Numerical methods for PDEs 1

06.11.2018 - problem set n. 5

Practical part

5.1. Simulation of pressure sensor. Solve with ALBERTA the problem

$$
\left.-\Delta u=p_{e}-p_{i} \quad \text { in } \quad\right]-1,1\left[^{2}, \quad u=0 \quad \text { on } \quad \partial\right]-1,1\left[^{2},\right.
$$

where the constants p_{e}, p_{i} denote, respectively, the pressure exterior and interior to the sensor. To this end:

- Copy the files ellipt.c, graphic.c of the folder Common/ and the files Makefile, INIT/ellipt.dat, Macro/macro.amc of the folder 2d/ into a new folder of your choice.
- Modify the copy of ellipt.c, implementing load term and boundary values.
- Compile the source codes after suitably modifying make.
- Run and visualize the numerical solution for various pressures, choosing the following values in the parameter file ellipt.dat:

```
macro file name: Macro/macro.amc
polynomial degree: 1
adapt->strategy: 1
adapt->max_iteration: 5
```

Accordingly, starting from the mesh in Macro/macro.amc, the program performs a global refinement and computes the corresponding approximations with linear finite elements for five times.

Theoretical part

5.2. Bilinear forms and linear operators. Let V and W be linear spaces with norms $\|\cdot\|_{V}$ and $\|\cdot\|_{W}$, respectively, and write $V^{\prime}:=$ $\operatorname{Lin}(V, \mathbb{R})$ and $W^{\prime}:=\operatorname{Lin}(W, \mathbb{R})$ for their (topological) dual spaces. A bilinear form $b: V \times W \rightarrow \mathbb{R}$ is bounded whenever there exists a constant $C \geq 0$ such that

$$
\forall v \in V, w \in W \quad|b(v, w)| \leq C\|v\|_{V}\|w\|_{W}
$$

Show that, by

$$
\forall v \in V, w \in W \quad\langle L v, w\rangle=b(v, w),
$$

every bounded bilinear form $b: V \times W \rightarrow \mathbb{R}$ defines a linear operator $L \in \operatorname{Lin}\left(V, W^{\prime}\right)$ and vice versa.
5.3. Completeness and examples. A linear space V with norm $\|\cdot\|_{V}$ is complete if every Cauchy sequence has a limit in V, i.e. if $\left(v_{k}\right)_{k}$ satisfies $\left\|v_{m}-v_{n}\right\| \rightarrow 0$ as $n, m \rightarrow \infty$, then there exists $v \in V$ such that $\left\|v_{k}-v\right\| \rightarrow 0$ as $k \rightarrow \infty$. In this case, one says also that $\left(V,\|\cdot\|_{V}\right)$ is a Banach space.

Let $\Omega \subset \mathbb{R}^{d}$ be non-empty, open and bounded. Show:
(a) $\left(C^{0}(\bar{\Omega}),\|\cdot\|_{0, p ; \bar{\Omega}}\right)$ with $p \in[1, \infty[$ is not a Banach space.
(b) $\left(C^{0}(\bar{\Omega}),\|\cdot\|_{0, \infty ; \bar{\Omega}}\right)$ is a Banach space.
(c) $\left(C^{1}(\bar{\Omega}),\|\cdot\|_{0, \infty ; \bar{\Omega}}\right)$ is not a Banach space.
5.4. Extension of linear operators. Let V and W be linear spaces with norms $\|\cdot\|_{V}$ and $\|\cdot\|_{W}$, respectively, and let \tilde{V} be a linear subspace of V. Prove: If \tilde{V} is dense in V and W is complete, then every linear operator $\tilde{L} \in \operatorname{Lin}(\tilde{V}, W)$ has a unique extension $L \in \operatorname{Lin}(V, W)$ such that $L_{\mid \tilde{V}}=\tilde{L}$.
5.5. Lebesgue norms. Let $\Omega \subset \mathbb{R}^{d}$ be a non-empty, open and bounded set and $p \in[1, \infty]$. Set (whenever defined)

$$
\begin{gathered}
\|v\|_{0, p ; \Omega}:=\left(\int_{\Omega}|v|^{p}\right)^{1 / p} \text { for } p<\infty \\
\|v\|_{0, \infty ; \Omega}=\inf _{|N|=0} \sup _{x \in \Omega \backslash N}|v(x)|
\end{gathered}
$$

where \int denotes the Riemann or the Lebesgue integral and $|\cdot|$ is the Jordan or Lebesgue measure. In the case of Lebesgue integral and Lebesgue measure,

$$
L^{p}(\Omega):=\left\{v: \Omega \rightarrow \mathbb{R} \mid\|v\|_{0, p ; \Omega} \text { is defined and finite }\right\}
$$

is a Lebesgue space associated with $p \in[1, \infty]$. Prove:
(a) If $v \in C^{0}(\bar{\Omega})$, then $\sup _{x \in \Omega}|v(x)|=\inf _{|N|=0} \sup _{x \in \Omega \backslash N}|v(x)|$.
(b) If $\Omega=B_{d}:=\left\{x \in \mathbb{R}^{d}| | x \mid \leq 1\right\}$ and $\rho \in \mathbb{R}$, then

$$
|\cdot|^{\rho} \in L^{p}(\Omega) \Longleftrightarrow \rho>-\frac{d}{p}
$$

(c) If $\varphi \in C_{0}^{\infty}\left(B_{d}\right), \delta>0$ and $\varphi_{\delta}:=\varphi(\cdot / \delta)$, then

$$
\left\|\varphi_{\delta}\right\|_{0, p ; \delta B_{d}}=\delta^{\frac{d}{p}}\|\varphi\|_{0, p ; B_{d}}
$$

(d) $\|\cdot\|_{0, p ; \Omega}$ is a norm provided one considers suitable equivalence classes in $L^{p}(\Omega)$.
(e) If $0<q \leq p \leq \infty$, then $L^{p}(\Omega) \subset L^{q}(\Omega)$ and the linear operator $L^{q}(\Omega) \ni v \mapsto v \in L^{p}(\Omega)$ has norm $|\Omega|^{\frac{1}{q}-\frac{1}{p}}$.

Hint: Use polar coordinates for (b) and the Hölder inequality for (d).

