Numerical methods for PDEs 1

23.10.2018 - problem set n. 3

Practical part

3.1. Error decay for linear finite elements. Using the implementation of Problem 2.1, observe the error decay for the linear finite element method. More precisely:

- Implement a function that inserts in a given mesh all midpoints of the subintervals as new points, thus producing a new mesh with maximal subinterval length divided by 2 .
- Implement a function that computes an approximation of the error in the energy norm

$$
\left\|u^{\prime}-U^{\prime}\right\|_{0,2 ;] 0,1[}:=\left(\int_{0}^{1}\left|u^{\prime}-U^{\prime}\right|^{2}\right)^{1 / 2}
$$

by means of a loop over the subintervals and by applying Simpson's rule in each subinterval.

- Choose a problem with known solution and, starting from a uniform mesh, observe the so-called EOC (experimental order of convergence) given by

$$
E O C_{k}:=\log _{2} \frac{e_{k-1}}{e_{k}}
$$

where k indicates the iteration number and e_{k} the error in iteration k.

Test your implementations by approximating the solution of

$$
\left.-u^{\prime \prime}=1 \text { in }\right] 0,1[, \quad u(0)=0=u(1) .
$$

Theoretical part

3.2. Minimal surface equation. Given an open set $\Omega \subset \mathbb{R}^{d}$ and $g \in C^{0}(\partial \Omega)$, define

$$
A[v]:=\int_{\Omega} \sqrt{1+|\nabla v|^{2}}
$$

and

$$
V_{g}:=\left\{v \in C^{1}(\bar{\Omega}) \mid v=g \text { su } \partial \Omega\right\} .
$$

Verify that if u is a minimizer of A in V_{g}, then

$$
-\operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}\right)=0 \text { in } \Omega, \quad u=g \operatorname{su} \partial \Omega .
$$

Moreover, check that the operator

$$
v \mapsto-\operatorname{div}\left(\frac{\nabla v}{\sqrt{1+|\nabla v|^{2}}}\right)
$$

is nonlinear.
3.3. Elliptic problems from implicit time discretizations. Given $T>0$ and an open set $\Omega \in \mathbb{R}^{d}$, consider the following problem: find

$$
u: \bar{\Omega} \times[0, T] \rightarrow \mathbb{R}
$$

such that

$$
\begin{align*}
\partial_{t} u-\operatorname{div}(A \nabla u)=f & & \text { in } \Omega \times] 0, T[\\
\partial_{n} u=0 & & \text { on } \partial \Omega \times] 0, T[\tag{1}\\
u(\cdot, 0)=v & & \text { on } \Omega,
\end{align*}
$$

where $A(x, t)$ is a symmetric definite positive matrix for all $(x, t) \in$ $\Omega \times] 0, T[$. Moreover, assume that

$$
0=t_{0}<t_{1}<\cdots<t_{n-1}<t_{n}=T
$$

is a partition of $[0, T]$. Show that the time stepping problems of the implicit Euler method for (1) are (elliptic) boundary value problems. What happens to these problems when the time step tends to 0 ?
3.4. A pure Neumann problem. Consider the following problem: Given

- a domain $\Omega \subset \mathbb{R}^{d}, d \in \mathbb{N}$, with C^{1} boundary and exterior normal n,
- a matrix function $A \in C^{1}\left(\Omega ; \mathbb{R}^{d \times d}\right) \cap C^{0}\left(\bar{\Omega} ; \mathbb{R}^{d \times d}\right)$ such that $A(x)$ is symmetric and positive definite for all $x \in \bar{\Omega}$,
- a source $f \in C^{0}(\bar{\Omega})$ and
- boundary values $g \in C^{0}(\partial \Omega)$,
find $u \in C^{2}(\Omega) \cap C^{1}(\bar{\Omega})$ such that

$$
-\operatorname{div}(A \nabla u)=f \quad \text { in } \Omega, \quad A \nabla u \cdot n=g \quad \text { on } \partial \Omega .
$$

Prove:
(a) If u is a solution and $c \in \mathbb{R}$ is a constant, then $u+c$ is also a solution.
(b) If u_{1} and u_{2} are solutions, then there exists a constant $c \in \mathbb{R}$ such that $u_{1}-u_{2}=c$.
(c) If there is a solution, then there holds $\int_{\Omega} f+\int_{\partial \Omega} g=0$.
3.5. Finite elements and finite differences. Consider the problem

$$
\left.-u^{\prime \prime}=f \text { in }\right] 0,1[, \quad u(0)=0=u(1)
$$

with $f \in C^{0}[0,1]$. Given a uniform mesh

$$
\mathcal{M}: \quad x_{i}=\frac{i}{n} \quad(i=0, \ldots, n \in \mathbb{N})
$$

set

$$
\begin{aligned}
S:=\left\{V \in C^{0}[0,1] \mid \forall i=1, \ldots n V_{\| x_{i-1}, x_{i}[} \in \mathbb{P}_{1}(] x_{i-1}, x_{i}[)\right. & \\
& V(0)=0=V(1)\}
\end{aligned}
$$

and recall the trapezoidal rule

$$
\int_{0}^{1} g \approx \frac{1}{2} \sum_{i=1}^{n}\left(x_{i}-x_{i-1}\right)\left(g\left(x_{i-1}\right)+g\left(x_{i}\right)\right)
$$

Let $U_{\mathrm{FE}} \in S$ be such that

$$
\forall \varphi \in S \quad \int_{0}^{1} U_{\mathrm{FE}}^{\prime} \varphi^{\prime}=\frac{1}{2} \sum_{i=1}^{n}\left(x_{i}-x_{i-1}\right)\left((f \varphi)\left(x_{i-1}\right)+(f \varphi)\left(x_{i}\right)\right)
$$

and $\left(U_{\mathrm{FD}, i}\right)_{i}$ be such that

$$
\begin{gathered}
\frac{-U_{\mathrm{FD}, i-1}+2 U_{\mathrm{FD}, i}-U_{\mathrm{FD}, i+1}}{h^{2}}=f\left(x_{i}\right) \quad i=1, \ldots n-1 \\
U_{\mathrm{FD}, 0}=0=U_{\mathrm{FD}, n}
\end{gathered}
$$

with $h=1 / n$. Verify that

$$
\forall i=0, \ldots, n \quad U_{\mathrm{FE}}\left(x_{i}\right)=U_{\mathrm{FD}, i} .
$$

Information:

Course homepage: www.mat.unimi.it/users/veeser/mnedp1.html
Prof. A. Veeser
Office: 2049 (nel "sottotetto")
Phone: 02.503.16186
Email: andreas.veeser@unimi.it
Office hours: Tuesday 9:30-11:30
Dott.ssa F. Fierro
Office: 2044
Phone: 02.503.16179
Email: francesca.fierro@unimi.it
Office hours: Wednesday 10:30-12:30

