Numerical methods for PDEs 1

 $16.10.2018-problem set n.\ 2$

PRACTICAL PART

2.1. Implementation of a finite element method. Implement the linear finite element method for the boundary value problem

-u'' = f in [a, b], u(a) = 0, u'(b) = 0,

where $a, b \in \mathbb{R}$ with a < b. More precisely, implement a function, for example in C of the type

void SolveLins(int N, double *mesh, double *sol)

where

N: stands for the dimension of the discrete space,

mesh: points to an array of **double** containing the nodes of the mesh and

sol: points to an array of double where the coefficients of the approximate solution can be stored.

To this end,

• assume that the load term f is given as a function, for example in C of the type

double f(double x)

- use the approach of problem 2.2 to assemble the linear system by means of a loop over the small intervals, computing the stiffness matrix on the reference interval by hand,
- use the function thomas of problem 1.1 to solve the assembled linear system.

Ensure that, apart from the zeros in the stiffness matrix, the linear system is assembled with a number of operations that is of order N.

Moreover, implement a function, for example in C of the type

that returns the pointer to an array containing the NPoints equidistant nodes of a uniform mesh of the interval [a,b]. If mesh == NIL, allocate the memory for the array, otherwise use the address mesh.

Test MakeUnifMesh and SolveLins.

THEORETICAL PART

2.2. Matrix assembly in 1d. Consider the linear system for the linear finite element solution of the problem

$$-u'' = f$$
 in $[a, b],$ $u(a) = 0,$ $u'(b) = 0,$

where $a, b \in \mathbb{R}$ with a < b. Let K be the matrix of that system, which is referred to as stiffness matrix, and let

$$\hat{K} := \left(\int_0^1 \hat{\phi}'_J \hat{\phi}'_I \right)_{I,J=0,1}$$

with

$$\hat{\phi}_0(x) = 1 - x, \quad \hat{\phi}_1(x) = x, \quad (x \in [0, 1]),$$

be the stiffness matrix on the reference interval. Verify that the stiffness matrix K can be computed in the following manner:

$$K = \sum_{l=1}^{n} K^{l}$$

where the coefficients of the matrices K^l are

$$K_{ij}^{l} = \begin{cases} h_{l}^{-1} \hat{K}_{i-l+1,j-l+1} & \text{if } i, j \in \{l-1,l\}, \\ 0, & \text{otherwise,} \end{cases} \quad (i, j = 1, \dots, n)$$

with $h_l = x_l - x_{l-1}$. Using this approach, how much memory and how many operations are needed?

Hint: Interpret I, J as local and i, j as global indices, which are related through the number l of the interval.

2.3. Classical integration by parts with test functions. Let $\Omega \subset \mathbb{R}^d$, $d \in \mathbb{N}$, be a nonempty open set, $i \in \{1, \ldots, d\}$ and $v \in C^0(\Omega)$ be such that $\partial_i v \in C^0(\Omega)$. Prove that

$$\forall \varphi \in C_0^1(\Omega) \qquad \int_\Omega \partial_i v \varphi = -\int_\Omega v \partial_i \varphi.$$

Hint: Consider first the case d = 1 and use it for the general case, assuming, e.g., $[a, b] \times \mathbb{R}^{d-1} \supseteq \Omega$ for i = 1.

2.4. Derivatives of polynomials. Given multi-indices $\alpha, \beta \in \mathbb{N}_0^d$, show that

$$\partial^{\beta} x^{\alpha} = \begin{cases} \frac{\alpha!}{(\alpha-\beta)!} x^{\alpha-\beta} & \text{if } \alpha \ge \beta, \\ 0 & \text{otherwise.} \end{cases}$$

2.5. Axioms for finite element spaces. The book 'The Finite Element Method for Elliptic Problems' (North-Holland, Amsterdam, 1978) by P. G. Ciarlet describes a finite element space $V(\mathcal{M})$ over a mesh \mathcal{M} with the following properties:

FEM1: The closure $\overline{\Omega}$ of the domain $\Omega \subset \mathbb{R}^d$ is subdivided in subsets $K \in \mathcal{M}$ such that

- (a) For any $K \in \mathcal{M}$, the set K is closed and its interior is non-empty and connected.
- (b) (if $d \ge 2$) For any $K \in \mathcal{M}$ the boundary ∂K is Lipschitz. (c) $\overline{\Omega} = \bigcup_{K \in \mathcal{M}} K$.
- (d) If $K_1, K_2 \in \mathcal{M}$ are different, then $\operatorname{int}(K_1) \cap \operatorname{int}(K_2) = \emptyset$.

FEM2: Setting $P_K := \{v_{|K} \mid v \in V(\mathcal{M})\}$, the space P_K contains polynomials or functions "close to" polynomials.

FEM3: $V(\mathcal{M})$ has a "computable" basis and the supports of the basis functions are small.

Verify that, for $k \in \{1, 2\}$ and

$$0 = x_0 < x_1 < \dots < x_i < \dots < x_n < x_{n+1} = 1,$$

the space

$$S_k = \{ v \in C^0[0,1] \mid \forall i = 1, \dots, n+1 \ v_{|[x_{i-1},x_i]} \in \mathbb{P}_k[x_{i-1},x_i], \\ v(0) = 0 = v(1) \}$$

are finite element spaces.

INFORMATION:

Course homepage: www.mat.unimi.it/users/veeser/mnedp1.html Prof. A. Veeser Office: 2049 (nel "sottotetto") Phone: 02.503.16186 Email: andreas.veeser@unimi.it Office hours: Tuesday 9:30 - 11:30 Dott.ssa F. Fierro Office: 2044 Phone: 02.503.16179 Email: francesca.fierro@unimi.it Office hours: Wednesday 10:30 - 12:30