Cognome...... Nome..... Matricola.....

C.l. in Matematica, **ANALISI MATEMATICA 2** (I prova parziale) 6/5/2014 prof. M.Salvatori durata: **90 minuti** versione A

1A] (4 punti) Risolvere, se possibile, l'equazione

$$\int_1^x \frac{dt}{2t(1+\sqrt{t})} = \log\frac{4}{3}.$$

2A] (3 pt.) Determinare per quali $a \in \mathbb{R}$ esiste finito il

$$\lim_{x \to 0^+} x^a \int_0^{x^2} \left(\sqrt[5]{1 + 2t^3} - e^{4t} \right) dt.$$

3A] (4 pt.) Sia

$$f(x,y) = \begin{cases} \frac{\operatorname{Th}(x^2 + y^2)}{(x^2 + y^2)^{2-b}} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0) \end{cases}.$$

Per quali b esiste $\nabla f(0,0)$?

4A] (3 pt.) Sia $g: \mathbb{R}^2 \to \mathbb{R}$ di classe \mathcal{C}^{∞} e tale che $\nabla g(2,3) = (2,2)$ e sia

$$f(x,y) = g(x+y^2, 3xy).$$

Allora, $\nabla f(1,1) = \dots$

 $\mathbf{5A}$] (4 pt.) Determinare per quali $a \in \mathbb{R}$ il seguente integrale improprio è convergente.

$$\int_{1}^{+\infty} \frac{x^3 \arctan\left(x^{2a}\right)}{1+x^a} dx.$$

6A] (4 pt.) Determinare l'insieme di definizione della funzione

$$F(x) = \int_{1/2}^{x} \frac{t - 1}{\sqrt[3]{t - 3} \log|t|} dt.$$

7A] (8 pt.) Della funzione

$$F(x) = \int_{4}^{x} \frac{\sqrt{|\sin \pi t|} e^{-\frac{1}{t}}}{t^{3}(t-3)} dt$$

determinare: insieme di definizione, limiti alla frontiera ed eventuali asintoti, dove è derivabile, intervalli di monotonia ed eventuali estremanti. Tracciarne un grafico qualitativo.

 $Scrivere\ uno\ svolgimento\ completo.$

Cognome...... Nome..... Matricola.....

C.l. in Matematica, **ANALISI MATEMATICA 2** (I prova parziale) 6/5/2014 prof. M.Salvatori durata: **90 minuti** versione B

1B] (4 punti) Risolvere, se possibile, l'equazione

$$\int_1^x \frac{dt}{2t(1+\sqrt{t})} = \log \frac{3}{2}.$$

2B] (3 pt.) Determinare per quali $a \in \mathbb{R}$ esiste finito il

$$\lim_{x \to 0^+} x^{-a} \int_0^{x^2} \left(\sqrt[3]{1 + 2t^5} - e^{5t} \right) dt \,.$$

3B] (4 pt.) Sia

$$f(x,y) = \begin{cases} \frac{\arctan(x^2 + y^2)}{(x^2 + y^2)^{3-2b}} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0) \end{cases}.$$

Per quali b esiste $\nabla f(0,0)$?

4B] (3 pt.) Sia $g: \mathbb{R}^2 \to \mathbb{R}$ di classe \mathcal{C}^{∞} e tale che $\nabla g(3,2) = (2,2)$ e sia

$$f(x,y) = g(3xy^2, x^2 + y).$$

Allora, $\nabla f(1,1) = \dots$

5B] (4 pt.) Determinare per quali $a \in \mathbb{R}$ il seguente integrale improprio è convergente.

$$\int_0^1 \frac{\arctan(x^a)}{x^3(1+x^{2a})} dx.$$

6B] (4 pt.) Determinare l'insieme di definizione della funzione

$$F(x) = \int_{-1/2}^{x} \frac{t+1}{\sqrt[5]{t+5} \log|t|} dt.$$

7B] (8 pt.) Della funzione

$$F(x) = \int_3^x \frac{\sqrt{|\sin \pi t|} e^{-\frac{1}{t}}}{t^4(t-2)} dt$$

determinare: insieme di definizione, limiti alla frontiera ed eventuali asintoti, dove è derivabile, intervalli di monotonia ed eventuali estremanti. Tracciarne un grafico qualitativo.

 $Scrivere\ uno\ svolgimento\ completo.$