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Chapter 1

Introduction

In this chapter, we describe the aims of perturbation theory in general terms, and
give some simple illustrative examples of perturbation problems. Some texts and
references on perturbation theory are [8], [9], and [13].

1.1 Perturbation theory

Consider a problem

P ε(x) = 0 (1.1)

depending on a small, real-valued parameter ε that simplifies in some way when
ε = 0 (for example, it is linear or exactly solvable). The aim of perturbation theory
is to determine the behavior of the solution x = xε of (1.1) as ε→ 0. The use of a
small parameter here is simply for definiteness; for example, a problem depending
on a large parameter ω can be rewritten as one depending on a small parameter
ε = 1/ω.

The focus of these notes is on perturbation problems involving differential equa-
tions, but perturbation theory and asymptotic analysis apply to a broad class of
problems. In some cases, we may have an explicit expression for xε, such as an
integral representation, and want to obtain its behavior in the limit ε→ 0.

1.1.1 Asymptotic solutions

The first goal of perturbation theory is to construct a formal asymptotic solution of
(1.1) that satisfies the equation up to a small error. For example, for each N ∈ N,
we may be able to find an asymptotic solution xεN such that

P ε (xεN ) = O(εN+1),

where O(εn) denotes a term of the the order εn. This notation will be made precise
in Chapter 2.

1



Once we have constructed such an asymptotic solution, we would like to know
that there is an exact solution x = xε of (1.1) that is close to the asymptotic solution
when ε is small; for example, a solution such that

xε = xεN +O(εN+1).

This is the case if a small error in the equation leads to a small error in the solution.
For example, we can establish such a result if we have a stability estimate of the
form

|x− y| ≤ C |P ε(x)− P ε(y)|

where C is a constant independent of ε, and | · | denotes appropriate norms. Such an
estimate depends on the properties of P ε and may be difficult to obtain, especially
for nonlinear problems. In these notes we will focus on methods for the construction
of asymptotic solutions, and we will not discuss in detail the existence of solutions
close to the asymptotic solution.

1.1.2 Regular and singular perturbation problems

It is useful to make an imprecise distinction between regular perturbation problems
and singular perturbation problems. A regular perturbation problem is one for which
the perturbed problem for small, nonzero values of ε is qualitatively the same as
the unperturbed problem for ε = 0. One typically obtains a convergent expansion
of the solution with respect to ε, consisting of the unperturbed solution and higher-
order corrections. A singular perturbation problem is one for which the perturbed
problem is qualitatively different from the unperturbed problem. One typically
obtains an asymptotic, but possibly divergent, expansion of the solution, which
depends singularly on the parameter ε.

Although singular perturbation problems may appear atypical, they are the most
interesting problems to study because they allow one to understand qualitatively
new phenomena.

The solutions of singular perturbation problems involving differential equations
often depend on several widely different length or time scales. Such problems can
be divided into two broad classes: layer problems, treated using the method of
matched asymptotic expansions (MMAE); and multiple-scale problems, treated by
the method of multiple scales (MMS). Prandtl’s boundary layer theory for the high-
Reynolds flow of a viscous fluid over a solid body is an example of a boundary layer
problem, and the semi-classical limit of quantum mechanics is an example of a
multiple-scale problem.

We will begin by illustrating some basic issues in perturbation theory with simple
algebraic equations.
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1.2 Algebraic equations

The first two examples illustrate the distinction between regular and singular per-
turbation problems.

Example 1.1 Consider the cubic equation

x3 − x+ ε = 0. (1.2)

We look for a solution of the form

x = x0 + εx1 + ε2x2 +O(ε3). (1.3)

Using this expansion in the equation, expanding, and equating coefficients of εn to
zero, we get

x3
0 − x0 = 0,

3x2
0x1 − x1 + 1 = 0,

3x0x2 − x2 + 3x0x
2
1 = 0.

Note that we obtain a nonlinear equation for the leading order solution x0, and
nonhomogeneous linearized equations for the higher order corrections x1, x2,. . . .
This structure is typical of many perturbation problems.

Solving the leading-order perturbation equation, we obtain the three roots

x0 = 0,±1.

Solving the first-order perturbation equation, we find that

x1 =
1

1− 3x2
0

.

The corresponding solutions are

x = ε+O(ε2), x = ±1− 1
2
ε+O(ε2).

Continuing in this way, we can obtain a convergent power series expansion about
ε = 0 for each of the three distinct roots of (1.2). This result is typical of regular
perturbation problems.

An alternative — but equivalent — method to obtain the perturbation series is
to use the Taylor expansion

x(ε) = x(0) + ẋ(0)ε+
1
2!
ẍ(0)ε2 + . . . ,

where the dot denotes a derivative with respect to ε. To compute the coefficients,
we repeatedly differentiate the equation with respect to ε and set ε = 0 in the result.
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For example, setting ε = 0 in (1.2), and solving the resulting equation for x(0), we
get x(0) = 0,±1. Differentiating (1.2) with respect to ε, we get

3x2ẋ− ẋ+ 1 = 0.

Setting ε = 0 and solving for ẋ(0), we get the same answer as before.

Example 1.2 Consider the cubic equation

εx3 − x+ 1 = 0. (1.4)

Using (1.3) in (1.4), expanding, and equating coefficents of εn to zero, we get

−x0 + 1 = 0,

−x1 + x3
0 = 0,

−x2 + 3x2
0x1 = 0.

Solving these equations, we find that x0 = 1, x1 = 1, . . . , and hence

x(ε) = 1 + ε+O(ε2). (1.5)

We only obtain one solution because the cubic equation (1.4) degenerates to a linear
equation at ε = 0. We missed the other two solutions because they approach infinity
as ε → 0. A change in the qualitative nature of the problem at the unperturbed
value ε = 0 is typical of singular perturbation problems.

To find the other solutions, we introduce a rescaled variable y, where

x(ε) =
1
δ(ε)

y(ε),

and y = O(1) as ε → 0. The scaling factor δ is to be determined. Using this
equation in (1.4), we find that

ε

δ3
y3 − 1

δ
y + 1 = 0. (1.6)

In order to obtain a nontrivial solution, we require that at least two leading-order
terms in this equation have the same order of magnitude. This is called the principle
of dominant balance.

Balancing the first two terms, we find that∗

ε

δ3
=

1
δ
,

which implies that δ = ε1/2. The first two terms in (1.4) are then O(ε−1/2), and the
third term is O(1), which is smaller. With this choice of δ, equation (1.6) becomes

y3 − y + ε1/2 = 0.

∗Nonzero constant factors can be absorbed into y.
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Solving this equation in the same way as (1.2), we get the nonzero solutions

y = ±1− 1
2
ε1/2 +O(ε).

The corresponding solutions for x are

x = ± 1
ε1/2

− 1
2

+O
(
ε1/2

)
.

The dominant balance argument illustrated here is useful in many perturbation
problems. The corresponding limit, ε→ 0 with x(ε) = O(ε−1/2), is called a distin-
guished limit.

There are two other two-term balances in (1.6). Balancing the second and third
terms, we find that

1
δ

= 1

or δ = 1. The first term is then O(ε), so it is smaller than the other two terms. This
dominant balance gives the solution in (1.5). Balancing the first and third terms,
we find that

ε

δ3
= 1,

or δ = ε1/3. In this case, the first and third terms are O(1), but the second term
is O(ε−1/3). Thus, it is larger than the terms that balance, so we do not obtain a
dominant balance or any new solutions.

In this example, no three-term dominant balance is possible as ε → 0, but this
can occur in other problems.

Example 1.3 A famous example of the effect of a perturbation on the solutions of
a polynomial is Wilkinson’s polynomial (1964),

(x− 1)(x− 2) . . . (x− 20) = εx19.

The perturbation has a large effect on the roots even for small values of ε.

The next two examples illustrate some other features of perturbation theory.

Example 1.4 Consider the quadratic equation

(1− ε)x2 − 2x+ 1 = 0.

Suppose we look for a straightforward power series expansion of the form

x = x0 + εx1 +O(ε2).

We find that

x2
0 − 2x0 + 1 = 0,

2(x0 − 1)x1 = x2
0.
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Solving the first equation, we get x0 = 1. The second equation then becomes 0 = 1.
It follows that there is no solution of the assumed form.

This difficulty arises because x = 1 is a repeated root of the unperturbed prob-
lem. As a result, the solution

x =
1± ε1/2

1− ε

does not have a power series expansion in ε, but depends on ε1/2. An expansion

x = x0 + ε1/2x1 + εx2 +O(ε3/2)

leads to the equations x0 = 1, x2
1 = 1, or

x = 1± ε1/2 +O(ε)

in agreement with the exact solution.

Example 1.5 Consider the transcendental equation

xe−x = ε. (1.7)

As ε→ 0+, there are two possibilities:

(a) x→ 0, which implies that x = ε+ ε2 +O(ε2);
(b) e−x → 0, when x→∞.

In the second case, x must be close to log 1/ε.
To obtain an asymptotic expansion for the solution, we solve the equation itera-

tively using the idea that e−x varies much more rapidly than x as x→ 0. Rewriting
(1.7) as e−x = ε/x and taking logarithms, we get the equivalent equation

x = log x+ log
1
ε
.

Thus solutions are fixed points of the function

f(x) = log x+ log
1
ε
.

We then define iterates xn, n ∈ N, by

xn+1 = log xn + log
1
ε
,

x1 = log
1
ε
.

Defining

L1 = log
1
ε
, L2 = log

(
log

1
ε

)
,
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we find that

x2 = L1 + L2,

x3 = L1 + log(L1 + L2)

= L1 + L2 +
L2

L1
+O

((
L2

L1

)2
)
.

At higher orders, terms involving

L3 = log
(

log
(

log
1
ε

))
,

and so on, appear.
The form of this expansion would be difficult to guess without using an iterative

method. Note, however, that the successive terms in this asymptotic expansion
converge very slowly as ε → 0. For example, although L2/L1 → 0 as ε → 0, when
ε = 0.1, L1 ≈ 36, L2 ≈ 12; and when ε = 10−5, L1 ≈ 19, L2 ≈ 1.

1.3 Eigenvalue problems

Spectral perturbation theory studies how the spectrum of an operator is perturbed
when the operator is perturbed. In general, this question is a difficult one, and
subtle phenomena may occur, especially in connection with the behavior of the
continuous spectrum of the operators. Here, we consider the simplest case of the
perturbation in an eigenvalue.

Let H be a Hilbert space with inner product 〈·, ·〉, and Aε : D(Aε) ⊂ H → H a
linear operator in H, with domain D(Aε), depending smoothly on a real parameter
ε. We assume that:

(a) Aε is self-adjoint, so that

〈x,Aεy〉 = 〈Aεx, y〉 for all x, y ∈ D(Aε);

(b) Aε has a smooth branch of simple eigenvalues λε ∈ R with eigenvectors
xε ∈ H, meaning that

Aεxε = λεxε. (1.8)

We will compute the perturbation in the eigenvalue from its value at ε = 0 when ε

is small but nonzero.
A concrete example is the perturbation in the eigenvalues of a symmetric matrix.

In that case, we have H = Rn with the Euclidean inner product

〈x, y〉 = xT y,
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and Aε : Rn → Rn is a linear transformation with an n×n symmetric matrix (aεij).
The perturbation in the eigenvalues of a Hermitian matrix corresponds to H = Cn
with inner product 〈x, y〉 = xT y. As we illustrate below with the Schrödinger
equation of quantum mechanics, spectral problems for differential equations can be
formulated in terms of unbounded operators acting in infinite-dimensional Hilbert
spaces.

We use the expansions

Aε = A0 + εA1 + . . .+ εnAn + . . . ,

xε = x0 + εx1 + . . .+ εnxn + . . . ,

λε = λ0 + ελ1 + . . .+ εnλn + . . .

in the eigenvalue problem (1.8), equate coefficients of εn, and rearrange the result.
We find that

(A0 − λ0I)x0 = 0, (1.9)

(A0 − λ0I)x1 = −A1x0 + λ1x0, (1.10)

(A0 − λ0I)xn =
n∑
i=1

{−Aixn−i + λixn−i} . (1.11)

Assuming that x0 6= 0, equation (1.9) implies that λ0 is an eigenvalue of A0

and x0 is an eigenvector. Equation (1.10) is then a singular equation for x1. The
following proposition gives a simple, but fundamental, solvability condition for this
equation.

Proposition 1.6 Suppose that A is a self-adjoint operator acting in a Hilbert space
H and λ ∈ R. If z ∈ H, a necessary condition for the existence of a solution y ∈ H
of the equation

(A− λI) y = z (1.12)

is that

〈x, z〉 = 0,

for every eigenvector x of A with eigenvalue λ.

Proof. Suppose z ∈ H and y is a solution of (1.12). If x is an eigenvector of A,
then using (1.12) and the self-adjointness of A− λI, we find that

〈x, z〉 = 〈x, (A− λI) y〉
= 〈(A− λI)x, y〉
= 0.

�
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In many cases, the necesary solvability condition in this proposition is also suf-
ficient, and then we say that A−λI satisfies the Fredholm alternative; for example,
this is true in the finite-dimensional case, or when A is an elliptic partial differential
operator.

SinceA0 is self-adjoint and λ0 is a simple eigenvalue with eigenvector x0, equation
(1.12) it is solvable for x1 only if the right hand side is orthogonal to x0, which im-
plies that

λ1 =
〈x0, A1x0〉
〈x0, x0〉

.

This equation gives the leading order perturbation in the eigenvalue, and is the
most important result of the expansion.

Assuming that the necessary solvability condition in the proposition is sufficient,
we can then solve (1.10) for x1. A solution for x1 is not unique, since we can add
to it an arbitrary scalar multiple of x0. This nonuniqueness is a consequence of the
fact that if xε is an eigenvector of Aε, then cεxε is also a solution for any scalar cε.
If

cε = 1 + εc1 +O(ε2)

then

cεxε = x0 + ε (x1 + c1x0) +O(ε2).

Thus, the addition of c1x0 to x1 corresponds to a rescaling of the eigenvector by a
factor that is close to one.

This expansion can be continued to any order. The solvability condition for
(1.11) determines λn, and the equation may then be solved for xn, up to an arbitrary
vector cnx0. The appearance of singular problems, and the need to impose solvabilty
conditions at each order which determine parameters in the expansion and allow for
the solution of higher order corrections, is a typical structure of many pertubation
problems.

1.3.1 Quantum mechanics

One application of this expansion is in quantum mechanics, where it can be used
to compute the change in the energy levels of a system caused by a perturbation in
its Hamiltonian.

The Schrödinger equation of quantum mechanics is

i~ψt = Hψ.

Here t denotes time and ~ is Planck’s constant. The wavefunction ψ(t) takes values
in a Hilbert space H, and H is a self-adjoint linear operator acting in H with the
dimensions of energy, called the Hamiltonian.
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Energy eigenstates are wavefunctions of the form

ψ(t) = e−iEt/~ϕ,

where ϕ ∈ H and E ∈ R. It follows from the Schrödinger equation that

Hϕ = Eϕ.

Hence E is an eigenvalue of H and ϕ is an eigenvector. One of Schrödinger’s
motivations for introducing his equation was that eigenvalue problems led to the
experimentally observed discrete energy levels of atoms.

Now suppose that the Hamiltonian

Hε = H0 + εH1 +O(ε2)

depends smoothly on a parameter ε. Then, rewriting the previous result, we find
that the corresponding simple energy eigenvalues (assuming they exist) have the
expansion

Eε = E0 + ε
〈ϕ0, H1ϕ0〉
〈ϕ0, ϕ0〉

+O(ε2)

where ϕ0 is an eigenvector of H0.
For example, the Schrödinger equation that describes a particle of mass m mov-

ing in Rd under the influence of a conservative force field with potential V : Rd → R
is

i~ψt = − ~2

2m
∆ψ + V ψ.

Here, the wavefunction ψ(x, t) is a function of a space variable x ∈ Rd and time
t ∈ R. At fixed time t, we have ψ(·, t) ∈ L2(Rd), where

L2(Rd) =
{
u : Rd → C | u is measurable and

∫
Rd |u|2 dx <∞

}
is the Hilbert space of square-integrable functions with inner-product

〈u, v〉 =
∫

Rd

u(x)v(x) dx.

The Hamiltonian operator H : D(H) ⊂ H → H, with domain D(H), is given by

H = − ~2

2m
∆ + V.

If u, v are smooth functions that decay sufficiently rapidly at infinity, then Green’s
theorem implies that

〈u,Hv〉 =
∫

Rd

u

(
− ~2

2m
∆v + V v

)
dx

=
∫

Rd

{
~2

2m
∇ · (v∇u− u∇v)− ~2

2m
(∆u)v + V uv

}
dx

10



=
∫

Rd

(
− ~2

2m
∆u+ V u

)
v dx

= 〈Hu, v〉.

Thus, this operator is formally self-adjoint. Under suitable conditions on the poten-
tial V , the operator can be shown to be self-adjoint with respect to an appropriately
chosen domain.

Now suppose that the potential V ε depends on a parameter ε, and has the
expansion

V ε(x) = V0(x) + εV1(x) +O(ε2).

The perturbation in a simple energy eigenvalue

Eε = E0 + εE1 +O(ε2),

assuming one exists, is given by

E1 =

∫
Rd V1(x)|ϕ0(x)|2 dx∫

Rd |ϕ0(x)|2 dx
,

where ϕ0 ∈ L2(Rd) is an unperturbed energy eigenfunction that satisfies

− ~2

2m
∆ϕ0 + V0ϕ0 = E0ϕ0.

Example 1.7 The one-dimensional simple harmonic oscillator has potential

V0(x) =
1
2
kx2.

The eigenvalue problem

− ~2

2m
ϕ′′ +

1
2
kx2ϕ = Eϕ, ϕ ∈ L2(R)

is exactly solvable. The energy eigenvalues are

En = ~ω
(
n+

1
2

)
n = 0, 1, 2, . . . ,

where

ω =

√
k

m

is the frequency of the corresponding classical oscillator. The eigenfunctions are

ϕn(x) = Hn(αx)e−α
2x2/2,

where Hn is the nth Hermite polynomial,

Hn(ξ) = (−1)neξ
2 dn

dξn
e−ξ

2
,
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and the constant α, with dimensions of 1/length, is given by

α2 =

√
mk

~
.

The energy levels Eεn of a slightly anharmonic oscillator with potential

V ε(x) =
1
2
kx2 + ε

k

α2
W (αx) +O(ε2) as ε→ 0+

where ε > 0 have the asymptotic behavior

Eεn = ~ω
{
n+

1
2

+ ε∆n +O(ε2)
}

as ε→ 0+,

where

∆n =
∫
W (ξ)H2

n(ξ)e−ξ
2
dξ∫

H2
n(ξ)e−ξ2 dξ

.

For an extensive and rigorous discussion of spectral perturbation theory for
linear operators, see [11].

1.4 Nondimensionalization

The numerical value of any quantity in a mathematical model is measured with
respect to a system of units (for example, meters in a mechanical model, or dollars
in a financial model). The units used to measure a quantity are arbitrary, and a
change in the system of units (for example, to feet or yen, at a fixed exchange rate)
cannot change the predictions of the model. A change in units leads to a rescaling
of the quantities. Thus, the independence of the model from the system of units
corresponds to a scaling invariance of the model. In cases when the zero point of a
unit is arbitrary, we also obtain a translational invariance, but we will not consider
translational invariances here.

Suppose that a model involves quantities (a1, a2, . . . , an), which may include de-
pendent and independent variables as well as parameters. We denote the dimension
of a quantity a by [a]. A fundamental system of units is a minimal set of indepen-
dent units, which we denote symbolically by (d1, d2, . . . , dr). Different fundamental
system of units can be used, but given a fundamental system of units any other de-
rived unit may be constructed uniquely as a product of powers of the fundamental
units, so that

[a] = dα1
1 dα2

2 . . . dαr
r (1.13)

for suitable exponents (α1, α2, . . . , αr).

Example 1.8 In mechanical problems, a fundamental set of units is d1 = mass,
d2 = length, d3 = time, or d1 = M , d2 = L, d3 = T , for short. Then velocity

12



V = L/T and momentum P = ML/T are derived units. We could use instead
momentum P , velocity V , and time T as a fundamental system of units, when mass
M = P/V and length L = V T are derived units. In problems involving heat flow, we
may introduce temperature (measured, for example, in degrees Kelvin) as another
fundamental unit, and in problems involving electromagnetism, we may introduce
current (measured, for example, in Ampères) as another fundamental unit.

The invariance of a model under the change in units dj 7→ λjdj implies that it
is invariant under the scaling transformation

ai → λ
α1,i

1 λ
α2,i

2 . . . λαr,i
r ai i = 1, . . . , n

for any λ1, . . . λr > 0, where

[ai] = d
α1,i

1 d
α2,i

2 . . . dαr,i
r . (1.14)

Thus, if

a = f (a1, . . . , an)

is any relation between quantities in the model with the dimensions in (1.13) and
(1.14), then f has the scaling property that

λα1
1 λα2

2 . . . λαr
r f (a1, . . . , an) = f

(
λ
α1,1
1 λ

α2,1
2 . . . λαr,1

r a1, . . . , λ
α1,n

1 λ
α2,n

2 . . . λαr,n
r an

)
.

A particular consequence of the invariance of a model under a change of units is
that any two quantities which are equal must have the same dimensions. This fact
is often useful in finding the dimension of some quantity.

Example 1.9 According to Newton’s second law,

force = rate of change of momentum with respect to time.

Thus, if F denotes the dimension of force and P the dimension of momentum,
then F = P/T . Since P = MV = ML/T , we conclude that F = ML/T 2 (or
mass× acceleration).

Example 1.10 In fluid mechanics, the shear viscosity µ of a Newtonian fluid is the
constant of proportionality that relates the viscous stress tensor T to the velocity
gradient ∇u:

T =
1
2
µ
(
∇u +∇uT

)
.

Stress has dimensions of force/area, so

[T ] =
ML

T 2

1
L2

=
M

LT 2
.
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The velocity gradient ∇u has dimensions of velocity/length, so

[∇u] =
L

T

1
L

=
1
T
.

Equating dimensions, we find that

[µ] =
M

LT
.

We can also write [µ] = (M/L3)(L2/T ). It follows that if ρ0 is the density of the
fluid, and µ = ρ0ν, then

[ν] =
L2

T
.

Thus ν, which is called the kinematical viscosity, has the dimensions of diffusivity.
Physically it is the diffusivity of momentum. For example, in time T , viscous effects
lead to the diffusion of momentum over a length scale of the order

√
νT .

At 20◦C, the kinematic viscosity of water is approximately 1 mm2/s. Thus, in
one second, viscous effects diffuse the fluid momentum over a distance of the order
1 mm.

Scaling invariance implies that we can reduce the number of quantities appear-
ing in the problem by the introduction of dimensionless variables. Suppose that
(a1, . . . , ar) are a set of (nonzero) quantities whose dimensions form a fundamental
system of units. We denote the remaining quantities in the model by (b1, . . . , bm),
where r +m = n. Then for suitable exponents (β1,i, . . . , βr,i), the quantity

Πi =
bi

a
β1,i

1 . . . a
βr,i
r

is dimensionless, meaning that it is invariant under the scaling transformations
induced by changes in units. Such dimensionless quantities can often be interpreted
as the ratio of two quantities of the same dimension appearing in the problem (such
as a ratio of lengths, times, diffusivities, and so on). Perturbation methods are
typically applicable when one or more of these dimensionless quantities is small or
large.

Any relationship of the form

b = f(a1, . . . , ar, b1, . . . , bm)

is equivalent to a relation

Π = f(1, . . . , 1,Π1, . . . ,Πm).

Thus, the introduction of dimensionless quantities reduces the number of variables
in the problem by the number of fundamental units involved in the problem. In
many cases, nondimensionalization leads to a reduction in the number of parameters
in the problem to a minimal number of dimensionless parameters. In some cases,

14



one may be able to use dimensional arguments to obtain the form of self-similar
solutions.

Example 1.11 Consider the following IVP for the Green’s function of the heat
equation in Rd:

ut = ν∆u,

u(x, 0) = Eδ(x).

Here δ is the delta-function. The dimensioned parameters in this problem are the
diffusivity ν and the energy E of the point source. The only length and times
scales are those that come from the independent variables (x, t), so the solution is
self-similar.

We have [u] = θ, where θ denotes temperature, and, since∫
Rd

u(x, 0) dx = E,

we have [E] = θLd. Dimensional analysis and the rotational invariance of the
Laplacian ∆ imply that

u(x, t) =
E

(νt)d/2
f

(
|x|√
νt

)
.

Using this expression for u(x, t) in the PDE, we get an ODE for f(ξ),

f ′′ +
(
ξ

2
+
d− 1
ξ

)
f ′ +

d

2
f = 0.

We can rewrite this equation as a first-order ODE for f ′ + ξ
2f ,(

f ′ +
ξ

2
f

)′
+
d− 1
ξ

(
f ′ +

ξ

2
f

)
= 0.

Solving this equation, we get

f ′ +
ξ

2
f =

b

ξd−1
,

where b is a constant of integration. Solving for f , we get

f(ξ) = ae−ξ
2/4 + be−ξ

2/4

∫
e−ξ

2

ξd−1
dξ,

where a s another constant of integration. In order for f to be integrable, we must
set b = 0. Then

u(x, t) =
aE

(νt)d/2
exp

(
−|x|

2

4νt

)
.
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Imposing the requirement that ∫
Rd

u(x, t) dx = E,

and using the standard integral∫
Rd

exp
(
−|x|

2

2c

)
dx = (2πc)d/2 ,

we find that a = (4π)−d/2, and

u(x, t) =
E

(4πνt)d/2
exp

(
−|x|

2

4νt

)
.

Example 1.12 Consider a sphere of radius L moving through a fluid with constant
speed U . A primary quantity of interest is the total drag force D exerted by the
fluid on the sphere. We assume that the fluid is incompressible, which is a good
approximation if the flow speed U is much less than the speed of sound in the
fluid. The fluid properties are then determined by the density ρ0 and the kinematic
viscosity ν. Hence,

D = f(U,L, ρ0, ν).

Since the drag D has the dimensions of force (ML/T 2), dimensional analysis implies
that

D = ρ0U
2L2F

(
UL

ν

)
.

Thus, the dimensionless drag

D

ρ0U2L2
= F (Re)

is a function of the Reynold’s number

Re =
UL

ν
.

The function F has a complicated dependence on Re that is difficult to compute
explicitly. For example, F changes rapidly near Reynolds numbers for which the
flow past the sphere becomes turbulent. Nevertheless, experimental measurements
agree very well with the result of this dimensionless analysis (see Figure 1.9 in [1],
for example).

The equations of motion of the fluid are the incompressible Navier-Stokes equa-
tions,

ut + u · ∇u+∇p = ν∆u,

∇ · u = 0.
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To nondimensionalize these equations with respect to (U,L, ρ), we introduce dimen-
sionless variables

u∗ =
u

U
, p∗ =

p

ρU2
, x∗ =

x

L
, t∗ =

Ut

L
,

and find that

u∗t∗ + u∗ · ∇∗u∗ +∇∗p∗ = ε∆∗u∗,

∇∗ · u∗ = 0.

Here,

ε =
ν

UL
=

1
Re
.

The boundary conditions correspond to a flow of speed 1 past a sphere of radius
1. Thus, assuming that no other parameters enter into the problem, the drag
computed from the solution of these equations depends only on ε, as obtained from
the dimensional analysis above.

Dimensional analysis leads to continuous scaling symmetries. These scaling sym-
metries are not the only continuous symmetries possessed by differential equations.
The theory of Lie groups and Lie algebras provides a systematic method for com-
puting all continuous symmetries of a given differential equation [18]. Lie originally
introduced the notions of Lie groups and Lie algebras precisely for this purpose.

Example 1.13 The full group of symmetries of the one-dimensional heat equation

ut = uxx

is generated by the following transformations [18]:

u(x, t) 7→ u(x− α, t),
u(x, t) 7→ u(x, t− β),

u(x, t) 7→ γu(x, t),

u(x, t) 7→ u(δx, δ2t),

u(x, t) 7→ e−εx+ε
2tu(x− 2εt, t),

u(x, t) 7→ 1√
1 + 4ηt

exp
[
−ηx2

1 + 4ηt

]
u

(
x

1 + 4ηt
,

t

1 + 4ηt

)
,

u(x, t) 7→ u(x, t) + v(x, t),

where (α, . . . , η) are constants, and v(x, t) is an arbitrary solution of the heat
equation. The scaling symmetries involving γ and δ can be deduced by dimen-
sional arguments, but the symmetries involving ε and η cannot.

For further discussion of dimensional analysis and self-similar solutions, see [1].
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Chapter 2

Asymptotic Expansions

In this chapter, we define the order notation and asymptotic expansions. For addi-
tional discussion, see [4], and [17].

2.1 Order notation

The O and o order notation provides a precise mathematical formulation of ideas
that correspond — roughly — to the ‘same order of magnitude’ and ‘smaller order
of magnitude.’ We state the definitions for the asymptotic behavior of a real-valued
function f(x) as x → 0, where x is a real parameter. With obvious modifications,
similar definitions apply to asymptotic behavior in the limits x → 0+, x → x0,
x → ∞, to complex or integer parameters, and other cases. Also, by replacing | · |
with a norm, we can define similiar concepts for functions taking values in a normed
linear space.

Definition 2.1 Let f, g : R \ 0→ R be real functions. We say f = O(g) as x→ 0
if there are constants C and r > 0 such that

|f(x)| ≤ C|g(x)| whenever 0 < |x| < r.

We say f = o(g) as x→ 0 if for every δ > 0 there is an r > 0 such that

|f(x)| ≤ δ|g(x)| whenever 0 < |x| < r.

If g 6= 0, then f = O(g) as x→ 0 if and only if f/g is bounded in a (punctured)
neighborhood of 0, and f = o(g) if and only if f/g → 0 as x→ 0.

We also write f � g, or f is ‘much less than’ g, if f = o(g), and f ∼ g, or f is
asymptotic to g, if f/g → 1.

Example 2.2 A few simple examples are:

(a) sin 1/x = O(1) as x→ 0
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(b) it is not true that 1 = O(sin 1/x) as x → 0, because sin 1/x vanishes is
every neighborhood of x = 0;

(c) x3 = o(x2) as x→ 0, and x2 = o(x3) as x→∞;
(d) x = o(log x) as x→ 0+, and log x = o(x) as x→∞;
(e) sinx ∼ x as x→ 0;
(f) e−1/x = o(xn) as x→ 0+ for any n ∈ N.

The o and O notations are not quantitative without estimates for the constants
C, δ, and r appearing in the definitions.

2.2 Asymptotic expansions

An asymptotic expansion describes the asymptotic behavior of a function in terms
of a sequence of gauge functions. The definition was introduced by Poincaré (1886),
and it provides a solid mathematical foundation for the use of many divergent series.

Definition 2.3 A sequence of functions ϕn : R \ 0 → R, where n = 0, 1, 2, . . ., is
an asymptotic sequence as x→ 0 if for each n = 0, 1, 2, . . . we have

ϕn+1 = o (ϕn) as x→ 0.

We call ϕn a gauge function. If {ϕn} is an asymptotic sequence and f : R \ 0→ R
is a function, we write

f(x) ∼
∞∑
n=0

anϕn(x) as x→ 0 (2.1)

if for each N = 0, 1, 2, . . . we have

f(x)−
N∑
n=0

anϕn(x) = o(ϕN ) as x→ 0.

We call (2.1) the asymptotic expansion of f with respect to {ϕn} as x→ 0.

Example 2.4 The functions ϕn(x) = xn form an asymptotic sequence as x→ 0+.
Asymptotic expansions with respect to this sequence are called asymptotic power
series, and they are discussed further below. The functions ϕn(x) = x−n form an
asymptotic sequence as x→∞.

Example 2.5 The function log sinx has an asymptotic expansion as x→ 0+ with
respect to the asymptotic sequence {log x, x2, x4, . . .}:

log sinx ∼ log x+
1
6
x2 + . . . as x→ 0+.
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If, as is usually the case, the gauge functions ϕn do not vanish in a punctured
neighborhood of 0, then it follows from Definition 2.1 that

aN+1 = lim
x→0

f(x)−
∑N
n=0 anϕn(x)

ϕN+1
.

Thus, if a function has an expansion with respect to a given sequence of gauge func-
tions, the expansion is unique. Different functions may have the same asymptotic
expansion.

Example 2.6 For any constant c ∈ R, we have

1
1− x

+ ce−1/x ∼ 1 + x+ x2 + . . .+ xn + . . . as x→ 0+,

since e−1/x = o(xn) as x→ 0+ for every n ∈ N.

Asymptotic expansions can be added, and — under natural conditions on the
gauge functions — multiplied. The term-by-term integration of asymptotic expan-
sions is valid, but differentiation may not be, because small, highly-oscillatory terms
can become large when they are differentiated.

Example 2.7 Let

f(x) =
1

1− x
+ e−1/x sin e1/x.

Then

f(x) ∼ 1 + x+ x2 + x3 + . . . as x→ 0+,

but

f ′(x) ∼ −cos e1/x

x2
+ 1 + 2x+ 3x2 + . . . as x→ 0+.

Term-by-term differentiation is valid under suitable assumptions that rule out
the presence of small, highly oscillatory terms. For example, a convergent power
series expansion of an analytic function can be differentiated term-by-term

2.2.1 Asymptotic power series

Asymptotic power series,

f(x) ∼
∞∑
n=0

anx
n as x→ 0,

are among the most common and useful asymptotic expansions.
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If f is a smooth (C∞) function in a neighborhood of the origin, then Taylor’s
theorem implies that∣∣∣∣∣f(x)−

N∑
n=0

f (n)(0)
n!

xn

∣∣∣∣∣ ≤ CN+1x
N+1 when |x| ≤ r,

where

CN+1 = sup
|x|≤r

∣∣f (N+1)(x)
∣∣

(N + 1)!
.

It follows that f has the asymptotic power series expansion

f(x) ∼
∞∑
n=0

f (n)(0)
n!

xn as x→ 0. (2.2)

The asymptotic power series in (2.2) converges to f in a neighborhood of the origin
if and only if f is analytic at x = 0. If f is C∞ but not analytic, the series may
converge to a function different from f (see Example 2.6 with c 6= 0) or it may
diverge (see (2.4) or (3.3) below).

The Taylor series of f(x) at x = x0,
∞∑
n=0

f (n)(x0)
n!

(x− x0)n,

does not provide an asymptotic expansion of f(x) as x→ x1 when x1 6= x0 even if
it converges. The partial sums therefore do not generally provide a good approx-
imation of f(x) as x → x1. (See Example 2.9, where a partial sum of the Taylor
series of the error function at x = 0 provides a poor approximation of the function
when x is large.)

The following (rather surprising) theorem shows that there are no restrictions
on the growth rate of the coefficients in an asymptotic power series, unlike the case
of convergent power series.

Theorem 2.8 (Borel-Ritt) Given any sequence {an} of real (or complex) coeffi-
cients, there exists a C∞-function f : R→ R (or f : R→ C) such that

f(x) ∼
∑

anx
n as x→ 0.

Proof. Let η : R→ R be a C∞-function such that

η(x) =
{

1 if |x| ≤ 1,
0 if |x| ≥ 2.

We choose a sequence of positive numbers {δn} such that δn → 0 as n→∞ and

|an|
∥∥∥∥xnη( x

δn

)∥∥∥∥
Cn

≤ 1
2n
, (2.3)
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where

‖f‖Cn = sup
x∈R

n∑
k=0

∣∣∣f (k)(x)
∣∣∣

denotes the Cn-norm. We define

f(x) =
∞∑
n=0

anx
nη

(
x

δn

)
.

This series converges pointwise, since when x = 0 it is equal to a0, and when x 6= 0
it consists of only finitely many terms. The condition in (2.3) implies that the
sequence converges in Cn for every n ∈ N. Hence, the function f has continuous
derivatives of all orders. �

2.2.2 Asymptotic versus convergent series

We have already observed that an asymptotic series need not be convergent, and a
convergent series need not be asymptotic. To explain the difference in more detail,
we consider a formal series

∞∑
n=0

anϕn(x),

where {an} is a sequence of coefficients and {ϕn(x)} is an asymptotic sequence as
x→ 0. We denote the partial sums by

SN (x) =
N∑
n=0

anϕn(x).

Then convergence is concerned with the behavior of SN (x) as N →∞ with x fixed,
whereas asymptoticity (at x = 0) is concerned with the behavior of SN (x) as x→ 0
with N fixed.

A convergent series define a unique limiting sum, but convergence does not give
any indication of how rapidly the series it converges, nor of how well the sum of
a fixed number of terms approximates the limit. An asymptotic series does not
define a unique sum, nor does it provide an arbitrarily accurate approximation of
the value of a function it represents at any x 6= 0, but its partial sums provide good
approximations of these functions that when x is sufficiently small.

The following example illustrates the contrast between convergent and asymp-
totic series. We will examine another example of a divergent asymptotic series in
Section 3.1.

Example 2.9 The error function erf : R→ R is defined by

erf x =
2√
π

∫ x

0

e−t
2
dt.
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Integrating the power series expansion of e−t
2

term by term, we obtain the power
series expansion of erf x,

erf x =
2√
π

{
x− 1

3
x3 + . . .+

(−1)n

(2n+ 1)n!
x2n+1 + . . .

}
,

which is convergent for every x ∈ R. For large values of x, however, the convergence
is very slow. the Taylor series of the error function at x = 0. Instead, we can use
the following divergent asymptotic expansion, proved below, to obtain accurate
approximations of erf x for large x:

erf x ∼ 1− e−x
2

√
π

∞∑
n=0

(−1)n+1 (2n− 1)!!
2n

1
xn+1

as x→∞, (2.4)

where (2n− 1)!! = 1 · 3 · . . . · (2n− 1). For example, when x = 3, we need 31 terms
in the Taylor series at x = 0 to approximate erf 3 to an accuracy of 10−5, whereas
we only need 2 terms in the asymptotic expansion.

Proposition 2.10 The expansion (2.4) is an asymptotic expansion of erf x.

Proof. We write

erf x = 1− 2√
π

∫ ∞
x

e−t
2
dt,

and make the change of variables s = t2,

erf x = 1− 1√
π

∫ ∞
x2

s−1/2e−s ds.

For n = 0, 1, 2, . . ., we define

Fn(x) =
∫ ∞
x2

s−n−1/2e−s ds.

Then an integration by parts implies that

Fn(x) =
e−x

2

x2n+1
−
(
n+

1
2

)
Fn+1(x).

By repeated use of this recursion relation, we find that

erf x = 1− 1√
π
F0(x)

= 1− 1√
π

[
e−x

2

x
− 1

2
F1(x)

]

= 1− 1√
π

[
e−x

2
(

1
x
− 1

2x3

)
+

1 · 3
22

F2(x)
]
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= 1− 1√
π

[
e−x

2
(

1
x
− 1

2x3
+ . . . (−1)N

1 · 3 · . . . · (2N − 1)
2Nx2N+1

)
+ (−1)N+1 1 · 3 · . . . · (2N + 1)

2N+1
FN+1(x)

]
.

It follows that

erf x = 1− e−x
2

√
π

N∑
n=0

(−1)n
1 · 3 · . . . · (2n− 1)

2nx2n+1
+RN+1(x)

where

RN+1(x) = (−1)N+1 1√
π

1 · 3 · . . . · (2N + 1)
2N+1

FN+1(x).

Since

|Fn(x)| =
∣∣∣∣∫ ∞
x2

s−n−1/2e−s ds

∣∣∣∣
≤ 1

x2n+1

∫ ∞
x2

e−s ds

≤ e−x
2

x2n+1
,

we have

|RN+1(x)| ≤ CN+1
e−x

2

x2N+3
,

where

CN =
1 · 3 · . . . · (2N + 1)

2N+1
√
π

.

This proves the result. �

2.2.3 Generalized asymptotic expansions

Sometimes it is useful to consider more general asymptotic expansions with respect
to a sequence of gauge functions {ϕn} of the form

f(x) ∼
∞∑
n=0

fn(x),

where for each N = 0, 1, 2, . . .

f(x)−
N∑
n=0

fn(x) = o(ϕN+1).
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For example, an expansion of the form

f(x) ∼
∞∑
n=0

an(x)ϕn(x)

in which the coefficients an are bounded functions of x is a generalized asymptotic
expansion. Such expansions provide additional flexibility, but they are not unique
and have to be used with care in many cases.

Example 2.11 We have

1
1− x

∼
∞∑
n=0

xn as x→ 0+.

We also have

1
1− x

∼
∞∑
n=0

(1 + x)x2n as x→ 0+.

This is a generalized asymptotic expansion with respect to {xn | n = 0, 1, 2, . . .}
that differs from the first one.

Example 2.12 According to [17], the following generalized asymptotic expansion
with respect to the asymptotic sequence {(log x)−n}

sinx
x
∼
∞∑
n=1

n!e−(n+1)x/(2n)

(log x)n
as x→∞

is an example showing that “the definition admits expansions that have no conceiv-
able value.”

Example 2.13 The method of matched asymptotic expansions and the method of
multiple scales lead to generalized asymptotic expansions, in which the generalized
expansions have a definite form dictated by the corresponding methods.

Example 2.14 A physical example of a generalized asymptotic expansion arises in
the derivation of the Navier-Stokes equations of fluid mechanics from the Boltzmann
equations of kinetic theory by means of the Chapman-Enskog expansion. If λ is the
mean free path of the fluid molecules and L is a macroscopic length-scale of the
fluid flow, then the relevant small parameter is

ε =
λ

L
� 1.

The leading-order term in the Chapman-Enskog expansion satisfies the Navier-
Stokes equations in which the fluid viscosity is of the order ε when nondimensional-
ized by the length and time scales characteristic of the fluid flow. Thus the leading
order solution depends on the perturbation parameter ε, and this expansion is a
generalized asymptotic expansion.
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2.2.4 Nonuniform asymptotic expansions

In many problems, we seek an asymptotic expansion as ε→ 0 of a function u(x, ε),
where x is an independent variable.∗ The asymptotic behavior of the function
with respect to ε may depend upon x, in which case we say that the expansion is
nonuniform.

Example 2.15 Consider the function u : [0,∞)× (0,∞)→ R defined by

u(x, ε) =
1

x+ ε
.

If x > 0, then

u(x, ε) ∼ 1
x

[
1− ε

x
+
ε2

x2
+ . . .

]
as ε→ 0+.

On the other hand, if x = 0, then

u(0, ε) ∼ 1
ε

as ε→ 0+.

The transition between these two different expansions occurs when x = O(ε). In
the limit ε→ 0+ with y = x/ε fixed, we have

u(εy, ε) ∼ 1
ε

(
1

y + 1

)
as ε→ 0+.

This expansion matches with the other two expansions in the limits y → ∞ and
y → 0+.

Nonuniform asymptotic expansions are not a mathematical pathology, and they
are often the crucial feature of singular perturbation problems. We will encounter
many such problems below; for example, in boundary layer problems the solution
has different asymptotic expansions inside and outside the boundary layer, and in
various problems involving oscillators nonuniformities aries for long times.

2.3 Stokes phenomenon

An asymptotic expansion as z → ∞ of a complex function f : C → C with an
essential singularity at z = ∞ is typically valid only in a wedge-shaped region
α < arg z < β, and the function has different asymptotic expansions in different
wedges.† The change in the form of the asymptotic expansion across the boundaries
of the wedges is called the Stokes phenomenon.

∗We consider asymptotic expansions with respect to ε, not x.

†We consider a function with an essential singularity at z = ∞ for definiteness; the same phe-

nomenon occurs for functions with an essential singularity at any z0 ∈ C.
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Example 2.16 Consider the function f : C→ C defined by

f(z) = sinh z2 =
ez

2 − e−z2

2
.

Let |z| → ∞ with arg z fixed, and define

Ω1 = {z ∈ C | −π/4 < arg z < π/4} ,
Ω2 = {z ∈ C | π/4 < arg z < 3π/4 or −3π/4 < arg z < −π/4} .

If z ∈ Ω1, then Re z2 > 0 and ez
2 � e−z

2
, whereas if z ∈ Ω2, then Re z2 < 0 and

ez
2 � e−z

2
. Hence

f(z) ∼

{
1
2e
z2 as |z| → ∞ in Ω1,

1
2e
−z2 as |z| → ∞ in Ω2.

The lines arg z = ±π/4,±3π/4 where the asymptotic expansion changes form are
called anti-Stokes lines. The terms ez

2
and e−z

2
switch from being dominant to

subdominant as z crosses an anti-Stokes lines. The lines arg z = 0, π,±π/2 where
the subdominant term is as small as possible relative to the dominant term are
called Stokes lines.

This example concerns a simple explicit function, but a similar behavior occurs
for solutions of ODEs with essential singularities in the complex plane, such as error
functions, Airy functions, and Bessel functions.

Example 2.17 The error function can be extended to an entire function erf : C→
C with an essential singularity at z =∞. It has the following asymptotic expansions
in different wedges:

erf z ∼


1− exp(−z2)/(z

√
π) as z →∞ with z ∈ Ω1,

−1− exp(−z2)/(z
√
π) as z →∞ with z ∈ Ω2,

− exp(−z2)/(z
√
π) as z →∞ with z ∈ Ω3.

where

Ω1 = {z ∈ C | −π/4 < arg z < π/4} ,
Ω2 = {z ∈ C | 3π/4 < arg z < 5π/4} ,
Ω3 = {z ∈ C | π/4 < arg z < 3π/4 or 5π/4 < arg z < 7π/4} .

Often one wants to determine the asymptotic behavior of such a function in one
wedge given its behavior in another wedge. This is called a connection problem
(see Section 3.4 for the case of the Airy function). The apparently discontinuous
change in the form of the asymptotic expansion of the solutions of an ODE across
an anti-Stokes line can be understood using exponential asymptotics as the result of
a continuous, but rapid, change in the coefficient of the subdominant terms across
the Stokes line [2].
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Chapter 3

Asymptotic Expansion of Integrals

In this chapter, we give some examples of asymptotic expansions of integrals. We
do not attempt to give a complete discussion of this subject (see [4], [21] for more
information).

3.1 Euler’s integral

Consider the following integral (Euler, 1754):

I(x) =
∫ ∞

0

e−t

1 + xt
dt, (3.1)

where x ≥ 0.
First, we proceed formally. We use the power series expansion

1
1 + xt

= 1− xt+ x2t2 + . . .+ (−1)nxntn + . . . (3.2)

inside the integral in (3.1), and integrate the result term-by-term. Using the integral∫ ∞
0

tne−t dx = n!,

we get

I(x) ∼ 1− x+ 2!x2 + . . .+ (−1)nn!xn + . . . . (3.3)

The coefficients in this power series grow factorially, and the terms diverge as n→
∞. Thus, the series does not converge for any x 6= 0. On the other hand, the
following proposition shows that the series is an asymptotic expansion of I(x) as
x → 0+, and the the error between a partial sum and the integral is less than the
first term neglected in the asymptotic series. The proof also illustrates the use of
integration by parts in deriving an asymptotic expansion.
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Proposition 3.1 For x ≥ 0 and N = 0, 1, 2, . . ., we have∣∣I(x)−
{

1− x+ . . .+ (−1)NN !xN
}∣∣ ≤ (N + 1)!xN+1.

Proof. Integrating by parts in (3.1), we have

I(x) = 1− x
∫ ∞

0

e−t

(1 + xt)2
dt.

After N + 1 integrations by parts, we find that

I(x) = 1− x+ . . .+ (−1)NN !xN +RN+1(x),

where

RN+1(x) = (−1)N+1(N + 1)!xN+1

∫ ∞
0

e−t

(1 + xt)N+2
dt.

Estimating RN+1 for x ≥ 0, we find that

|RN+1(x)| ≤ (N + 1)!xN+1

∫ ∞
0

e−t dt

≤ (N + 1)!xN+1

which proves the result. Equation (3.1) shows that the partial sums oscillate above
(N even) and below (N odd) the value of the integral. �

Heuristically, the lack of convergence of the series in (3.3) is a consequence of
the fact that the power series expansion (3.2) does not converge over the whole
integration region, but only when 0 ≤ t < 1/x. On the other hand, when x is small,
the expansion is convergent over most of the integration region, and the integrand
is exponentially small when it is not. This explains the accuracy of the resulting
partial sum approximations.

The integral in (3.1) is not well-defined when x < 0 since then the integrand has
a nonintegrable singularity at t = −1/x. The fact that x = 0 is a ‘transition point’
is associated with the lack of convergence of the asymptotic power series, because
any convergent power series would converge in a disk (in C) centered at x = 0.

Since the asymptotic series is not convergent, its partial sums do not provide
an arbitrarily accurate approximation of I(x) for a fixed x > 0. It is interesting to
ask, however, what partial sum gives the the best approximation.

This occurs when n minimizes the remainder Rn+1(x). The remainder decreases
when n ≤ x and increases when n + 1 > x, so the best approximation occurs
when n + 1 ≈ [1/x], and then Rn+1(x) ≈ (1/x)!x1/x. Using Stirling’s formula (see
Example 3.10),

n! ∼
√

2πnn+1/2e−n as n→∞,
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we find that the optimal truncation at n ≈ [1/x]− 1 gives an error

Rn(x) ∼
√

2π
x
e−1/x as x→ 0+.

Thus, even though each partial sum with a fixed number of terms is polynomially
accurate in x, the optimal partial sum approximation is exponentially accurate.

Example 3.2 The partial sums

SN (x) = 1− x+ . . .+ (−1)NN !xN

for x = 0.1 and 2 ≤ N ≤ 15 are given in the following table (to an appropriate
accuracy).

N SN (0.1)
2 0.9
3 0.92
4 0.914
5 0.9164
6 0.9152
7 0.91529
8 0.915416
9 0.915819

10 0.915463
11 0.915819
12 0.91542
13 0.9159
14 0.9153
15 0.9162

It follows that

0.91546 ≤ I(0.1) ≤ 0.91582.

Numerical integration shows that, to four significant figures,

I(0.1) ≈ 0.9156.

In some problems, the exponentially small corrections to a power series asymp-
totic expansion contain important information. For example, the vanishing or non-
vanishing of these corrections may correspond to the existence or nonexistence of
particular types of solutions of PDEs, such as traveling waves or breathers. There
exist methods of exponential asymptotics, or asymptotics beyond all orders, that
can be used to compute exponentially small terms.
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3.2 Perturbed Gaussian integrals

Consider the following integral

I(a, ε) =
∫ ∞
−∞

exp
[
−1

2
ax2 − εx4

]
dx, (3.4)

where a > 0 and ε ≥ 0. For ε = 0, this is a standard Gaussian integral, and

I(a, 0) =
1√
2πa

.

For ε > 0, we cannot compute I(a, ε) explicitly, but we can obtain an asymptotic
expansion as ε→ 0+.

First, we proceed formally. Taylor expanding the exponential with respect to ε,

exp
[
−1

2
ax2 − εx4

]
= e−

1
2ax

2
{

1− εx4 +
1
2!
ε2x8 + . . .+

(−1)n

n!
εnx4n + . . .

}
,

and integrating the result term-by-term, we get

I(a, ε) ∼ 1√
2πa

{
1− ε〈x4〉+ . . .+

(−1)n

n!
εn〈x4n〉+ . . .

}
, , (3.5)

where

〈x4n〉 =

∫∞
−∞ x4ne−

1
2ax

2
dx∫∞

−∞ e−
1
2ax

2
dx

.

We use a special case of Wick’s theorem to calculate these integrals.

Proposition 3.3 For m ∈ N, we have

〈x2m〉 =
(2m− 1)!!

am
,

where

(2m− 1)!! = 1 · 3 · 5 . . . (2m− 3) · (2m− 1).

Proof. Let

J(a, b) =

∫∞
−∞ e−

1
2ax

2+bx dx∫∞
−∞ e−

1
2ax

2
dx

.

Differentiating J(a, b) n-times with respect to b and setting b = 0, we find that

〈xn〉 =
dn

dbn
J(a, b)

∣∣∣∣
b=0

.

Writing

e−
1
2ax

2+bx = e−
1
2a(x−b)

2+ b2
2a
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and making the change of variable (x− b) 7→ x in the numerator, we deduce that

J(a, b) = e
b2
2a .

Hence,

〈xn〉 =
dn

dbn

[
e

b2
2a

]∣∣∣∣
b=0

=
dn

dbn

{
1 +

b2

2a
+ . . .+

1
m!

b2m

(2a)m
+ . . .

}∣∣∣∣
b=0

,

which implies that

〈x2m〉 =
(2m)!

(2a)mm!
.

This expression is equivalent to the result. �

Using the result of this proposition in (3.5), we conclude that

I(a, ε) ∼ 1√
2πa

[
1− 3

a2
ε+

105
a4

ε2 + . . .+ anε
n + . . .

]
as ε→ 0+, (3.6)

where

an =
(−1)n(4n− 1)!!

n!a2n
. (3.7)

By the ratio test, the radius of convergence R of this series is

R = lim
n→∞

(n+ 1)!a2n+2(4n− 1)!
n!a2n(4n+ 3)!!

= lim
n→∞

(n+ 1)a2

(4n+ 1)(4n+ 3)
= 0.

Thus, the series diverges for every ε > 0, as could have been anticipated by the fact
that I(a, ε) is undefined for ε < 0.

The next proposition shows that the series is an asymptotic expansion of I(a, ε)
as ε→ 0+.

Proposition 3.4 Suppose I(a, ε) is defined by (3.4). For each N = 0, 1, 2, . . . and
ε > 0, we have ∣∣∣∣∣I(a, ε)−

N∑
n=0

anε
n

∣∣∣∣∣ ≤ CN+1ε
N+1

where an is given by (3.7), and

CN+1 =
1

(N + 1)!

∫ ∞
−∞

x4(N+1)e−
1
2ax

2
dx.
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Proof. Taylor’s theorem implies that for y ≥ 0 and N ∈ N

e−y = 1− y +
1
2!
y2 + . . .+

(−1)N

N !
yN + sN+1(y),

where

sN+1(y) =
1

(N + 1)!
dN+1

dyN+1

(
e−y
)∣∣∣∣
y=η

yN+1

for some 0 ≤ η ≤ y. Replacing y by εx4 in this equation and estimating the
remainder, we find that

e−εx
4

= 1− εx4 +
1
2!
ε2x4 + . . .+

(−1)N

N !
εNx4N + εN+1rN+1(x), (3.8)

where

|rN+1(x)| ≤ x4(N+1)

(N + 1)!
.

Using (3.8) in (3.4), we get

I(a, ε) =
N∑
n=0

anε
n + εN+1

∫ ∞
−∞

rN+1(x)e−
1
2ax

2
dx.

It follows that∣∣∣∣∣I(a, ε)−
N∑
n=0

anε
n

∣∣∣∣∣ ≤ εN+1

∫ ∞
−∞
|rN+1(x)| e− 1

2ax
2
dx

≤ εN+1 1
(N + 1)!

∫ ∞
−∞

x4(N+1)e−
1
2ax

2
dx,

which proves the result. �

These expansions generalize to multi-dimensional Gaussian integrals, of the form

I(A, ε) =
∫

Rn

exp
(
−1

2
xTAx+ εV (x)

)
dx

where A is a symmetric n×nmatrix, and to infinite-dimensional functional integrals,
such as those given by the formal expression

I(ε) =
∫

exp
{
−
∫ (

1
2
|∇u(x)|2 +

1
2
u2(x) + εV (u(x))

)
dx

}
Du

which appear in quantum field theory and statistical physics.
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3.3 The method of stationary phase

The method of stationary phase provides an asymptotic expansion of integrals with
a rapidly oscillating integrand. Because of cancelation, the behavior of such integrals
is dominated by contributions from neighborhoods of the stationary phase points
where the oscillations are the slowest.

Example 3.5 Consider the following Fresnel integral

I(ε) =
∫ ∞
−∞

eit
2/ε dt.

This oscillatory integral is not defined as an absolutely convergent integral, since∣∣∣eit2/ε∣∣∣ = 1, but it can be defined as an improper integral,

I(ε) = lim
R→∞

∫ R

−R
eit

2/ε dt.

This convergence follows from an integration by parts:∫ R

1

eit
2/ε dt =

[ ε
2it

eit
2/ε
]R
1

+
∫ R

1

ε

2it2
eit

2/ε dt.

The integrand oscillates rapidly away from the stationary phase point t = 0, and
these parts contribute terms that are smaller than any power of ε, as we show below.
The first oscillation near t = 0, where cancelation does not occur, has width of the
order ε1/2, so we expect that I(ε) = O(ε1/2) as ε→ 0.

In fact, using contour integration and changing variables t 7→ eiπ/4s if ε > 0 and
t 7→ E−iπ/4s if ε < 0, one can show that∫ ∞

−∞
eit

2/ε dt =
{
eiπ/4

√
2π|ε| if ε > 0

e−iπ/4
√

2π|ε| if ε < 0
.

Next, we consider the integral

I(ε) =
∫ ∞
−∞

f(t)eiϕ(t)/ε dt, (3.9)

where f : R→ C and ϕ : R→ R are smooth functions. A point t = c is a stationary
phase point if ϕ′(c) = 0. We call the stationary phase point nondegenerate if
ϕ′′(c) 6= 0.

Suppose that I has a single stationary phase point at t = c, which is nondegen-
erate. (If there are several such points, we simply add together the contributions
from each one.) Then, using the idea that only the part of the integrand near the
stationary phase point t = c contributes significantly, we can Taylor expand the
function f and the phase ϕ to approximate I(ε) as follows:

I(ε) ∼
∫
f(c) exp

i

ε

[
ϕ(c) +

1
2
ϕ′′(c)(t− c)2

]
dt
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∼ f(c)eiϕ(c)/ε

∫
exp

[
iϕ′′(c)

2ε
s2
]
ds

∼

√
2πε
|ϕ′′(c)|

f(c)eiϕ(c)/ε+iσπ/4,

where

σ = sgnϕ′′(c).

More generally, we consider the asymptotic behavior as ε → 0 of an integral of
the form

I(x, ε) =
∫
A(x, ξ)eiϕ(x,ξ)/ε dξ, (3.10)

where x ∈ Rn and ξ ∈ Rm. We assume that

ϕ : Rn × Rm → R, A : Rn × Rm → C

are smooth (C∞) functions, and that the support of A,

suppA = {(x, ξ) ∈ Rn × Rm | A(x, ξ) 6= 0},

is a compact subset of Rn × Rm.

Definition 3.6 A stationary, or critical, point of the phase ϕ is a point (x, ξ) ∈
Rn × Rm such that

∂ϕ

∂ξ
(x, ξ) = 0. (3.11)

A stationary phase point is nondegenerate if

∂2ϕ

∂ξ2
=
(

∂2ϕ

∂ξi∂ξj

)
i,j=1,...,m

is invertible at the stationary phase point.

Proposition 3.7 If the support of A contains no stationary points of ϕ, then

I(x, ε) = O (εn) as ε→ 0

for every n ∈ N.

Proof. Rewriting the integral in (3.10), and integrating by parts, we have

I(x, ε) = −iε
∫
A
∂ϕ

∂ξ
· ∂
∂ξ

[
eiϕ/ε

] ∣∣∣∣∂ϕ∂ξ
∣∣∣∣−2

dξ

= iε

∫
∂

∂ξ
·

[
A

∣∣∣∣∂ϕ∂ξ
∣∣∣∣−2

∂ϕ

∂ξ

]
eiϕ/ε dξ

= O(ε).
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Applying this argument n times, we get the result. �

The implicit function theorem implies there is a unique local smooth solution of
(3.11) for ξ in a neighborhood U × V ⊂ Rn × Rm We write this stationary phase
point as as ξ = ξ(x), where ξ : U → V . We may reduce the case of multiple
nondegenerate critical points to this one by means of a partition of unity, and may
also suppose that suppA ⊂ U × V. According to the Morse lemma, there is a local
change of coordinates ξ 7→ η near a nondegenerate critical point such that

ϕ(x, ξ) = ϕ
(
x, ξ(x)

)
+

1
2
∂2ϕ

∂ξ2
(
x, ξ(x)

)
· (η, η).

Making this change of variables in (3.10), and evaluating the resulting Fresnel inte-
gral, we get the following stationary phase formula [10].

Theorem 3.8 Let I(x, ε) be defined by (3.10), where ϕ is a smooth real-valued
function with a nondegenerate stationary phase point at (x, ξ(x)), and A is a com-
pactly supported smooth function whose support is contained in a sufficiently small
neighborhood of the stationary phase point. Then, as ε→ 0,

I(x, ε) ∼ (2πε)n/2√
det
∣∣∣∂2ϕ
∂ξ2

∣∣∣
ξ=ξ(x)

eiϕ(x,ξ(x))/ε+iπσ/4
∞∑
p=0

(iε)pRp(x),

where

σ = sgn
(
∂2ϕ

∂ξ2

)
ξ=ξ(x)

is the signature of the matrix (the difference between the number of positive and
negative eigenvalues), R0 = 1, and

Rp(x) =
∑
|k|≤2p

Rpk(x)
∂kA

∂ξk

∣∣∣∣
ξ=ξ(x)

,

where the Rpk are smooth functions depending only on ϕ.

3.4 Airy functions and degenerate stationary phase points

The behavior of the integral in (3.10) is more complicated when it has degenerate
stationary phase points. Here, we consider the simplest case, where ξ ∈ R and
two stationary phase points coalesce. The asymptotic behavior of the integral in a
neighborhood of the degenerate critical point is then described by an Airy function.

Airy functions are solutions of the ODE

y′′ = xy. (3.12)
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The behavior of these functions is oscillatory as x → −∞ and exponential as x →
∞. They are the most basic functions that exhibit a transition from oscillatory
to exponential behavior, and because of this they arise in many applications (for
example, in describing waves at caustics or turning points).

Two linearly independent solutions of (3.12) are denoted by Ai(x) and Bi(x).
The solution Ai(x) is determined up to a constant normalizing factor by the condi-
tion that Ai(x)→ 0 as x→∞. It is conventionally normalized so that

Ai(0) =
1

32/3
Γ
(

2
3

)
,

where Γ is the Gamma-function. This solution decays exponentially as x→∞ and
oscillates, with algebraic decay, as x→ −∞ [16],

Ai(x) ∼
{

1
2π
−1/2x−1/4 exp[−2x3/2/3] as x→∞,

π−1/2(−x)−1/4 sin[2(−x)3/2/3 + π/4] as x→ −∞.

The solution Bi(x) grows exponentially as x→∞.
We can derive these results from an integral representation of Ai(x) that is

obtained by taking the Fourier transform of (3.12).∗ Let ŷ = F [y] denote the
Fourier transform of y,

ŷ(k) =
1

2π

∫ ∞
−∞

y(x)e−ikx dx,

y(x) =
∫ ∞
−∞

ŷ(k)eikx dk.

Then

F [y′′] = −k2ŷ, F [−ixy] = ŷ′.

Fourier transforming (3.12), we find that

−k2ŷ = iŷ′.

Solving this first-order ODE, we get

ŷ(k) = ceik
3/3,

so y is given by the oscillatory integral

y(x) = c

∫ ∞
−∞

ei(kx+k
3/3) dk.

∗We do not obtain Bi by this method because it grows exponentially as x→∞, which is too fast

for its Fourier transform to be well-defined, even as a tempered distribution.
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The standard normalization for the Airy function corresponds to c = 1/(2π), and
thus

Ai(x) =
1

2π

∫ ∞
−∞

ei(kx+k
3/3) dk. (3.13)

This oscillatory integral is not absolutely convergent, but it can be interpreted
as the inverse Fourier transform of a tempered distribution. The inverse transform
is a C∞ function that extends to an entire function of a complex variable, as can
be seen by shifting the contour of integration upwards to obtain the absolutely
convergent integral representation

Ai(x) =
1

2π

∫ ∞+iη

−∞+iη

ei(kx+k
3/3) dk.

Just as the Fresnel integral with a quadratic phase, provides an approximation
near a nondegenerate stationary phase point, the Airy integral with a cubic phase
provides an approximation near a degenerate stationary phase point in which the
third derivative of the phase in nonzero. This occurs when two nondegenerate
stationary phase points coalesce.

Let us consider the integral

I(x, ε) =
∫ ∞
−∞

f(x, t)eiϕ(x,t)/ε dt.

Suppose that we have nondegenerate stationary phase points at

t = t±(x)

for x < x0, which are equal when x = x0 so that t±(x0) = t0. We assume that

ϕt (x0, t0) = 0, ϕtt (x0, t0) = 0, ϕttt (x0, t0) 6= 0.

Then Chester, Friedman, and Ursell (1957) showed that in a neighborhood of (x0, t0)
there is a local change of variables t = τ(x, s) and functions ψ(x), ρ(x) such that

ϕ(x, t) = ψ(x) + ρ(x)s+
1
3
s3.

Here, we have τ(x0, 0) = t0 and ρ(x0) = 0. The stationary phase points correspond
to s = ±

√
−ρ(x), where ρ(x) < 0 for x < x0.

Since the asymptotic behavior of the integral as ε → 0 is dominated by the
contribution from the neighborhood of the stationary phase point, we expect that

I(x, ε) ∼
∫ ∞
−∞

f (x, τ(x, s)) τs(x, s)ei[ψ(x)+ρ(x)s+ 1
3 s

3]/ε ds

∼ f (x0, t0) τs(x0, 0)eiψ(x)/ε

∫ ∞
−∞

ei[ρ(x)s+
1
3 s

3]/ε ds
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∼ ε1/3f (x0, t0) τs(x0, 0)eiψ(x)/ε

∫ ∞
−∞

ei[ε
−2/3ρ(x)k+ 1

3k
3] dk

∼ 2πε1/3f (x0, t0) τs(x0, 0)eiψ(x)/εAi
(
ρ(x)
ε2/3

)
,

where we have made the change of variables s = ε1/3k, and used the definition of
the Airy function.

More generally, we have the following result. For the proof, see [10].

Theorem 3.9 Let I(x, ε) be defined by (3.10), where ϕ(x, ξ), with x ∈ Rd and
ξ ∈ R, is a smooth, real-valued function with a degenerate stationary phase point
at (x, ξ(x)). Suppose that

∂ϕ

∂ξ
= 0,

∂2ϕ

∂ξ2
= 0,

∂3ϕ

∂ξ3
6= 0,

at ξ = ξ(x), and A(x, ξ) is a smooth function whose support is contained in a
sufficiently small neighborhood of the degenerate stationary phase point. Then
there are smooth real-valued functions ψ(x), ρ(x), and smooth functions Ak(x),
Bk(x) such that

I(x, ε) ∼

[
ε1/3Ai

(
ρ(x)
ε2/3

) ∞∑
k=0

Ak(x) + iε2/3Ai′
(
ρ(x)
ε2/3

) ∞∑
k=0

Bk(x)

]
eiψ(x)/ε

as ε→ 0.

3.4.1 Dispersive wave propagation

An important application of the method of stationary phase concerns the long-
time, or large-distance, behavior of linear dispersive waves. Kelvin (1887) originally
developed the method for this purpose, following earlier work by Cauchy, Stokes,
and Riemann. He used it to study the pattern of dispersive water waves generated
by a ship in steady motion, and showed that at large distances from the ship the
waves form a wedge with a half-angle of sin−1(1/3), or approximately 19.5◦.

As a basic example of a dispersive wave equation, we consider the following
IVP (initial value problem) for the linearized KdV (Korteweg-de Vries), or Airy,
equation,

ut = uxxx,

u(x, 0) = f(x).

This equation provides an asymptotic description of linear, unidirectional, weakly
dispersive long waves; for example, shallow water waves.
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We assume for simplicity that the initial data f : R→ R is a Schwarz function,
meaning that it is smooth and decays, together with all its derivatives, faster than
any polynomial as |x| → ∞.

We use û(k, t) to denote the Fourier transform of u(x, t) with respect to x,

u(x, t) =
∫ ∞
−∞

û(k, t)eikx dk,

û(k, t) =
1

2π

∫ ∞
−∞

u(x, t)e−ikx dx.

Then û(k, t) satisfies

ût + ik3û = 0,

û(k, 0) = f̂(k).

The solution of this equation is

û(k, t) = f̂(k)e−iω(k)t,

where

ω(k) = k3.

The function ω : R→ R gives the (angular) frequency ω(k) of a wave with wavenum-
ber k, and is called the dispersion relation of the KdV equation.

Inverting the Fourier transform, we find that the solution is given by

u(x, t) =
∫ ∞
−∞

f̂(k)eikx−iω(k)t dk.

Using the convolution theorem, we can write this solution as

u(x, t) = f ∗ g(x, t),

where the star denotes convolution with respect to x, and

g(x, t) =
1

(3t)1/3
Ai
(
− x

(3t)1/3

)
is the Green’s function of the Airy equation.

We consider the asymptotic behavior of this solution as t → ∞ with x/t = v

fixed. This limit corresponds to the large-time limit in a reference frame moving
with velocity v. Thus, we want to find the behavior as t→∞ of

u(vt, t) =
∫ ∞
−∞

f̂(k)eiϕ(k,v)t dk, (3.14)

where

ϕ(k, v) = kv − ω(k).
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The stationary phase points satisfy ϕk = 0, or

v = ω′(k).

The solutions are the wavenumbers k whose group velocity ω′(k) is equal to v. It
follows that

3k2 = v.

If v < 0, then there are no stationary phase points, and u(vt, t) = o(t−n) as
t→∞ for any n ∈ N.

If v > 0, then there are two nondegenerate stationary phase points at k =
±k0(v), where

k0(v) =
√
v

3
.

These two points contribute complex conjugate terms, and the method of stationary
phase implies that

u(vt, t) ∼

√
2π

|ω′′(k0)|t
f̂(k0)eiϕ(k0,v)t−iπ/4 + c.c. as t→∞.

The energy in the wave-packet therefore propagates at the group velocity C = ω′(k),

C = 3k2,

rather than the phase velocity c = ω/k,

c = k2.

The solution decays at a rate of t−1/2, in accordance with the linear growth in t of
the length of the wavetrain and the conservation of energy,∫ ∞

−∞
u2(x, t) dt = constant.

The two stationary phase points coalesce when v = 0, and then there is a single
degenerate stationary phase point. To find the asymptotic behavior of the solution
when v is small, we make the change of variables

k =
ξ

(3t)1/3

in the Fourier integral solution (3.14), which gives

u(x, t) =
1

(3t)1/3

∫ ∞
−∞

f̂

(
ξ

(3t)1/3

)
e−i(ξw+ 1

3 ξ
3) dξ,
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where

w = − t
2/3v

31/3
.

It follows that as t→∞ with t2/3v fixed,

u(x, t) ∼ 2π
(3t)1/3

f̂(0)Ai
(
− t

2/3v

31/3

)
.

Thus the transition between oscillatory and exponential behavior is described by
an Airy function. Since v = x/t, the width of the transition layer is of the order
t1/3 in x, and the solution in this region is of the order t−1/3. Thus it decays more
slowly and is larger than the solution elsewhere.

Whitham [20] gives a detailed discussion of linear and nonlinear dispersive wave
propagation.

3.5 Laplace’s Method

Consider an integral

I(ε) =
∫ ∞
−∞

f(t)eϕ(t)/ε dt,

where ϕ : R → R and f : R → C are smooth functions, and ε is a small positive
parameter. This integral differs from the stationary phase integral in (3.9) because
the argument of the exponential is real, not imaginary. Suppose that ϕ has a global
maximum at t = c, and the maximum is nondegenerate, meaning that ϕ′′(c) < 0.
The dominant contribution to the integral comes from the neighborhood of t = c,
since the integrand is exponentially smaller in ε away from that point. Taylor
expanding the functions in the integrand about t = c, we expect that

I(ε) ∼
∫
f(c)e[ϕ(c)+ 1

2ϕ
′′(c)(t−c)2]/ε dt

∼ f(c)eϕ(c)/ε

∫ ∞
−∞

e
1
2ϕ
′′(c)(t−c)2/ε dt.

Using the standard integral ∫ ∞
−∞

e−
1
2at

2
dt =

√
2π
a
,

we get

I(ε) ∼ f(c)
(

2πε
|ϕ′′(c)|

)1/2

eϕ(c)/ε as ε→ 0+.

This result can proved under suitable assumptions on f and ϕ, but we will not give
a detailed proof here (see [17], for example).
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Example 3.10 The Gamma function Γ : (0,∞)→ R is defined by

Γ(x) =
∫ ∞

0

e−ttx−1 dt.

Integration by parts shows that if n ∈ N, then

Γ(n+ 1) = n!.

Thus, the Gamma function extends the factorial function to arbitrary positive real
numbers. In fact, the Gamma function can be continued to an analytic function

Γ : C \ {0,−1,−2, . . .} → C

with simple poles at 0,−1,−2, . . ..
Making the change of variables t = xs, we can write the integral representation

of Γ as

Γ(x) = xx
∫ ∞

0

1
s
exϕ(s) ds,

where

ϕ(s) = −s+ log s.

The phase ϕ(s) has a nondegenerate maximum at s = 1, where ϕ(1) = −1, and
ϕ′′(1) = −1. Using Laplace’s method, we find that

Γ(x) ∼
(

2π
x

)1/2

xxe−x as x→∞.

In particular, setting x = n+ 1, and using the fact that

lim
n→∞

(
n+ 1
n

)n
= e,

we obtain Stirling’s formula for the factorial,

n! ∼ (2π)1/2nn+1/2e−n as n→∞.

This expansion of the Γ-function can be continued to higher orders to give:

Γ(x) ∼
(

2π
x

)1/2

xxe−x
[
1 +

a1

x
+
a2

x2
+
a3

x3
+ . . .

]
as x→∞,

a1 =
1
12
, a2 =

1
288

, a3 = − 139
51, 840

, . . . .
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3.5.1 Multiple integrals

Proposition 3.11 Let A be a positive-definite n× n matrix. Then∫
Rn

e−
1
2x

TAx dx =
(2π)n/2

|detA|1/2
.

Proof. Since A is positive-definite (and hence symmetric) there is an orthogonal
matrix S and a positive diagonal matrix D = diag[λ1, . . . , λn] such that

A = STDS.

We make the change of variables y = Sx. Since S is orthogonal, we have |detS| = 1,
so the Jacobian of this transformation is 1. We find that∫

Rn

e−
1
2x

TAx dx =
∫

Rn

e−
1
2y

TDy dy

=
n∏
i=1

∫
R
e−

1
2λiy

2
i dyi

=
(2π)n/2

(λ1 . . . λn)1/2

=
(2π)n/2

|detA|1/2
.

�

Now consider the multiple integral

I(ε) =
∫

Rn

f(t)eϕ(t)/ε dt.

Suppose that ϕ : Rn → R has a nondegenerate global maximum at t = c. Then

ϕ(t) = ϕ(c) +
1
2
D2ϕ(c) · (t− c, t− c) +O(|t− c|3) as t→ c.

Hence, we expect that

I(ε) ∼
∫

Rn

f(c)e[ϕ(c)+ 1
2 (t−c)TA(t−c)]/ε dt,

where A is the matrix of D2ϕ(c), with components

Aij =
∂2ϕ

∂ti∂tj
(c).

Using the previous proposition, we conclude that

I(ε) ∼ (2π)n/2

|detD2ϕ(c)|1/2
f(c)eϕ(c)/ε.
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3.6 The method of steepest descents

Consider a contour integral of the form

I(λ) =
∫
C

f(z)eλh(z) dz,

where C is a contour in the complex plane, and f, h : C→ C are analytic functions.
If h(x+ iy) = ϕ(x, y) + iψ(x, y) is analytic, then ϕ,ψ : R2 → R have no maxima

or minima, and critical points where h′(z) = 0 are saddle points of ϕ, ψ. The curves
ϕ = constant, ψ = constant are orthogonal except at critical points.

The idea of the method of steepest descents is to deform the contour C into a
steepest descent contour passing through a saddle point on which ϕ has a maximum
and ψ = constant, so the contour is orthogonal to the level curves of ϕ. We then
apply Laplace’s method to the resulting integral. We will illustrate this idea by
deriving the asymptotic behavior of the Airy function, given by (3.13)

Ai(x) =
1

2π

∫ ∞
−∞

ei(kx+k
3/3) dk.

To obtain the asymptotic behavior of Ai(x) as x → ∞, we put this integral
representation in a form that is suitable for the method of steepest descents. Setting
k = x1/2z, we find that

Ai(x) =
1

2π
x1/2I

(
x3/2

)
,

where

I(λ) =
∫ ∞
−∞

eiλ[z+
1
3 z

3] dz.

The phase

h(z) = i

(
z +

1
3
z3

)
has critical points at z = ±i.

Writing h = ϕ+ iψ in terms of its real and imaginary parts, we have

ϕ(x, y) = −y
(

1 + x2 − 1
3
y2

)
,

ψ(x, y) = x

(
1 +

1
3
x2 − y2

)
.

The steepest descent contour ψ(x, y) = 0 through z = i, or (x, y) = (0, 1), is

y =

√
1 +

1
3
x2.
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When λ > 0, we can deform the integration contour (−∞,∞) upwards to this
steepest descent contour C, since the integrand decays exponentially as |z| → ∞ in
the upper-half plane. Thus,

I(λ) =
∫
C

eiλ[z+
1
3 z

3] dz.

We parameterize C by z(t) = x(t) + iy(t), where

x(t) =
√

3 sinh t, y(t) = cosh t.

Then we find that

I(λ) =
∫ ∞
−∞

f(t)eiλϕ(t) dt,

where

f(t) =
√

3 cosh t+ i sinh t,

ϕ(t) = cosh t
[
2− 8

3
cosh2 t

]
.

The maximum of ϕ(t) occurs at t = 0, where

ϕ(0) = −2/3, ϕ′(0) = 0, ϕ′′(0) = −6.

Laplace’s method implies that

I(λ) ∼ f(0)
(

2π
−λϕ′′(0)

)1/2

eλϕ(0)

∼
(π
λ

)1/2

e−2λ/3.

It follows that

Ai(x) ∼ 1
2π1/2x1/4

e−2x3/2/3 as x→∞. (3.15)

Using the method of stationary phase, one can show from (3.13) that the asymp-
totic behavior of the Airy function as x→ −∞ is given by

Ai(x) ∼ 1
π1/2|x|1/4

sin
[

2
3
|x|3/2 +

π

4

]
. (3.16)

This result is an example of a connection formula. It gives the asymptotic behavior
as x→ −∞ of the solution of the ODE (3.12) that decays exponentially as x→∞.
This connection formula is derived using the integral representation (3.13), which
provides global information about the solution.
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Chapter 4

The Method of Matched Asymptotic
Expansions: ODEs

Many singularly perturbed differential equations have solutions that change rapidly
in a narrow region. This may occur in an initial layer where there is a rapid
adjustment of initial conditions to a quasi-steady state, in a boundary layer where
the solution away from the boundary adjusts to a boundary condition, or in an
interior layer such as a propagating wave-front.

These problems can be analyzed using the method of matched asymptotic ex-
pansions (MMAE), in which we construct different asymptotic solutions inside and
outside the region of rapid change, and ‘match’ them together to determine a global
solution. A typical feature of this type of problem is a reduction in the order of
the differential equation in the unperturbed problem, leading to a reduction in the
number of initial or boundary conditions that can be imposed upon the solution.
For additional information, see [3], [19].

4.1 Enzyme kinetics

Enzymes are proteins that act as catalysts. (There are also a smaller number of
enzymes, called ribozymes, that contain catalytic RNA molecules.) A substance
that is acted upon by an enzyme to create a product is called a substrate. Enzymes
are typically very specific and highly efficient catalysts — tiny concentrations of
enzymes compared with substrate concentrations are required.

For example, the enzyme catalase catalyzes the decomposition of hydrogen per-
oxide into water and oxygen, and one molecule of catalase can break up 40 million
molecules of hydrogen peroxide each second. As another example, carbonic anhy-
drase occurs in red blood cells, where it catalyzes the reaction CO2+H2O↔ H2CO3

that enables the cells to transport carbon dioxide from the tissues to the lungs. One
molecule of carbonic anhydrase can process one million molecules of CO2 each sec-
ond.

Michaelis and Menton (1913) proposed a simple model of enzymatically con-
trolled reactions, in which the enzyme E and substrate S combine to form a com-
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plex C, and the complex breaks down irreversibly into the enzyme and a product
P . Symbolically, we have

E + S ←→ C −→ E + P.

We let

e = [E], s = [S], c = [C], p = [P ],

denote the concentrations of the corresponding species.
According to the law of mass action, the rate of a reaction is proportional to the

product of the concentrations of the species involved, so that

de

dt
= −k0es+ (k0 + k2) c,

ds

dt
= −k1es+ k0c,

dc

dt
= k1es− (k0 + k2) c,

dp

dt
= k2c,

where k0, k1, k2 are rate constants. We impose initial conditions

s(0) = s0, e(0) = e0, c(0) = c0, p(0) = 0,

corresponding to an initial state with substrate and enzyme but no complex or
product.

The equation for p decouples from the remaining equations. Adding the equa-
tions for e and c, we get

d

dt
(e+ c) = 0,

which implies that

e(t) + c(t) = e0.

Thus, the equations reduce to a pair of ODEs for s and c:

ds

dt
= −k1e0s+ (k1s+ k0) c,

dc

dt
= k1e0s− (k1s+ k0 + k2) c,

s(0) = s0, c(0) = 0.

We introduce dimensionless quantities

u(τ) =
s(t)
s0

, v(τ) =
c(t)
e0

, τ = k1e0t,
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λ =
k2

k1s0
, k =

k0 + k2

k1s0
, ε =

e0
s0
.

Then u, v satisfy

du

dτ
= −u+ (u+ k − λ)v,

ε
dv

dτ
= u− (u+ k)v, (4.1)

u(0) = 1, v(0) = 0,

where λ > 0 and k > λ.
The enzyme concentration is typically much less than the substrate concentra-

tion, and the ratio ε is usually in the range 10−2 to 10−7. Thus, we want to solve
(4.1) when ε is small.

This is a singular perturbation problem because the order of the system drops
by one when ε = 0, and we cannot impose an initial condition on the dimensionless
complex concentration v. As we will see below, what happens is this: there is
an initial rapid adjustment of the complex and enzyme concentrations to quasi-
equilibrium values on a time-scale of the order ε. Then there is a slower conversion
of the substrate into the product on a time-scale of the order 1. We will construct
inner and outer solutions that describe these processes and match them together.

4.1.1 Outer solution

We look for a straightforward expansion of the form

u(τ, ε) = u0(τ) + εu1(τ) +O(ε2),

v(τ, ε) = v0(τ) + εv1(τ) +O(ε2).

Using these expansion in (4.1), and equating the leading order terms of the order
ε0, we find that

du0

dτ
= −u0 + (u0 + k − λ) v0,

0 = u0 − (u0 + k) v0.

We cannot impose both initial conditions on the leading-order outer solution. We
will therefore take the most general solution of these equations. We will see, how-
ever, when we come to matching that the natural choice of imposing the initial
condition u0(0) = 1 is in fact correct.

From the second equation,

v0 =
u0

u0 + k
.

This complex concentration v0 corresponds to a quasi-equilibrium for the substrate
concentration u0, in which the creation of the complex by the binding of the enzyme
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with the substrate is balanced by the destruction of the complex by the reverse
reaction and the decomposition of the complex into the product and the enzyme.
Substituting this result into the first equation, we get a first order ODE for u0(τ):

du0

dτ
= − λu0

u0 + k
.

The solution of this equation is given by

u0(τ) + k log u0(τ) = a− λτ,

where a is a constant of integration. This solution is invalid near τ = 0 because no
choice of a can satisfy the initial conditions for both u0 and v0.

4.1.2 Inner solution

There is a short initial layer, for times t = O(ε), in which u, v adjust from their
initial values to values that are compatible with the outer solution found above. We
introduce inner variables

T =
τ

ε
, U(T, ε) = u(τ, ε), V (T, ε) = v(τ, ε).

The inner equations are

dU

dT
= ε {−U + (U + k − λ)V } ,

dV

dT
= U − (U + k)V,

U(0, ε) = 1, V (0, ε) = 0.

We look for an innner expansion

U(T, ε) = U0(T ) + εU1(T ) +O(ε2),

V (T, ε) = V0(T ) + εV1(T ) +O(ε2).

The leading order inner equations are

dU0

dT
= 0,

dV0

dT
= U0 − (U0 + k)V0,

U0(0) = 1, V0(0) = 0.

The solution is

U0 = 1,

V0 =
1

1 + k

[
1− e−(1+k)T

]
.
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4.1.3 Matching

We assume that the inner and outer expansions are both valid for intermediate
times of the order ε� τ � 1. We require that the expansions agree asymptotically
in this regime, where T →∞ and τ → 0 as ε→ 0. Hence, the matching condition
is

lim
T→∞

U0(T ) = lim
τ→0+

u0(τ),

lim
T→∞

V0(T ) = lim
τ→0+

v0(τ).

This condition implies that

u0(0) = 1, v0(0) =
1

1 + k
,

which is satisfied when a = 1 in the outer solution. Hence

u0(τ) + k log u0(τ) = 1− λτ.

The slow manifold for the enzyme system is the curve

v =
u

u+ k
.

Trajectories rapidly approach the slow manifold in the initial layer. They then move
more slowly along the slow manifold and approach the equilibrium u = v = 0 as
τ → ∞. The inner layer corresponds to the small amount of enzyme ‘loading up”
on the substrate. The slow manifold corresponds to the enzyme working at full
capacity in converting substrate into product.

A principle quantity of biological interest is the rate of uptake,

r0 =
du0

dτ

∣∣∣∣
τ=0

.

It follows from the outer solution that

r0 =
λ

1 + k
.

The dimensional form of the rate of uptake is

R0 =
ds

dt

=
Qs0

s0 + km

where Q = k2e0 is the maximum reaction rate, and

km =
k0 + k2

k1

is the Michaelis constant. The maximum rate depends only on k2; the rate limiting
step is C → P + E.
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For more information about enzyme kinetics, see [12].

4.2 General initial layer problems

Consider a dynamical system for x(t) ∈ Rm, y(t) ∈ Rn:

ẋ = f(x, y),

εẏ = g(x, y), (4.2)

x(0) = x0, y(0) = y0.

Here, f : Rm × Rn → Rm, g : Rm × Rn → Rn. Suppose that there is a function
ϕ : Rm → Rn such that

g (x, ϕ(x)) = 0,

and for each fixed x ∈ Rn, the solution y = ϕ(x) is a globally asymptotically stable
equilibrium of the ‘fast’ system

εẏ(t) = g (x, y(t)) . (4.3)

Then the behavior of solutions of (4.2) is as follows:

(a) for t = O(ε), there is a short initial layer in which x(t) is nearly constant,
and close to its initial value x0, and y(t) changes rapidly from its initial
value to the quasi-steady state y = ϕ(x0).

(b) for t = O(1), the solution is close to the slow manifold y = ϕ(x) + O(ε),
and x(t) satisfies

ẋ = f (x, ϕ(x)) .

If (4.3) does not have a unique globally stable equilibrium for every x ∈ Rm,
then more complex phenomena can occur.

An interesting example of a fast-slow system of ODEs arises in modeling the
phenomenon of bursting in pancreatic β-cells. These cells are responsible for pro-
ducing insulin which regulates glucose levels in the body. The β-cells are observed
to undergo ‘bursting’ in which their membrane potential oscillates rapidly, with
periods of the order of milliseconds. These oscillations stimulate the secretion of
insulin by the cell. The length of each bursting period is on the order of seconds,
and its length is influenced by the amount of glucose in the bloodstream. Thus,
this mechanism provides one way that the body regulates glucose.

The basic mathematical model of bursting [12] consists of a fast/slow system.
The fast system undergoes a Hopf bifurcation, corresponding to the appearance of
a limit cycle oscillation, as the slow variable increases. On further increase in the
slow variable the limit cycle disappears at a homoclinic bifurcation, and the fast
system switches to a stable quasi-steady states. A decrease in the slow variable
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leads to a saddle-node bifurcation which destroys this quasi-steady state. When
the fast system is in its limit-cycle state, it drives an increase in the slow variable,
and when the fast system is in its quasi-steady state it drives a decrease in the slow
variable. The overall effect of this dynamics is a periodic oscillation of the slow
variable on a long time scale which switches on and off the rapid periodic bursting
of the fast system.

4.3 Boundary layer problems

The following explicitly solvable model boundary-value problem for a second order
linear ODE illustrates the phenomenon of boundary layers:

εy′′ + 2y′ + y = 0, 0 < x < 1, (4.4)

y(0) = 0, y(1) = 1.

Here, the prime denotes a derivative with respect to x, and ε is a small positive
parameter. The order of the ODE reduces from two to one when ε = 0, so we
cannot expect to impose both boundary conditions on the solution. As we will see,
when ε is small, there is a thin boundary layer (of width the order of ε) near x = 0
where the solution changes rapidly to take on the boundary value.

4.3.1 Exact solution

The exponential solutions of this equation are y = emx where

m =
−1±

√
1− ε

ε
.

We write these roots as m = −α,−β/ε where

α(ε) =
1−
√

1− ε
ε

=
1
2

+O(ε),

β(ε) = 1 +
√

1− ε
= 2 +O(ε).

The general solution is

y(x, ε) = ae−α(ε)x + be−β(ε)x/ε.

Imposing the boundary conditions and solving for the constants of integration a, b,
we find that

y(x, ε) =
e−αx − e−βx/ε

e−α − e−β/ε
.
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Thus, the solution involves two terms which vary on widely different length-scales.
Let us consider the behavior of this solution as ε→ 0+. The asymptotic behavior

is nonuniform, and there are two cases, which lead to matching outer and inner
solutions.

(a) Outer limit : x > 0 fixed and ε→ 0+. Then

y(x, ε)→ y0(x),

where

y0(x) =
e−x/2

e−1/2
. (4.5)

This leading-order outer solution satisfies the boundary condition at x = 1
but not the boundary condition at x = 0. Instead, y0(0) = e1/2.

(b) Inner limit : x/ε = X fixed and ε→ 0+. Then

y(εX, ε)→ Y0(X),

where

Y0(X) =
1− e−2X

e−1/2
.

This leading-order inner solution satisfies the boundary condition at x = 0,
but not the one at x = 1, which corresponds to X = 1/ε. Instead, we have
limX→∞ Y0(X) = e1/2.

(c) Matching : Both the inner and outer expansions are valid in the region
ε � x � 1, corresponding to x → 0 and X → ∞ as ε → 0. They satisfy
the matching condition

lim
x→0+

y0(x) = lim
X→∞

Y0(X).

Let us construct an asymptotic solution of (4.4) without relying on the fact that
we can solve it exactly.

4.3.2 Outer expansion

We begin with the outer solution. We look for a straightforward expansion

y(x, ε) = y0(x) + εy1(x) +O(ε2).

We use this expansion in (4.4) and equate the coefficients of the leading-order terms
to zero. Guided by our analysis of the exact solution, we only impose the boundary
condition at x = 1. We will see later that matching is impossible if, instead, we

56



attempt to impose the boundary condition at x = 0. We obtain that

2y′0 + y0 = 0,

y0(1) = 1.

The solution is given by (4.5), in agreement with the expansion of the exact solution.

4.3.3 Inner expansion

Next, we consider the inner solution. We suppose that there is a boundary layer at
x = 0 of width δ(ε), and introduce a stretched inner variable X = x/δ. We look for
an inner solution

Y (X, ε) = y(x, ε).

Since
d

dx
=

1
δ

d

dX
,

we find from (4.4) that Y satisfies

ε

δ2
Y ′′ +

2
δ
Y ′ + Y = 0,

where the prime denotes a derivative with respect to X. There are two possible
dominant balances in this equation: (a) δ = 1, leading to the outer solution; (b)
δ = ε, leading to the inner solution. Thus, we conclude that the boundary layer
thickness is of the order ε, and the appropriate inner variable is

X =
x

ε
.

The equation for Y is then

Y ′′ + 2Y ′ + εY = 0,

Y (0, ε) = 0.

We impose only the boundary condition at X = 0, since we do not expect the inner
expansion to be valid outside the boundary layer where x = O(ε).

We seek an inner expansion

Y (X, ε) = Y0(X) + εY1(X) +O(ε2)

and find that

Y ′′0 + 2Y ′0 = 0,

Y0(0) = 0.

The general solution of this problem is

Y0(X) = c
[
1− e−2X

]
, (4.6)
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where c is an arbitrary constant of integration.

4.3.4 Matching

We can determine the unknown constant c in (4.6) by requiring that the inner
solution matches with the outer solution (4.5). Here the matching condition is
simply that

lim
x→0+

y0(x) = lim
X→∞

Y0(X),

which implies that

c = e1/2.

In summary, the asymptotic solution as ε→ 0+, is given by

y(x, ε) =
{
e1/2

[
1− e−2x/ε

]
as ε→ 0+ with x/ε fixed,

e−x/2+1/2 as ε→ 0+ with x > 0 fixed.

A more systematic way to match solutions, which is useful in problems where
the behavior of the solution is not as simple, is to introduce an intermediate variable
ξ = x/η(ε), where ε � η(ε) � 1 as ε → 0+, and require that the inner and outer
solutions have the same asymptotic behavior as ε → 0+ with ξ fixed for suitably
chosen η. This requirement holds provided that both the inner and outer expansions
hold in an intermediate ‘overlap’ region in which x = O(η).

4.3.5 Uniform solution

We have constructed two different inner and outer asymptotic solutions in two
different regions. Sometimes it is convenient to have a single uniform solution. This
can be constructed from the inner and outer solutions as follows:

yuniform = yinner + youter − yoverlap.

Here, the function yoverlap is the common asymptotic behavior of the inner and
outer solutions in the matching region. Inside the boundary layer, we have youter ∼
yoverlap, so yuniform ∼ yinner. Away from the boundary layer, we have yinner ∼
yoverlap, so yuniform ∼ youter. Thus, in either case the uniform solution yuniform has
the correct asymptotic behavior.

For the model ODE problem solved above, we have yoverlap = e1/2, and the
leading order uniform solution is given by

yuniform(x, ε) = e1/2
[
e−x/2 − e−2x/ε

]
.

There are systematic matching methods that provide higher-order matched asymp-
totic solutions, but we will not discuss them here. In general such expansions may
not converge, reflecting the singular nature of the perturbation problem. This can
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also be anticipated from the fact that the location of the boundary layer switches
abruptly from x = 0 to x = 1 as the sign of ε switches from positive to negative.

4.3.6 Why is the boundary layer at x = 0?

Suppose we impose the boundary condition at x = 0 on the outer solution and
look for an inner solution and a boundary layer at x = 1. The leading-order outer
solution y0 satisfies

2y′0 + y0 = 0,

y0(0) = 0,

so that

y0(x) = 0.

We look for an inner expansion y(x, ε) = Y (X, ε) in a boundary layer near x = 1,
depending on a stretched inner variable

X =
1− x
ε

.

The leading-order inner solution Y0(X) = Y (X, 0) satisfies

Y ′′0 − 2Y ′0 = 0,

Y0(0) = 1.

The solution is

Y0(X) = e2X + c.

In this case, the inner solution grows exponentially into to interior of the domain,
and Y0(X)→∞ as X →∞. Thus, no matching with the outer solution is possible.

4.4 Boundary layer problems for linear ODEs

Consider the linear BVP

εy′′ + a(x)y′ + b(x)y = 0 0 < x < 1,

y(0) = α, y(1) = β,

where a, b : [0, 1]→ R are continuous functions, and α, β are constants.
The requirement that the inner, boundary layer solution decays exponentially

into the interior of the interval implies that if a(0) > 0, then a boundary layer can
occur at x = 0, and if a(1) < 0, then a boundary layer can occur at x = 1. Thus,
if a does not change sign on [0, 1], the boundary layer can occur at only one end,
while if a changes sign, then more complicated behavior is possible:
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(a) if a(x) > 0, then the boundary layer is at x = 0;
(b) if a(x) < 0, then the boundary layer is at x = 1;
(c) if a(x) changes sign and a′(x) > 0, then a boundary layer cannot occur at

either endpoint (in this case a corner layer typically occurs in the interior);
(d) if a(x) changes sign and a′(x) < 0, then a boundary layer can occur at both

endpoints.

The first two cases are treated by a straightforward modification of the expansion
for constant coefficients. The other two cases are more difficult, and we illustrate
them with some examples.

Example 4.1 Consider the BVP

εy′′ + xy′ − y = 0 − 1 < x < 1,

y(−1) = 1, y(1) = 2.

This ODE can be solved exactly. One solution is y(x) = x. A second linearly
independent solution can be found by reduction of order, which gives

y(x) = e−x
2/(2ε) +

x

ε

∫
e−x

2/(2ε) dx.

We will use the MMAE to construct an asymptotic solution without relying on an
exact solution.

The inner solution grows exponentially into the interior at either end, so we
cannot construct a boundary layer solution. We use instead left and right outer
solutions

y(x, ε) = y0(x) + εy1(x) +O(ε2),

where

xy′0 − y0 = 0.

As we will see, matching implies that the left and right outer solutions are valid in
the intervals (−1, 0) and (0, 1), respectively. Imposing the boundary conditions at
the left and right, we therefore get

y(x, ε) ∼
{
−x as ε→ 0+ with −1 ≤ x < 0 fixed,
2x as ε→ 0+ with 0 < x < 1 fixed.

These outer solutions meet at x = 0, where the coefficient of y′ in the ODE vanishes.
The outer solution has a ‘corner’ at that point.

We seek an inner solution inside a corner layer about x = 0. To find the
appropriate scalings, we introduce the inner variables

X =
x

δ
, Y = ηY,
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and use a dominant balance argument. The rescaled ODE is

ε

δ2
Y ′′ +XY ′ − Y = 0.

The dominant balance for the inner solution occurs when δ = ε1/2, and all three
terms are of the same order of magnitude. Matching the inner solution with the
left and right outer solutions, we find that

ηY (X, ε) ∼
{−δX as X → −∞,

2δX as X →∞.

We therefore choose η = δ.
The leading order inner solution is then given by

y(x, ε) ∼ ε1/2Y0

( x

ε1/2

)
,

where Y0(X) satisfies

Y ′′0 +XY ′0 − Y0 = 0,

Y0(X) ∼
{−X as X → −∞,

2X as X →∞.

In this case, the ODE does not simplify at all; however, we obtain a canonical
boundary value problem on R for matching the two outer solutions.

The solution of this inner problem is

Y0(X) = −X +
3√
2π

[
e−X

2/2 +X

∫ X

−∞
e−t

2/2 dt

]
,

and this completes the construction of the leading order asymptotic solution. (Other
problems may lead to ODEs that require the use of special functions.)

Example 4.2 Consider the BVP

εy′′ − xy′ + y = 0 − 1 < x < 1,

y(−1) = 1, y(1) = 2.

The coefficients of y and y′ have the opposite sign to the previous example, and we
can find an inner, boundary layer solution at both x = 0 and x = 1.

The leading order outer solution y(x, ε) ∼ y0(x) satisfies

−xy′0 + y0 = 0,

with solution

y0(x) = Cx,

where C is a constant of integration.
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The inner solution near x = −1 is given by

y(x, ε) = Y

(
1 + x

ε
, ε

)
,

where Y (X, ε) satisfies

Y ′′ + (1− εX)Y ′ + εY = 0,

Y (0, ε) = 1.

Expanding

Y (X, ε) = Y0(X) + εY1(X) + . . . ,

we find that the leading order inner solution Y0(X) satisfies

Y ′′0 + Y ′0 = 0,

Y0(0) = 1.

The solution is

Y0(X) = 1 +A
(
1− e−X

)
,

where A is a constant of integration.
The inner solution near x = 1 is given by

y(x, ε) = Z

(
1− x
ε

, ε

)
,

where Z(X, ε) satisfies

Z ′′ + (1− εX)Z ′ + εZ = 0,

Z(0, ε) = 2.

Expanding

Z(X, ε) = Z0(X) + εZ1(X) + . . . ,

we find that the leading order inner solution Z0(X) satisfies

Z ′′0 + Z ′0 = 0,

Z0(0) = 2.

The solution is

Z0(X) = 2 +B
(
1− e−X

)
,

where B is a constant of integration.

62



The leading order matching condition implies that

lim
X→∞

Y0(X) = lim
x→−1

y0(x),

lim
X→∞

Z0(X) = lim
x→1

y0(x),

or

1 +A = −C, 2 +B = C.

We conclude that

A = −(1 + C), B = C − 2.

The constant C is not determined by the matching conditions. Higher order match-
ing conditions also do not determine C. Its value (C = 1/2) depends on the inter-
action between the solutions in the boundary layers at either end, which involves
exponentially small effects [13].

4.5 A boundary layer problem for capillary tubes

In view of the subtle boundary layer behavior that can occur for linear ODEs, it
is not surprising that the solutions of nonlinear ODEs can behave in even more
complex ways. Various nonlinear boundary layer problems for ODEs are discussed
in [3], [13], [19]. Here we will discuss a physical example of a boundary layer problem:
the rise of a liquid in a wide capillary tube. This problem was first analyzed by
Laplace [15]; see also [5], [14].

4.5.1 Formulation

Consider an open capillary tube of cross-section Ω ⊂ R2 that is placed vertically in
an infinite reservoir of fluid (such as water). Surface tension causes the fluid to rise
up the tube, and we would like to compute the equilibrium shape of the meniscus
and how high the fluid rises.

According the the Laplace-Young theory, there is a pressure jump [p] across a
fluid interface that is proportional to the mean curvature κ of the interface:

[p] = σκ.

The constant of proportionality σ is the coefficient of surface tension.
We use (x, y) as horizontal coordinates and z as a vertical coordinate, where we

measure the height z from the undisturbed level of the liquid far away from the
tube and pressure p from the corresponding atmospheric pressure. Then, assuming
that the fluid is in hydrostatic equilibrium, the pressure of a column of fluid of
height z is ρgz, where ρ is the density of the fluid (assumed constant), and g is the
acceleration due to gravity.

63



If the fluid interface is a graph z = u(x, y), then its mean curvature is given by

κ = −∇ ·

 ∇u(
1 + |∇u|2

)1/2

 ,
where∇ denotes the derivative with respect to the horizontal coordinates. Choosing
the sign of the pressure jump appropriately, we find that u satisfies the following
PDE in Ω

σ∇ ·

 ∇u(
1 + |∇u|2

)1/2

 = ρgu.

The boundary condition for the PDE follows from the fact that the fluid makes a
fixed angle θw, called the wetting angle, with the wall of the tube. Hence on the
boundary ∂Ω, we have

∂u

∂n
= tan θ0,

where θ0 = π/2− θw. For definiteness, we assume that 0 < θ0 < π/2.
Let a be a typical length-scale of the tube cross-section (for example, the radius

of a circular tube). We introduce dimensionless variables

u∗ =
u

a
, x∗ =

x

a
, y∗ =

y

a
.

Then, after dropping the stars, we find that the nondimensionalized problem is

ε2∇ ·

 ∇u(
1 + |∇u|2

)1/2

 = u in Ω,

∂u

∂n
= tan θ0 on ∂Ω,

where

ε2 =
σ

ρga2
.

We define the capillary length-scale

` =
√

σ

ρg
.

This a characteristic length-scale for the balance between surface-tension and grav-
ity forces, and we expect the fluid to rise up the tube by an amount of this order.
We can write ε = `/a, meaning that it is the ratio of the capillary length-scale to
the width of the tube. When ε� 1, we have a ‘narrow’ tube, and when ε� 1 we
have a ‘wide’ tube.
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4.5.2 Wide circular tubes

We now specialize to the case of a cylindrical tube with circular cross-section. In
view of the symmetry of the problem, we expect that the height of the interface
z = u(r, ε) depends on the radial coordinate r = (x2 + y2)1/2, and the PDE reduces
to an ODE,

ε2

r

{
ru′

[1 + (u′)2]1/2

}′
= u in 0 < r < 1,

u′(0) = 0, u′(1) = tan θ0.

Here, the prime denotes a derivative with respect to r. The surface must have zero
slope at r = 0 if it is to be smooth at the origin.

We will obtain an asymptotic solution for a wide circular tube, corresponding to
the limit ε→ 0.∗ In this case, we expect that the fluid interface is almost flat over
most of the interior of the tube (so that u′ � 1, which linearizes the leading order
equations), and rises near the boundary r = 1 to satisfy the boundary condition.
We will obtain and match three leading-order asymptotic solutions:

(a) an inner solution valid near r = 0;
(b) an intermediate solution valid in 0 < r < 1 (as we will see, this solution is

the large-r limit of the inner solution, and matches with the boundary layer
solution at r = 1);

(c) a boundary layer solution valid near r = 1.

Our main goal is to compute an asymptotic approximation as ε → 0 for the
height of the fluid at the center of the cylinder. The result is given in (4.13) below
— the height is exponentially small in ε.

(a) The inner solution. We look for an inner solution near r = 0 of the form

u(r, ε) = λU(R, ε), R =
r

δ
, (4.7)

where we will determine the scaling parameters λ(ε), δ(ε) by matching and a dom-
inant balance argument.

The slope u′ of the interface is of the order

α =
λ

δ
.

Using (4.7) in the ODE, we get

ε2

δ2
1
R

{
RU ′

[1 + α2(U ′)2]1/2

}′
= U,

∗An asymptotic solution can also be obtained for a narrow circular tube, an easier case since the

problem is a regular perturbation problem as ε→∞.
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where the prime denotes a derivative with respect to R. The dominant balance is
δ = ε, so the inner solution holds in a region of radius of the order ε about the
origin.

The inner equation is then

1
R

{
RU ′

[1 + α2(U ′)2]1/2

}′
= U.

Since we expect that the interface is almost flat in the interior, we assume that
α = o(1) as ε→ 0. (This assumption is consistent with the final solution, in which
λ is exponentially small in ε.)

The leading order inner solution U(R, ε) ∼ U0(R) then satisfies the linear
equation

1
R

(RU ′0)′ = U0,

U ′0(0) = 0.

We do not attempt to impose the boundary condition at r = 1, or R = 1/δ, since
we do not expect the inner solution to be valid in the boundary layer where u′ is of
the order one.

We choose the parameter λ in (4.7) so that U0(0) = 1. Thus, to leading order
in ε, λ is the height of the fluid at the center of the tube. It follows that

U0(R) = I0(R),

where I0 is the modified Bessel function of order zero, which satisfies [17]

1
R

(RI ′0)′ − I0 = 0,

I0(0) = 1, I ′0(0) = 0.

A power series expansion shows that there is a unique solution of this singular IVP.
The solution has the integral representation

I0(R) =
1
π

∫ π

0

eR cos t dt.

This function satisfies the initial conditions, and one can verify that it satisfies the
ODE by direct computation and an integration by parts:

1
R

(RI ′0)′ − I0 = I ′′0 − I0 +
1
R
I ′0

=
1
π

∫ π

0

(
cos2 t− 1

)
eR cos t dt+

1
Rπ

∫ π

0

cos t eR cos t dt

= − 1
π

∫ π

0

sin2 t eR cos t dt+
1
π

∫ π

0

(sin t)′
eR cos t

R
dt

= 0.
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The asymptotic behavior of I0(R) as R→∞ can be computed from the integral
representation by Laplace’s method, and it grows exponentially in R. The phase
cos t has a maximum at t = 0, and

I0(R) ∼ 1
π

∫ ∞
0

eR(1− 1
2 t

2) dt

∼ eR

π

∫ ∞
0

e−Rt
2/2 dt

∼ eR√
2πR

Hence, the outer expansion of this leading-order inner solution is

U0(R) ∼
√

eR

2πR
as R→∞. (4.8)

(b) Intermediate solution. In the region 0 < r < 1, we expect that u′ � 1. The
leading order intermediate solution u(r, ε) ∼ u0(r, ε) then satisfies

ε2

r
(ru′0)′ = u0. (4.9)

This is the same equation as the one for the inner solution, so the inner solution
remains valid in this region. Nevertheless, it is instructive to obtain the asymptotic
behavior of the solution directly from the ODE.

Away from r = 0, the solutions of (4.10) depend on two different length-scales:
exponentially on a length-scale of the order ε and more slowly on a length-scale of
the order one, arising from the dependence of the coefficients of the ODE on r due
to the cylindrical geometry.

To account for this behavior, we use the WKB method, and look for solutions
of the form

u0(r, ε) = a(r, ε)eϕ(r)/ε. (4.10)

One motivation for this form is that the constant-coefficients ODE obtained by
‘freezing’ the value of r at some nonzero constant value,

ε2u′′0 = u0,

has solutions

u0 = ae±r/ε,

where a is a constant. When the coefficients in the ODE depend upon r, we allow
the amplitude a and the phase ϕ(r) = ±r to depend upon r in an appropriate way.

Using (4.10) in (4.9), and rewriting the result, we find that

a(ϕ′)2 + ε

[
2a′ϕ′ + a

1
r

(rϕ′)′
]

+ ε2
1
r

(ra′)′ = a.
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We seek an asymptotic expansion of a,

a(r, ε) ∼ a0(r) + εa1(r) + . . . as ε→ 0.

Using this expansion in (4.5.2), expanding, and equating coefficients of ε0 we find
that

a0

[
(ϕ′)2 − 1

]
= 0.

Hence, if a0 6= 0, we must have

(ϕ′)2 = 1.

Omitting the constants of integration, which can be absorbed into a, the solutions
are

ϕ(r) = ±r.

Equating coefficients of ε and simplifying the result, we find that

a′0 +
1
2r
a0 = 0.

The solution is

a0(r) =
A

r1/2
,

where A is a constant.
We therefore obtain that

u0(r) ∼ A+

r1/2
er/ε +

A−
r1/2

e−r/ε.

Matching this solution as r → 0+ with the the inner solution at r = 0, whose outer
expansion is given in (4.8), and using R = r/ε, U0 = λu0, we find that there are no
terms that grow exponentially as r → 0+ so A− = 0, and

A+ = λ

√
ε

2π
.

Thus, the outer expansion of the inner solution (4.8) is valid as ε→ 0 in the interior
0 < r < 1, and the leading order behavior of the solution is given by

u(r, ε) ∼ λ
√

ε

2πr
er/ε as ε→ 0. (4.11)

Here, the height λ(ε) of the interface at the origin remains to be determined. We
will find it by matching with the solution in the boundary layer.
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(c) The boundary layer solution. Since u′(1, ε) = tan θ0 > 0, we expect that
the slope u′ of the interface is of the order one in a boundary layer near r = 1. We
therefore look for an inner boundary layer solution of the form

u(r, ε) = δU(X, ε), X =
1− r
δ

.

A dominant balance argument gives δ = ε, and then U satisfies the ODE

1
1− εX

{
(1− εX)U ′

[1 + (U ′)2]1/2

}′
= U,

where the prime denotes a derivative with respect to X. The boundary conditions
are

U ′(0, ε) = − tan θ0, U ′(X, ε)→ 0 as X →∞.

The condition as X →∞ is a matching condition, which would need to be refined
for higher-order approximations.

As ε→ 0, we have U(X, ε) ∼ U0(X) where U0(X) satisfies the following BVP{
U ′0

[1 + (U ′0)2]1/2

}′
= U0 0 < X <∞,

U ′0(0) = − tan θ0,

U ′0(X)→ 0 as X →∞.

The ODE is autonomous, corresponding to a two-dimensional planar problem, and
(unlike the cylindrical problem) it can be solved exactly.

To solve the equation, it is convenient to introduce the angle ψ > 0 of the
interface, defined by

tanψ = −U ′0. (4.12)

We will use ψ as a new independent variable, and solve for U0 = U0(ψ) and X =
X(ψ). The change of variables X 7→ ψ is well-defined if U ′0 is strictly decreasing,
as is the case, and then X = 0 corresponds to ψ = θ0 and X = ∞ corresponds to
ψ = 0.

Differentiating (4.12) with respect to X, and writing X-derivatives as d/dX, we
find that

dψ

dX
= −d

2U0

dX2
cos2 ψ.

The ODE implies that

d2U0/

dX2
= U0 sec3 ψ.
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It follows that

dψ

dX
= −U0 secψ.

Using this result, the definition of ψ, and the equation

dU0

dψ
=
dU0

dX

dX

dψ
,

we find that U0, X satisfy the following ODEs:

dU0

dψ
=

sinψ
U0

,

dX

dψ
= −cosψ

U0
.

The boundary conditions on X(ψ) are

X(θ0) = 0, X(ψ)→∞ as ψ → 0+.

The solution for U0 is

U0(ψ) =
√

2(k − cosψ),

where k is a constant of integration. The solution for X is

X(ψ) =
1√
2

∫ θ0

ψ

cos t√
k − cos t

dt,

where we have imposed the boundary condition X(θ0) = 0. The boundary condition
that X →∞ as ψ → 0 implies that k = 1, and then

U0(ψ) = 2 sin
ψ

2
, X(ψ) =

1
2

∫ θ0

ψ

cos t
sin t

2

dt.

Evaluating the integral for X, we get

X(ψ) =
1
2

∫ θ0

ψ

(
cosec

t

2
− sin

t

2

)
dt

=
[
log tan

t

4
+ 2 cos

t

2

]θ0
ψ

= log tan
θ0
4

+ 2 cos
θ0
2
− log tan

ψ

4
− 2 cos

ψ

2
.

The asymptotic behaviors of U0 and X as ψ → 0+ are given by

U0(ψ) = ψ + o(1),

X(ψ) = log tan
θ0
4

+ 2 cos
θ0
2
− log

ψ

4
− 2 + o(1).
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It follows that the outer expansion of the leading-order boundary layer solution is

U0(X) ∼ 4 tan
(
θ0
4

)
e−4 sin2(θ0/4)e−X as X →∞.

Rewriting this expansion in terms of the original variables, u ∼ εU0, r = 1 − εX,
we get

u(r, ε) ∼ 4ε tan
(
θ0
4

)
e−4 sin2(θ0/4)e−1/εer/ε.

The inner expansion as r → 1− of the leading order intermediate solution in
(4.11) is

u(r, ε) ∼ λ
√

ε

2π
er/ε.

These solutions match if

λ = 4 tan
(
θ0
4

)
e−4 sin2(θ0/4)

√
2πεe−1/ε.

Thus, we conclude that

u(0, ε) ∼ 4 tan
(
θ0
4

)
e−4 sin2(θ0/4)

√
2πεe−1/ε as ε→ 0. (4.13)
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Chapter 5

Method of Multiple Scales: ODEs

The method of multiple scales is needed for problems in which the solutions depend
simultaneously on widely different scales. A typical example is the modulation of
an oscillatory solution over time-scales that are much greater than the period of
the oscillations. We will begin by describing the Poincaré-Lindstedt method, which
uses a ‘strained’ time coordinate to construct periodic solutions. We then describe
the method of multiple scales.

5.1 Periodic solutions and the Poincaré-Lindstedt expansion

We begin by constructing asymptotic expansions of periodic solutions of ODEs. The
first example, Duffing’s equation, is a Hamiltonian system with a family of periodic
solutions. The second example, van der Pol’s equation, has an isolated limit cycle.

5.1.1 Duffing’s equation

Consider an undamped nonlinear oscillator described by Duffing’s equation

y′′ + y + εy3 = 0,

where the prime denotes a derivative with respect to time t. We look for solutions
y(t, ε) that satisfy the initial conditions

y(0, ε) = 1, y′(0, ε) = 0.

We look for straightforward expansion of an asymptotic solution as ε→ 0,

y(t, ε) = y0(t) + εy1(t) +O(ε2).

The leading-order perturbation equations are

y′′0 + y0 = 0,

y0(0) = 1, y′0(0) = 0,
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with the solution

y0(t) = cos t.

The next-order perturbation equations are

y′′1 + y1 + y3
0 = 0,

y1(0) = 0, y′1(0) = 0,

with the solution

y1(t) =
1
32

[cos 3t− cos t]− 3
8
t sin t.

This solution contains a secular term that grows linearly in t. As a result, the
expansion is not uniformly valid in t, and breaks down when t = O(ε) and εy1 is
no longer a small correction to y0.

The solution is, in fact, a periodic function of t. The straightforward expansion
breaks down because it does not account for the dependence of the period of the
solution on ε. The following example illustrates the difficulty.

Example 5.1 We have the following Taylor expansion as ε→ 0:

cos [(1 + ε)t] = cos t− εt sin t+O(ε2).

This asymptotic expansion is valid only when t� 1/ε.

To construct a uniformly valid solution, we introduced a stretched time variable

τ = ω(ε)t,

and write y = y(τ, ε). We require that y is a 2π-periodic function of τ . The choice
of 2π here is for convenience; any other constant period — for example 1 — would
lead to the same asymptotic solution. The crucial point is that the period of y in τ
is independent of ε (unlike the period of y in t).

Since d/dt = ωd/dτ , the function y(τ, ε) satisfies

ω2y′′ + y + εy3 = 0,

y(0, ε) = 1, y′(0, ε) = 0,

y(τ + 2π, ε) = y(τ, ε),

where the prime denotes a derivative with respect to τ .
We look for an asymptotic expansion of the form

y(τ, ε) = y0(τ) + εy1(τ) +O(ε2),

ω(ε) = ω0 + εω1 +O(ε2).
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Using this expansion in the equation and equating coefficients of ε0, we find that

ω2
0y
′′
0 + y0 = 0,

y0(0) = 1, y′0(0) = 0,

y0(τ + 2π) = y0(τ).

The solution is

y0(τ) = cos τ,

ω0 = 1.

After setting ω0 = 1, we find that the next order perturbation equations are

y′′1 + y1 + 2ω1y
′′
0 + y3

0 = 0,

y1(0) = 0, y′1(0) = 0,

y1(τ + 2π) = y1(τ).

Using the solution for y0 in the ODE for y1, we get

y′′1 + y1 = 2ω1 cos τ − cos3 τ

=
(

2ω1 −
3
4

)
cos τ − 1

4
cos 3τ.

We only have a periodic solution if

ω1 =
3
8
,

and then

y1(t) =
1
32

[cos 3τ − cos τ ] .

It follows that

y = cosωt+
1
32
ε [cos 3ωt− cosωt] +O(ε2),

ω = 1 +
3
8
ε+O(ε2).

This expansion can be continued to arbitrary orders in ε.
The appearance of secular terms in the expansion is a consequence of the non-

solvability of the perturbation equations for periodic solutions.

Proposition 5.2 Suppose that f : T→ R is a smooth 2π-periodic function, where
T is the circle of length 2π. The ODE

y′′ + y = f
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has a 2π-periodic solution if and only if∫
T
f(t) cos t dt = 0,

∫
T
f(t) sin t dt = 0.

Proof. Let L2(T) be the Hilbert space of 2π-periodic, real-valued functions with
inner product

〈y, z〉 =
∫

T
y(t)z(t) dt.

We write the ODE as

Ay = f,

where

A =
d2

dt2
+ 1.

Two integration by parts imply that

〈y,Az〉 =
∫

T
y (z′′ + z) dt

=
∫

T
(y′′ + y) z dt

= 〈Ay, z〉,

meaning that operator A is formally self-adjoint in L2(T). Hence, it follows that if
Ay = f and Az = 0, then

〈f, z〉 = 〈Ay, z〉
= 〈y,Az〉
= 0.

The null-space of A is spanned by cos t and sin t. Thus, the stated condition is
necessary for the existence of a solution.

When these solvability conditions hold, the method of variation of parameters
can be used to construct a periodic solution

y(t) =

Thus, the conditions are also sufficient. �

In the equation for y1, after replacing τ by t, we had

f(t) = 2ω1 cos t− cos 3t.

This function is orthogonal to sin t, and

〈f, cos t〉 = 2π
{

2ω1cos2 t− cos4 t
}
,
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where the overline denotes the average value,

f =
1

2π

∫
T
f(t) dt.

Since

cos2 t =
1
2
, cos4 t =

3
8
,

the solvability condition implies that ω1 = 3/8.

5.1.2 Van der Pol oscillator

We will compute the amplitude of the limit cycle of the van der Pol equation with
small damping,

y′′ + ε
(
y2 − 1

)
y′ + y = 0.

This ODE describes a self-excited oscillator, whose energy increases when |y| < 1
and decreases when |y| > 1. It was proposed by van der Pol as a simple model of a
beating heart. The ODE has a single stable periodic orbit, or limit cycle.

We have to determine both the period T (ε) and the amplitude a(ε) of the limit
cycle. Since the ODE is autonomous, we can make a time-shift so that y′(0) = 0.
Thus, we want to solve the ODE subject to the conditions that

y(t+ T, ε) = y(t, ε),

y(0, ε) = a(ε),

y′(0, ε) = 0.

Using the Poincaré-Lindstedt method, we introduce a strained variable

τ = ωt,

and look for a 2π-periodic solution y(τ, ε), where ω = 2π/T . Since d/dt = ωd/dτ ,
we have

ω2y′′ + εω
(
y2 − 1

)
y′ + y = 0,

y(τ + 2π, ε) = y(τ, ε),

y(0, ε) = a,

y′(0, ε) = 0,

where the prime denotes a derivative with respect to τ We look for asymptotic
expansions,

y(τ, ε) = y0(τ) + εy1(τ) +O(ε2),

ω(ε) = ω0 + εω1 +O(ε2),

a(ε) = a0 + εa1 +O(ε2).
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Using these expansions in the equation and equating coefficients of ε0, we find that

ω2
0y
′′
0 + y0 = 0,

y0(τ + 2π) = y0(τ),

y0(0) = a0,

y′0(0) = 0.

The solution is

y0(τ) = a0 cos τ,

ω0 = 1.

The next order perturbation equations are

y′′1 + y1 + 2ω1y
′′
0 +

(
y2
0 − 1

)
y′0 = 0,

y1(τ + 2π) = y1(τ),

y1(0) = a1,

y′1(0) = 0.

Using the solution for y0 in the ODE for y1, we find that

y′′1 + y1 = 2ω1 cos τ + a0

(
a2
0 cos2 τ − 1

)
sin τ.

The solvability conditions, that the right and side is orthogonal to sin τ and cos τ
imply that

1
8
a3
0 −

1
2
a0 = 0, ω1 = 0.

We take a0 = 2; the solution a0 = −2 corresponds to a phase shift in the limit cycle
by π, and a0 = 0 corresponds to the unstable steady solution y = 0. Then

y1(τ) = −1
4

sin 3τ +
3
4

sin τ + α1 cos τ.

At the next order, in the equation for y2, there are two free parameters, (a1, ω2),
which can be chosen to satisfy the two solvability conditions. The expansion can
be continued in the same way to all orders in ε.

5.2 The method of multiple scales

Mathieu’s equation,

y′′ + (1 + 2ε cos 2t) y = 0,

describes a parametrically forced simple harmonic oscillator, such as a swing, whose
frequency is changed slightly at twice its natural frequency.
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5.3 The method of averaging

Consider a system of ODEs for x(t) ∈ Rn which can be written in the following
standard form

x′ = εf(x, t, ε). (5.1)

Here, f : Rn × R× R → Rn is a smooth function that is periodic in t. We assume
the period is 2π for definiteness, so that

f(x, t+ 2π, ε) = f(x, t, ε).

Many problems can be reduced to this standard form by an appropriate change of
variables.

Example 5.3 Consider a perturbed simple harmonic oscillator

y′′ + y = εh(y, y′, ε).

We rewrite this equation as a first-order system and remove the unperturbed dy-
namics by introducing new dependent variables x = (x1, x2) defined by(

y

y′

)
=
(

cos t sin t
− sin t cos t

)(
x1

x2

)
.

We find, after some calculations, that (x1, x2) satisfy the system

x′1 = −εh (x1 cos t+ x2 sin t,−x1 sin t+ x2 cos t, ε) sin t,

x′2 = εh (x1 cos t+ x2 sin t,−x1 sin t+ x2 cos t, ε) cos t,

which is in standard periodic form.

Using the method of multiple scales, we seek an asymptotic solution of (5.1)
depending on a ‘fast’ time variable t and a ‘slow’ time variable τ = εt:

x = x(t, εt, ε).

We require that x(t, τ, ε) is a 2π-periodic function of t:

x(t+ 2π, τ, ε) = x(t, τ, ε).

Then x(t, τ, ε) satisfies the PDE

xt + εxτ = f(x, t, ε).

We expand

x(t, τ, ε) = x0(t, τ) + εx1(t, τ) +O(ε2).

At leading order, we find that

x0t = 0.
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It follows that x0 = x0(τ) is independent of t, which is trivially a 2π-periodic
function of t. At the next order, we find that x1 satisfies

x1t + x0τ = f (x0, t, 0) , (5.2)

x1(t+ 2π, τ) = x1(t, τ).

The following solvability condition is immediate.

Proposition 5.4 Suppose f : R → Rn is a smooth, 2π-periodic function. Then
the n× n system of ODEs for x(t) ∈ Rn,

x′ = f(t),

has a 2π-periodc solution if and only if

1
2π

∫ 2π

0

f(t) dt = 0.

Proof. The solution is

x(t) = x(0) +
∫ t

0

f(s) ds.

We have

x(t+ 2π)− x(t) =
∫ t+2π

t

f(s) ds,

which is zero if and only if f has zero mean over a period. �

If this condition does not hold, then the solution of the ODE grows linearly in
time at a rate equal to the mean on f over a period.

An application of this proposition to (5.2) shows that we have a periodic solution
for x1 if and only if x0 satisfies the averaged ODEs

x0τ = f (x0) ,

where

f(x) =
1

2π

∫ 2π

0

f(x, t, 0) dt.

Example 5.5 Returning to the van der Pol equation...

First we state the basic existence theorem for ODEs, which implies that the
solution of (5.1) exists on a time imterval ofthe order ε−1.

Theorem 5.6 Consider the IVP

x′ = εf(x, t),

x(0) = x0,
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where f : Rn×T→ Rn is a Lipschitz continuous function of x ∈ Rn and a continuous
function of t ∈ T. For R > 0, let

BR(x0) = {x ∈ Rn | |x− x0| < R} ,

where | · | denotes the Euclidean norm,

|x| =
n∑
i=1

|xi|2 .

Let

M = sup
x∈BR(x0),t∈T

|f(x, t)|.

Then there is a unique solution of the IVP,

x : (−T/ε, T/ε)→ BR(x0) ⊂ Rn

that exists for the time interval |t| < T/ε, where

T =
R

M
.

Theorem 5.7 (Krylov-Bogoliubov-Mitropolski) With the same notation as
the previous theorem, there exists a unique solution

x : (−T/ε, T/ε)→ BR(x0) ⊂ Rn

of the averaged equation

x′ = εf(x),

x(0) = x0,

where

f(x) =
1

2π

∫
T
f(x, t) dt.

Assume that f : Rn × T → Rn is continuously differentiable. Let 0 < R̃ < R, and
define

T̃ =
R̃

M̃
, M̃ = sup

x∈B eR(x0),t∈T
|f(x, t)|.

Then there exist constants ε0 > 0 and C > 0 such that for all 0 ≤ ε ≤ ε0

|x(t)− x(t)| ≤ Cε for |t| ≤ T̃ /ε.
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A more geometrical way to view these results is in terms of Poincaré return
maps. We define the Poincaré map P ε(t0) : Rn → Rn for (5.1) as the 2π-solution
map. That is, if x(t) is the solution of (5.1) with the initial condition x(t0) = x0,
then

P ε(t0)x0 = x(t0 + 2π).

The choice of t0 is not essential here, since different choices of t0 lead to equivalent
Poincaré maps when f is a 2π-periodic function of t. Orbits of the Poincaré map
consist of closely spaced points when ε is small, and they are approximated by the
trajectories of the averaged equations for times t = O(1/ε).

5.4 Perturbations of completely integrable Hamiltonian systems

Consider a Hamiltonian system whose configuration is described by n angles x ∈ Tn
with corresponding momenta p ∈ Rn. The Hamiltonian H : Tn×Rn → R gives the
energy of the system. The motion is described by Hamilton’s equations

dx

dt
=
∂H

∂p
,

dp

dt
= −∂H

∂x
.

This is a 2n× 2n system of ODEs for x(t), p(t).

Example 5.8 The simple pendulum has Hamiltonian

H(x, p) =
1
2
p2 + sinx.

A change of coordinates (x, p) 7→ (x̃, p̃) that preserves the form of Hamilton’s
equations is called a canonical change of coordinates. A Hamiltonian system is
completely integrable if there exists a canonical change of coordinates (x, p) 7→ (ϕ, I)
such that H = H(I) is independent of the angles ϕ ∈ Tsn. In these action-angle
coordinates, Hamilton’s equations become

dϕ

dt
=
∂H

∂I
,

dI

dt
= 0.

Hence, the solutions are I = constant and

ϕ(t) = ω(I)t+ ϕ0,

where

ω(I) =
∂H

∂I
.
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5.5 The WKB method for ODEs

Suppose that the frequency of a simple harmonic oscillator is changing slowly com-
pared with a typical period of the oscillation. For example, consider small-amplitude
oscillations of a pendulum with a slowly varying length. How does the amplitude
of the oscillations change?

The ODE describing the oscillator is

y′′ + ω2(εt)y = 0,

where y(t, ε) is the amplitude of the oscillator, and ω(εt) > 0 is the slowly varying
frequency.

Following the method of multiple scales, we might try to introduce a slow time
variable τ = εt, and seek an asymptotic solutions

y = y0(t, τ) + εy1(t, τ) +O(ε2).

Then we find that

y0tt + ω2(τ)y0 = 0,

y0(0) = a, y′0(0) = 0,

with solution

y0(t, τ) = a cos [ω(τ)t] .

At next order, we find that

y1tt + ω2y1 + 2y0tτ = 0,

or

y1tt + ω2y1 = 2aωωτ t cosωt.

We cannot avoid secular terms that invalidate the expansion when t = O(1/ε). The
defect of this solution is that its period as a function of the ‘fast’ variable t depends
on the ‘slow’ variable τ .

Instead, we look for a solution of the form

y = y(θ, τ, ε),

θ =
1
ε
ϕ(εt), τ = εt,

where we require y to be 2π-periodic function of the ‘fast’ variable θ,

y(θ + 2π, τ, ε) = y(θ, τ, ε).

The choice of 2π for the period is not essential; the important requirement is that
the period is a constant that does not depend upon τ .
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By the chain rule, we have

d

dt
= ϕτ∂θ + ε∂τ ,

and

y′′ = (ϕτ )2 yθθ + ε {2ϕτyθτ + ϕττyθ}+ ε2yττ .

It follows that y satisfies the PDE

(ϕτ )2 yθθ + ω2y + ε {2ϕτyθτ + ϕττyθ}+ ε2yττ = 0.

We seek an expansion

y(θ, τ, ε) = y0(θ, τ) + εy1(θ, τ) +O(ε2).

Then

(ϕτ )2 y0θθ + ω2y0 = 0.

Imposing the requirement that y0 is a 2π-periodic function of θ, we find that

(ϕτ )2 = ω2,

which is satisfied if

ϕ(τ) =
∫ τ

0

ω(σ) dσ.

The solution for y0 is then

y0(θ, τ) = A(τ)eiθ + c.c.,

where it is convenient to use complex exponentials, A(τ) is an arbitrary complex-
valued scalar, and c.c. denotes the complex conjugate of the preceeding term.

At the next order, we find that

ω2 (y1θθ + y1) + 2ωy0θτ + ωτy0θ = 0.

Using the solution for y0 is this equation, we find that

ω2 (y1θθ + y1) + i (2ωAτ + ωτA) eiθ + c.c. = 0.

The solution for y1 is periodic in θ if and only if A satisfies

2ωAτ + ωτA = 0.

It follows that (
ω|A|2

)
τ

= 0,

so that

ω|A|2 = constant.
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Thus, the amplitude of the oscillator is proportional to ω−1/2 as its frequency
changes.

The energy E ofthe oscillator is given by

E =
1
2

(y′)2 +
1
ω2
y2

=
1
2
ω2|A|2.

Thus, E/ω is constant. The quantity E/ω is called the action. It is an example of
an adiabatic invariant.
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