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Practical part

3.1. Error decay for linear finite elements. Using the implementa-
tion of Problem 2.1, observe the error decay for the linear finite element
method. More precisely:

• Implement a function that inserts in a given mesh all midpoints of
the subintervals as new points, thus producing a new mesh with
maximal subinterval length divided by 2.

• Implement a function that computes an approximation of the error
in the energy norm

�u� − U ��0,2;]0,1[ :=
�� 1

0

|u� − U �|2
�1/2

,

by means of a loop over the subintervals and by applying Simpson’s
rule in each subinterval.

• Choose a problem with known solution and, starting from a uni-
form mesh, observe the so-called EOC (experimental order of con-
vergence) given by

EOCk := log2
ek−1

ek
where k indicates the iteration number and ek the error in iteration
k.

Test your implementations by approximating the solution of

−u�� = 1 in ]0, 1[, u(0) = 0 = u(1).

Theoretical part

3.2. Minimal surface equation. Given an open set Ω ⊂ Rd and
g ∈ C0(∂Ω), define

A[v] :=

�

Ω

�
1 + |∇v|2

and
Vg := {v ∈ C1(Ω) | v = g su ∂Ω}.

Verify that if u is a minimizer of A in Vg, then

− div

�
∇u�

1 + |∇u|2

�
= 0 in Ω, u = g su ∂Ω.



Moreover, check that the operator

v �→ − div

�
∇v�

1 + |∇v|2

�

is nonlinear.

3.3. Elliptic problems from implicit time discretizations. Given
T > 0 and an open set Ω ∈ Rd, consider the following problem: find

u : Ω̄× [0, T ] → R

such that

(1)

∂tu− div(A∇u) = f in Ω× ]0, T [

∂nu = 0 on ∂Ω× ]0, T [

u(·, 0) = v on Ω,

where A(x, t) is a symmetric definite positive matrix for all (x, t) ∈
Ω× ]0, T [. Moreover, assume that

0 = t0 < t1 < · · · < tn−1 < tn = T

is a partition of [0, T ]. Show that the time stepping problems of the
implicit Euler method for (1) are (elliptic) boundary value problems.
What happens to these problems when the time step tends to 0?

3.4. A pure Neumann problem. Consider the following problem:
Given

• a domain Ω ⊂ Rd, d ∈ N, with C1 boundary and exterior normal
n,

• a matrix function A ∈ C1(Ω;Rd×d) ∩ C0(Ω;Rd×d) such that A(x)
is symmetric and positive definite for all x ∈ Ω,

• a source f ∈ C0(Ω) and
• boundary values g ∈ C0(∂Ω),

find u ∈ C2(Ω) ∩ C1(Ω) such that

− div(A∇u) = f in Ω, A∇u · n = g on ∂Ω.

Prove:

(a) If u is a solution and c ∈ R is a constant, then u + c is also a
solution.

(b) If u1 and u2 are solutions, then there exists a constant c ∈ R such
that u1 − u2 = c.

(c) If there is a solution, then there holds
�
Ω
f +

�
∂Ω

g = 0.



3.5. Finite elements and finite differences. Consider the problem

−u�� = f in ]0, 1[, u(0) = 0 = u(1)

with f ∈ C0[0, 1]. Given a uniform mesh

M : xi =
i

n
(i = 0, . . . , n ∈ N),

set

S :=
�
V ∈ C0[0, 1] | ∀i = 1, . . . n V|]xi−1,xi[ ∈ P1(]xi−1, xi[),

V (0) = 0 = V (1)
�

and recall the trapezoidal rule
� 1

0

g ≈ 1

2

n�

i=1

(xi − xi−1)
�
g(xi−1) + g(xi)

�

Let UFE ∈ S be such that

∀ϕ ∈ S

� 1

0

U �
FEϕ

� =
1

2

n�

i=1

(xi − xi−1)
�
(fϕ)(xi−1) + (fϕ)(xi)

�

and (UFD,i)i be such that

−UFD,i−1 + 2UFD,i − UFD,i+1

h2
= f(xi) i = 1, . . . n− 1

UFD,0 = 0 = UFD,n

with h = 1/n. Verify that

∀i = 0, . . . , n UFE(xi) = UFD,i.
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