap_{j \in \mathbb{Z}} V_j = \{ 0 \} \), that is, \(\lim_{M \to -\infty} V_M = \{ 0 \} \), since if \(f \in \cap_{j \in \mathbb{Z}} V_j \), then \(f \) is an \(L^2 \) function that is constant on intervals of arbitrarily long length, hence \(f \) must be 0.

We also notice that
- if we set \(\varphi = \chi_{[0,1)} = \chi_{I_0,0} \), and, as in the case of the \(\psi \)'s, \(\varphi_{j,k}(x) = 2^{j/2}\varphi(2^j x - k) \), then \(\varphi_{j,k} = 2^{j/2}\chi_{I_{j,k}} \);
- as a consequence, \(V_j = \text{span} \{ \varphi_{j,k} : k \in \mathbb{Z} \} \).

Next, for \(j \in \mathbb{Z} \) we define \(W_j = \text{span} \{ \psi_{j,k} : k \in \mathbb{Z} \} \).

Notice that we have shown that \(W_j \perp W_j' \) for \(j \neq j' \) and that our goal is to show that \(\bigoplus_{j \in \mathbb{Z}} W_j = L^2 \).

Claim. For all \(N \in \mathbb{Z} \) we have the orthogonal decomposition
\(V_N = V_{N-1} \oplus W_{N-1} \).

Assume the claim for now and we finish the proof.
From the claim, by induction it follows that
\[
V_N = V_{N-1} \oplus W_{N-1} = \left(V_{N-2} \oplus W_{N-2} \right) \oplus W_{N-1} = V_M \oplus \left(\bigoplus_{j=M}^{N-1} W_j \right)
\]
for any \(M \leq N - 1 \). Hence, by (3) above, letting \(M \to -\infty \),
\[
V_N = \bigoplus_{j=-\infty}^{N-1} W_j.
\]
Using (2), letting \(N \to +\infty \) we obtain
\[
L^2(\mathbb{R}) = \bigoplus_{j \in \mathbb{Z}} W_j,
\]
and, modulo the claim, we are done.

We prove the claim. Notice that
\[
\varphi_{0,0}(x) = \chi_{[0,1)}(x) = \frac{1}{2} \chi_{[0,2)}(x) + \frac{1}{2} \left(\chi_{[0,1)}(x) - \chi_{[1,2)}(x) \right)
\]
\[
= \frac{1}{2^{1/2}} \varphi_{-1,0}(x) + \frac{1}{2^{1/2}} \psi_{-1,0}(x)
\]
\[
\in V_{-1} + W_{-1}.
\]
By translation we also have
\[
\varphi_{0,k}(x) = \frac{1}{2^{1/2}} \varphi_{-1,k}(x) + \frac{1}{2^{1/2}} \psi_{-1,k}(x) \in V_{-1} + W_{-1}.
\]
Therefore, $V_0 \subseteq V_{-1} + W_{-1}$. Since $W_{-1} \subseteq V_0$ (as it is easy to check directly, or using the relation above and the inclusion $V_{-1} \subseteq V_0$), it follows that

$$V_0 = V_{-1} + W_{-1}.$$

The fact that $V_{-1} \perp W_{-1}$ implies that the above is an orthogonal sum.

From the equality

$$V_0 = V_{-1} \oplus W_{-1},$$

it is easy to complete the proof of the claim, either repeating an analogous argument at the level N, or using the fact that the dilation

$$f \mapsto 2^{1/2} f(2 \cdot)$$

maps V_j onto V_{j+1} and W_j onto W_{j+1}, with inverse

$$f \mapsto 2^{-1/2} f(2^{-1} \cdot).$$

(These maps preserve the orthogonality of the V’s and W’s.)

This completes the proof. \hfill \square

2. The Hermite functions

Let D be the differential operator defined on C^1 functions by

$$Df(x) = \frac{1}{\sqrt{2}} \left(x f(x) + f'(x) \right),$$

and let D^* its (formal) adjoint with respect to the L^2-inner product; that is the differential operator defined by the equality

$$\int (Df)g = \int f(D^*g) \quad (2.1)$$

valid for all $C^1_c(\mathbb{R})$ functions.

We now show that

$$D^* f(x) = \frac{1}{\sqrt{2}} \left(x f(x) - f'(x) \right). \quad (2.2)$$

In fact, if $f, g \in C^1_c(\mathbb{R})$ (that is, they are C^1-functions with compact support), integrating by parts

$$\int_{\mathbb{R}} D^* f(x) \overline{g(x)} \, dx = \int_{\mathbb{R}} f(x) D \overline{g(x)} \, dx = \frac{1}{\sqrt{2}} \int_{\mathbb{R}} f(x)(xg(x) + g'(x)) \, dx$$

$$= \frac{1}{\sqrt{2}} \int_{\mathbb{R}} x f(x) \overline{g(x)} \, dx + \frac{1}{\sqrt{2}} \int_{\mathbb{R}} f(x) g'(x) \overline{g(x)} \, dx$$

$$= \frac{1}{\sqrt{2}} \int_{\mathbb{R}} x f(x) \overline{g(x)} \, dx + \frac{1}{\sqrt{2}} \left(f(x)g(x) \right)_{-\infty}^{+\infty} - \int_{\mathbb{R}} f'(x) \overline{g(x)} \, dx$$

$$= \int_{\mathbb{R}} \frac{1}{\sqrt{2}} \left(x f(x) - f'(x) \right) \overline{g(x)} \, dx,$$

using the fact that f and g vanish at $\pm \infty$ (in fact, the vanishing of one of the two functions only would have sufficed).

For simplicity of notation we write

$$T = D^*.$$
The Hermite operator is, by definition,
\[H = x^2 - \left(\frac{d}{dx} \right)^2. \] (2.3)

It is immediate to see that
\[H = 2TD + I = 2DT - I. \] (2.4)

Set
\[h_0(x) = \frac{1}{\pi^{1/4}} e^{-x^2/2}, \quad h_k(x) = \frac{1}{\sqrt{(k!)}} T^k h_0 \quad \text{for } k = 1, 2, \ldots. \]

We call \(h_k \) the \(k \)-th normalized Hermite function.

Theorem 2.1. The functions \(\{h_k\}, k = 0, 1, 2, \ldots, \) form a complete orthonormal system for \(L^2(\mathbb{R}) \).

In the rest of these notes we prove this theorem.

Claim. For all \(N, m \) non-negative integer
\[\sup_{x \in \mathbb{R}} (1 + |x|)^N |h_k^{(m)}(x)| < \infty, \] (2.5)

where \(h_k \) is any normalized Hermite function, and \(h^{(m)} \) denotes the \(m \)-th derivative of the function \(h \).

Disregarding the constants, it suffices to prove the statement for the functions \(e^{-x^2/2} \) and \(T^k e^{-x^2/2} \).

By induction it is easy to see that
\[\left(\frac{d}{dx} \right)^m e^{-x^2/2} = p_m(x) e^{-x^2/2}, \]
where \(p_m \) is a polynomial of degree \(m \) in \(x \). Since \((1 + |x|)^N p_m(x) e^{-x^2/2} \) is \(C^\infty \), it is bounded on all compact intervals, and since
\[\lim_{x \to \pm \infty} (1 + |x|)^N p_m(x) e^{-x^2/2} = 0, \]
the Claim follows for \(h_0 \). For the general case, by induction it easily follows that \(T^k e^{-x^2/2} = q_k(x) e^{-x^2/2} \), where \(q_k \) is a polynomial of degree \(k \), so that
\[\left(\frac{d}{dx} \right)^m (T^k e^{-x^2/2}) = p_{m+k}(x) e^{-x^2/2}, \]
for some (other) polynomials \(p_{m+k} \) of degree \(m + k \).

The claim now follows easily.\(^1\)

We remark that, as a consequence of the claim, the equality (2.1) is valid for when \(f \) is such that \(f, f' \in L^2 \) and \(g \) is one of the Hermite functions.\(^2\)

Lemma 2.2. The Hermite functions \(\{h_k\}, k = 0, 1, 2, \ldots, \) satisfy the following relations:

1. \(Th_k = \sqrt{k+1} h_{k+1} \);
2. Or, more generally, is a Schwartz function.

\(^1\)We remark that \(C^\infty \) functions satisfying the condition (2.5) for all non-negative integers \(N, m \), are called rapidly decreasing functions, or Schwartz functions.

\(^2\)We remark that \(C^\infty \) functions.
(ii) \(Dh_k = \sqrt{k}h_{k-1} \);
(iii) \(T D h_k = k h_k \) and \(H h_k = (2k + 1)h_k \).

In particular, the Hermite functions \(h_k \) are eigenfunctions of the Hermite operator with eigenvalues \(2k + 1 \).

Proof. It is a simple matter to show, by induction, that (i) holds true.

In order to prove (ii), notice that \(Dh_0 = 0 \); hence (ii) is satisfied for \(k = 0 \). Assume by induction that (ii) is satisfied for \(k - 1 \). Observe that from (2.4) it follows that \(DT - TD = I \). Then, using also (i),
\[
D h_k = \frac{1}{\sqrt{k!}} D T^k h_0 = \frac{1}{\sqrt{k}} D T h_{k-1} = \frac{1}{\sqrt{k}} (TD + I) h_{k-1}
\]
\[
= \frac{\sqrt{k-1}}{\sqrt{k}} T h_{k-2} + \frac{1}{\sqrt{k}} h_{k-1}
\]
\[
= \frac{k-1}{\sqrt{k}} h_{k-1} + \frac{1}{\sqrt{k}} h_{k-1} = \sqrt{k} h_{k-1}.
\]

This proves (ii).

Condition (iii) now follows at once. \(\square \)

Lemma 2.3. We have
\[
T^k f(x) = (-1)^k 2^{k/2} e^{x^2/2} \left(\frac{d}{dx} \right)^k \left(e^{-x^2/2} f(x) \right).
\]

In particular,
\[
h_k(x) = \frac{(-1)^k}{(\pi^{1/2} k!)^{1/2}} 2^{k/2} e^{x^2/2} \left(\frac{d}{dx} \right)^k e^{-x^2}.
\]

Moreover, if we set
\[
H_k(x) = e^{x^2/2} h_k(x).
\]
then \(H_k \) is a polynomial, \(k = 0, 1, \ldots \), and the linear span of \(\{ H_0, \ldots, H_m \} \) is the linear space of polynomial of degree less or equal to \(m \).

We mention in passing that the polynomials \(H_k \) are called the Hermite polynomials.

Proof. This is easy to prove by induction, and we leave it to the reader. \(\square \)

We are now ready to prove Thm. 2.1.

Proof of Thm. 2.1. In order to prove that \(\{ h_k \}_{k=0,1,2,\ldots} \) is an orthonormal system for \(L^2 \), we first notice that \(\|h_0\|_2 = 1 \). Next, we show that, for \(k > 0 \), we have that
\[
[D,T^k] = DT^k - T^k D = k T^{k-1}.
\]
\[\text{The operator } [A,B] = AB - BA \text{ is called the commutator of } A \text{ and } B.\]
When $k = 1$, we have already noticed that $DT − TD = I$. In general, for $k ≥ 1$ we have that
\[
[A, B^k] = \sum_{j=0}^{k-1} B^j [A, B] B^{k-1-j}
\]
the equality (2.6) now follows.

Then, let $k, ℓ ≥ 1$. We have that
\[
\int h_k h_\ell = \frac{1}{k} \int T Dh_k h_\ell
\]
\[
= \frac{1}{k} \int D h_k Dh_\ell
\]
\[
= \frac{\sqrt{\ell}}{\sqrt{k}} \int h_{k-1} h_{\ell-1}.
\]
Now we proceed by the induction. If $k = ℓ$ then $\|h_k\| = 1$.

If $k \neq ℓ$, then the equality above (valid for all $k, ℓ$)
\[
\int h_k h_\ell = \frac{1}{k} \int T Dh_k h_\ell
\]
it follows that if $ℓ = 0$ and $k ≥ 1$, then $\int h_k h_0 = 0$. Now we proceed by induction as before.

This proves that the Hermite functions form an orthonormal system in $L^2(\mathbb{R})$.

In order to finish the proof, we need to show that the Hermite functions form a complete system. Let $f \in L^2$ be orthogonal to h_k for all $k = 0, 1, \ldots$. By Lemma 2.3 f is orthogonal to $x^k e^{-x^2/2}$ for $k = 0, 1, \ldots$. If f has compact support and I is a compact interval containing the support of f, we have
\[
0 = (f, h_k) = \int_I f x^k e^{-x^2/2},
\]
that is, the function $f e^{-x^2/2}$ is orthogonal to all the polynomials, that are dense in $L^2(I)$. Hence, $f e^{-x^2/2} = 0$, so that $f = 0$.

Since the L^2-functions with compact support are dense in L^2, we can easily conclude the proof. \Box

\[\text{For,}\]
\[
[A, B^k] = AB^k - B^k A = ABB^{k-1} - B^k A
\]
\[
= BAB^{k-1} + [A, B] B^{k-1} - B^k A = BABB^{k-1} + [A, B] B^{k-1} - B^k A
\]
\[
= B^2 AB^{k-2} + B[A, B] B^{k-2} + [A, B] B^{k-1} - B^k A
\]
\[
= \sum_{j=0}^{k-1} B^j [A, B] B^{k-1-j}.
\]