1] (3 punti) Stabilire se l’applicazione \(T : \mathbb{Q} \times \mathbb{Q} \rightarrow \mathbb{R} \) così definita
\[
T(x, y) = \pi x + y
\]
a) è iniettiva; b) è suriettiva.

Breve spiegazione.

2] (5 punti) Rappresentare nel piano complesso i seguenti insiemi

\[
A = \{ z \in \mathbb{C} : \ \text{Im}(z^4) < 0 , \ \text{Re}(iz - z) < 0 , \ |z| > 3 \};
\]
\[
B = \{ w \in \mathbb{C} : \ w^2 = z , \ z \in A \};
\]
\[
C = \{ u \in \mathbb{C} : \ u = \frac{1}{w} , \ w \in B \}.
\]
3] (5 punti) Sia \(f : \mathbb{R} \rightarrow \mathbb{R} \) una funzione tale che
\[
f(x) = x^2 + o(x^2) \quad \text{per } x \to 0.
\]

Dimostrare o confutare ciascuna delle seguenti affermazioni.

a) \(f \) è continua in \(x = 0 \).

b) \(f \) è strettamente positiva in qualche intorno di \(x = 0 \), eccetto al più nel punto \(x = 0 \).

c) \(f \) potrebbe essere discontinua in ogni punto di \(\mathbb{R} \).

4] (6 punti) Determinare, al variare del parametro reale \(x \), i caratteri semplice e assoluto della seguente serie
\[
\sum_{n=1}^{+\infty} \frac{\tan \left(\left(\frac{2n+1}{4} \right) \pi \right)}{n} \left(\frac{\sqrt{2} - x}{x} \right)^n.
\]

Scriver svolgimento
5] \((5 \text{ punti})\) Stabilire se è possibile prolungare in modo continuo a tutto \([0, +\infty)\) la seguente funzione

\[f(x) = \frac{\sqrt{x} - 2}{\log^3(\frac{x}{4})} \left(1 - \cos \sqrt{\log x - \log 4}\right)^3. \]

Scrivere svolgimento

6] \((4 \text{ punti})\) Per ogni \(n \in \mathbb{N}\) sia

\[a_n = \sin \frac{n!\pi}{4} + \frac{3n - 1}{n}. \]

Allora

\[\sup\{a_n\}_{1}^{\infty} = \ldots.; \quad \inf\{a_n\}_{1}^{\infty} = \ldots.; \quad \limsup_{n \to +\infty} a_n = \ldots.; \quad \liminf_{n \to +\infty} a_n = \ldots. \]
Sia \(X \) un insieme e siano \(d_1 \) e \(d_2 \) due metriche su \(X \). Per ogni \(x, y \in X \) si ponga

\[
\Delta(x, y) = \max \{d_1(x, y), d_2(x, y)\};
\]
\[
\delta(x, y) = \min \{d_1(x, y), d_2(x, y)\}.
\]

Stabilire se \((X, \Delta)\) è uno spazio metrico e se \((X, \delta)\) è uno spazio metrico.