

\sim		TN T	TAT 4 • 1
	ognomo	Nomo	Matricola
\smile	UgiiUiii c	•••••• AOIII —•••••	\dots Matricola

TUTTI I RISULTATI VANNO BREVEMENTE GIUSTIFICATI

$\mathbf{A1}$

Nel gruppo (S_7, \circ) delle permutazioni su 7 elementi, si consideri la permutazione

$$\alpha = \left(\begin{array}{cccccc} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 6 & 5 & 2 & 1 & 7 & 4 \end{array}\right)$$

e il ciclo $\gamma = (153)$.

- 1) Scrivere α come prodotto di cicli disgiunti.
- 2) Determinare il periodo di α .
- 3) Stabilire se sia vero o falso che $\alpha^{-47}(2) = \gamma(2)$.
- 4) Stabilire se sia vero o falso che α^4 appartiene al sottogruppo ciclico generato γ .

B1

Si considerino i seguenti insiemi:

- $A = \{1, 2, 3\}$ con la relazione R_A così definita per ogni coppia di elementi x e y in A si ha xR_Ay se e solo se x|y, (il simbolo x|y significa che x divide y).
- $B = \{1, 2, 3\}$ con la relazione R_B così definita per ogni coppia di elementi x e y in B si ha xR_By se e solo se $x \leq y$,
- $X = A \times B$ con la relazione : $(a,b)R_X(c,d)$ se e solo se aR_Ac e bR_Bd .
- (1) Scrivere la matrice di incidenza di R_B .
- (2) Dimostrare che R_X una relazione d'ordine su X, e stabilire se parziale o totale.
- (3) Disegnare il diagramma di Hasse di R_X
- (4) Stabilire se il sottoinsieme Y di X costituito dalle coppie (1,1),(1,3),(2,3) ammette estremo inferiore, estremo superiore, minimo o massimo ed in caso affermativo determinarli.

C1

Nell'insieme $X=\mathbb{Q}\times\mathbb{Q}^*$ delle coppie di numeri razionali (a,b) con $b\neq 0$, si consideri l'operazione associativa \star così definita:

$$(a,b) \star (c,d) = (a+c-1, \frac{bd}{4}).$$

- 1) Dimostrare che (X, \star) è un gruppo abeliano (non è richiesta la verifica dell'associatività).
- 2) Determinare il periodo di (1, -4).
- 3) Calcolare $(2,3) \star ((3,4)^{-1})$.
- 4) Sia $f: X \to \mathbb{Q}^*$ l'applicazione definita da f((a,b)) = b. Stabilire se f è un omomorfismo dal gruppo (X,\star) al gruppo (\mathbb{Q}^*,\cdot) .