Cognome...... Nome..... Matricola.....

C.l. in Fisica, ANALISI MATEMATICA 1 (II prova parziale)

15 gennaio 2014 — proff. M.Salvatori, L. Vesely — durata: **90 minuti** — versione A

1] (4 pt.) Stabilire per quali $\beta \in \mathbb{R}$ la seguente serie converge:

$$\sum_{n=1}^{+\infty} \left[e^{2/n} - 1 - \log\left(1 + \frac{2}{n} + \frac{4}{n^2}\right) \right] n^{\beta^2 - 1}.$$

Soluzione:

2] (4 pt.) Per ogni $a \in \mathbb{R}$, denotiamo N_a il numero delle soluzioni (distinte) dell'equazione

$$(x^2 - 5x + 5)e^x = a$$
.

Per quali a si ha che $1 \le N_a < 3$?

Soluzione:

3] (4 pt.) Calcolare la derivata 13-esima in 0 della funzione

$$f(x) = \frac{\operatorname{Sh} x^3}{1 + x^2} \,.$$

Soluzione:

4] (3 pt.) Sia $f:(1,3)\to\mathbb{R}$ una funzione derivabile e strettamente monotona, tale che,

$$f(x) = -1 + 2(x - 2) + o(x - 2), \quad \text{per } x \to 2.$$

Scrivere lo sviluppo di Taylor del I ordine (con resto di Peano) della funzione $g = f^{-1}$, centrato nel punto $y_0 = -1$.

Soluzione:

5] (4 pt.) Determinare l'equazione della retta tangente al grafico della funzione

$$f(x) = \arctan\left(\sqrt{3} + x^2\cos\sqrt{x}\right)$$

nel punto di ascissa $x = \frac{\pi^2}{4}$.

$$\lim_{x \to 0^+} \frac{\sqrt{1 - x + 3x^2} - \cos\sqrt{x}}{\log(1 + 2x)\tan x}.$$

Scrivere uno svolgimento completo.

Questo esercizio verrà valutato solo se i precedenti sono stati tutti svolti in modo corretto.

 $({\bf Bonus})$ Dimostrare o confutare la seguente affermazione.

Sia $f:(0,+\infty)\to\mathbb{R}$ una funzione derivabile tale che

$$\lim_{x \to 0^+} f(x) = \lim_{x \to +\infty} f(x) = -\infty.$$

Allora f non è suriettiva e l'insieme $f((0, +\infty))$ è chiuso in $\mathbb R$.

Cognome...... Nome..... Matricola.....

C.l. in Fisica, ANALISI MATEMATICA 1 (II prova parziale)

15 gennaio 2014 proff. M.Salvatori, L. Vesely durata: **90 minuti** versione B

1] (4 pt.) Stabilire per quali $\beta \in \mathbb{R}$ la seguente serie converge:

$$\sum_{n=1}^{+\infty} \left[e^{-1/n} - 1 - \log\left(1 - \frac{1}{n} + \frac{1}{n^2}\right) \right] n^{3-\beta^2}.$$

Soluzione:

2] (4 pt.) Per ogni $a \in \mathbb{R}$, denotiamo N_a il numero delle soluzioni (distinte) dell'equazione

$$(x^2 - x - 1)e^{-x} = a.$$

Per quali a si ha che $1 \le N_a < 3$?

Soluzione:

3 (4 pt.) Calcolare la derivata 15-esima in 0 della funzione

$$f(x) = \frac{\operatorname{Sh} x^3}{1 + x^4} \,.$$

Soluzione:

4] (3 pt.) Sia $f:(-3,0)\to\mathbb{R}$ una funzione derivabile e strettamente monotona, tale che,

$$f(x) = -2 - 3(x+1) + o(x+1), \quad \text{per } x \to -1.$$

Scrivere lo sviluppo di Taylor del I ordine (con resto di Peano) della funzione $g = f^{-1}$, centrato nel punto $y_0 = -2$.

Soluzione:

5] (4 pt.) Determinare l'equazione della retta tangente al grafico della funzione

$$f(x) = \arctan\left(1 - x^3 \sin\sqrt{x}\right)$$

nel punto di ascissa $x = \pi^2$.

$$\lim_{x \to 0^+} \frac{\sqrt{1 + x + 5x^2} - \operatorname{Ch}\sqrt{x}}{(\sqrt{1 + 2x} - 1) \arctan x}.$$

Scrivere uno svolgimento completo.

Questo esercizio verrà valutato solo se i precedenti sono stati tutti svolti in modo corretto.

(Bonus) Dimostrare o confutare la seguente affermazione.

Sia $f:(0,+\infty)\to\mathbb{R}$ una funzione derivabile tale che

$$\lim_{x \to 0^+} f(x) = \lim_{x \to +\infty} f(x) = -\infty.$$

Allora f non è suriettiva e l'insieme $f\left((0,+\infty)\right)$ è chiuso in $\mathbb R$.

- C.l. in Fisica, **ANALISI MATEMATICA 1** (II prova parziale) 15 gennaio 2014 proff. M.Salvatori, L. Vesely durata: **90 minuti** versione C
- 1] (4 pt.) Stabilire per quali $\beta \in \mathbb{R}$ la seguente serie converge:

$$\sum_{n=1}^{+\infty} \left[e^{1/2n} - 1 - \log\left(1 + \frac{1}{2n} + \frac{1}{4n^2}\right) \right] n^{\beta^2 - 3}.$$

Soluzione:

2] (4 pt.) Per ogni $a \in \mathbb{R}$, denotiamo N_a il numero delle soluzioni (distinte) dell'equazione

$$(x^2 + x - 1)e^x = a.$$

Per quali a si ha che $1 \le N_a < 3$?

Soluzione:

3] (4 pt.) Calcolare la derivata 13-esima in 0 della funzione

$$f(x) = \frac{\sin x^3}{1 - x^2} \,.$$

Soluzione:

4] (3 pt.) Sia $f:(0,3)\to\mathbb{R}$ una funzione derivabile e strettamente monotona, tale che,

$$f(x) = 2 - 5(x - 1) + o(x - 1), \quad \text{per } x \to 1.$$

Scrivere lo sviluppo di Taylor del I ordine (con resto di Peano) della funzione $g = f^{-1}$, centrato nel punto $y_0 = 2$.

Soluzione:

5] (4 pt.) Determinare l'equazione della retta tangente al grafico della funzione

$$f(x) = \arctan\left(\sqrt{3} - x^3\cos\sqrt{x}\right)$$

nel punto di ascissa $x = \frac{\pi^2}{4}$.

$$\lim_{x \to 0^+} \frac{\cos \sqrt{x} - \sqrt{1 - x + 3x^2}}{(\sqrt{1 + x} - 1)\sin 2x}.$$

Scrivere uno svolgimento completo.

Questo esercizio verrà valutato solo se i precedenti sono stati tutti svolti in modo corretto.

(Bonus) Dimostrare o confutare la seguente affermazione.

Sia $f:(0,+\infty)\to\mathbb{R}$ una funzione derivabile tale che

$$\lim_{x \to 0^+} f(x) = \lim_{x \to +\infty} f(x) = -\infty.$$

Allora f non è suriettiva e l'insieme $f\left((0,+\infty)\right)$ è chiuso in $\mathbb R$.

Cognome...... Nome..... Matricola.....

C.l. in Fisica, ANALISI MATEMATICA 1 (II prova parziale)

15 gennaio 2014 proff. M.Salvatori, L. Vesely durata: ${f 90~minuti}$ versione ${f D}$

1] (4 pt.) Stabilire per quali $\beta \in \mathbb{R}$ la seguente serie converge:

$$\sum_{n=1}^{+\infty} \left[e^{2/n} - 1 - \log\left(1 + \frac{2}{n} + \frac{4}{n^2}\right) \right] n^{5-\beta^2}.$$

Soluzione:

 ${\bf 2}]$ (4 pt.) Per ogni $a\in\mathbb{R},$ denotiamo N_a il numero delle soluzioni (distinte) dell'equazione

$$(x^2 + 5x + 5)e^{-x} = a.$$

Per quali a si ha che $1 \le N_a < 3$?

Soluzione:

3] (4 pt.) Calcolare la derivata 15-esima in 0 della funzione

$$f(x) = \frac{\sin x^3}{1 - x^4}.$$

Soluzione:

4] (3 pt.) Sia $f:(-3,-1)\to\mathbb{R}$ una funzione derivabile e strettamente monotona, tale che,

$$f(x) = 4 + 9(x+2) + o(x+2),$$
 per $x \to -2$.

Scrivere lo sviluppo di Taylor del I ordine (con resto di Peano) della funzione $g = f^{-1}$, centrato nel punto $y_0 = 4$.

Soluzione:

5] (4 pt.) Determinare l'equazione della retta tangente al grafico della funzione

$$f(x) = \arctan\left(1 + x^2 \sin\sqrt{x}\right)$$

nel punto di ascissa $x = \pi^2$.

$$\lim_{x \to 0^+} \frac{\text{Ch}\sqrt{x} - \sqrt{1 + x - 2x^2}}{\log(1 + 3x)\sin x}.$$

Scrivere uno svolgimento completo.

Questo esercizio verrà valutato $\underline{\mathrm{solo}}$ se i precedenti sono stati $\underline{\mathrm{tutti}}$ svolti in modo corretto.

 $({\bf Bonus})$ Dimostrare o confutare la seguente affermazione.

Sia $f:(0,+\infty)\to\mathbb{R}$ una funzione derivabile tale che

$$\lim_{x \to 0^+} f(x) = \lim_{x \to +\infty} f(x) = -\infty.$$

Allora f non è suriettiva e l'insieme $f\left((0,+\infty)\right)$ è chiuso in $\mathbb R$.