MATEMATICA del DISCRETO Prima prova intermedia 2018/2019, secondo turno

Cognome	Nomo	Matricola
Cognome	.1NOMe	viatricoia

TUTTI I RISULTATI VANNO BREVEMENTE GIUSTIFICATI

$\mathbf{A2}$

Sia $\mathbb Z$ l'insieme dei numeri relativi. Si considerino le seguenti applicazioni::

- $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$, $f(a,b) = (2ab 1, 3 ab); a, b \in \mathbb{Z}$
- $g: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$, $g(a,b) = (a+b)^2$; $a,b \in \mathbb{Z}$
- $h: \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$, $h(a) = (2a+1, 2a); a, b \in \mathbb{Z}$.
- (1) Determinare: $f(0,4), g^{-1}(0), h^{-1}(5,4), h^{-1}(3,3)$.
- (2) Stabilire se f è iniettiva
- (3) Stabilire se h è suriettiva.
- (4) Determinare quali tra f, g e h si possono comporre e in questi casi determinare le espressioni delle funzioni composte.

B2

Per la scrittura di un numero in base 18 usare i simboli

$$0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F,G,H.\\$$

1) Completare

$$(656)_7 = (??)_{18}$$

riportando esplicitamente i conti effettuati.

2) Completare

$$(AB)_{18} + (AE)_{18} = (??)_{18}$$

3) È vero o falso che se un numero intero è pari allora la sua scrittura in base 7 ha l'ultima cifra pari?

Nell'insieme $X = \{a,b,c,d\}$ si consideri l'operazione associativa \star così definita:

*	a	b	С	d
a	c	d	a	b
b	d	С	b	a
С	a	b	С	d
d	b	a	d	С

- 1) Dimostrare che (X, \star) è un gruppo abeliano (non occorre verificare l'associatività di \star).
- 2) Determinare i periodi di tutti gli elementi del gruppo (X,\star) diversi dall'elemento neutro.
- 3) Calcolare $(d \star b)^{-82}$.
- 4) Stabilire se il sottoinsieme $\{b, c, d\}$ è, o meno, un sottogruppo di (X, \star) .
- 5) Sia $h:X\to\mathbb{Z}_4$ l'applicazione definita da

$$h(a) = [1], \quad h(b) = [3], \quad h(c) = [0], \quad h(d) = [2].$$

Stabilire se h è un omomorfismo dal gruppo (X, \star) al gruppo $(\mathbb{Z}_4, +)$.