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PRACTICAL PART

2.1. Implementation of a finite element method. Implement the
linear finite element method for the boundary value problem

—u" = f in [a,b], u(a) =0, u'(b) =0,

where a,b € R with a < b. More precisely, implement a function, for
example in C of the type
void SolvelLins(int N, double *mesh, double *sol)
where
N: stands for the dimension of the discrete space,
mesh: points to an array of double containing the nodes of the mesh
and
sol: points to an array of double where the coefficients of the approx-
imate solution can be stored.

To this end,

e assume that the load term f is given as a function, for example in
C of the type

double f(double x)

e use the approach of problem 2.2 to assemble the linear system by
means of a loop over the small intervals, computing the stiffness
matrix on the reference interval by hand,
e use the function thomas of problem 1.1 to solve the assembled linear
system.
Ensure that, apart from the zeros in the stiffness matrix, the linear
system is assembled with a number of operations that is of order N.
Moreover, implement a function, for example in C of the type

double *MakeUnifMesh(double a, double b, int NPoints,

double *mesh)

that returns the pointer to an array containing the NPoints equidistant
nodes of a uniform mesh of the interval [a,b]. If mesh == NIL, allocate
the memory for the array, otherwise use the address mesh.
Test MakeUnifMesh and SolveLins.



THEORETICAL PART

2.2. Matrix assembly in 1d. Consider the linear system for the lin-
ear finite element solution of the problem

—u" = f in [a,b], u(a) =0, u'(b) =0,

where a,b € R with a < b. Let K be the matrix of that system, which
is refered to as stiffness matrix, and let

1
K= ( / ¢3¢’1)
0 1,7=0,1

do(v) =1—w, ¢i(z)=ua, (x€]0,1]),
be the stiffness matrix on the reference interval. Verify that the stiffness
matrix K can be computed in the following manner:

K= i[(l
=1

where the coefficients of the matrices K are

Kl — hi' Kisiirgo ifije{l—11}
ZJ 0, otherwise,

with

(i,j=1,...,n)

with h; = ; — x;_1. Using this approach, how much memory and how
many operations are needed?

Hint: Interpret I, J as local and 7, 5 as global indices, which are related
through the number [ of the interval.

2.3. Classical integration by parts with test functions. Let () C

R? d € N, be a nonempty open set, i € {1,...,d} and v € C°(Q) be
such that 9;v € C°(Q2). Prove that

Vi € CH() / Ojvp = — / V0.
Q 0

Hint: Consider first the case d = 1 and use it for the general case,
assuming, e.g., [a,b] x R D Q for i = 1.

2.4. Derivatives of polynomials. Given multi-indices a, 3 € Ng,

show that
Ppo @ Hazp,
0 otherwise.



2.5. Axioms for finite element spaces. The book ‘The Finite Ele-
ment Method for Elliptic Problems’ (North-Holland, Amsterdam, 1978)
by P. G. Ciarlet describes a finite element space V(M) over a mesh M
with the following properties:
FEM1: The closure Q of the domain 2 C R? is subdivided in subsets
K € M such that
(a) For any K € M, the set K is closed and its interior is
non-empty and connected.
(b) (if d > 2) For any K € M the boundary 0K is Lipschitz.

(C) Q= UKGMK-
(d) If Ky, Ky € M are different, then int(K7) Nint(Ky) = 0.
FEM2: Setting Px := {yx | v € V(M)}, the space Px contains
polynomials or functions “close to” polynomials.
FEM3: V(M) has a “computable” basis and the supports of the basis
functions are small.

Verify that, for k& € {1,2} and
O=zo<m1 < - <2; <+ <Tp < Tpa1 =1,
the space
Sp={veC0,1]|Vi=1,....n+ 1 v , 2 € Prlzi1, 2],
v(0) =0=10v(1)}

are finite element spaces.
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