Numerical methods for PDEs 1

06.11.2018 – problem set n. 5

PRACTICAL PART

5.1. Simulation of pressure sensor. Solve with ALBERTA the problem

$$-\Delta u = p_e - p_i$$
 in $]-1, 1[^2, \quad u = 0$ on $\partial]-1, 1[^2,$

where the constants p_e , p_i denote, respectively, the pressure exterior and interior to the sensor. To this end:

- Copy the files ellipt.c, graphic.c of the folder Common/ and the files Makefile, INIT/ellipt.dat, Macro/macro.amc of the folder 2d/ into a new folder of your choice.
- Modify the copy of ellipt.c, implementing load term and boundary values.
- Compile the source codes after suitably modifying make.
- Run and visualize the numerical solution for various pressures, choosing the following values in the parameter file ellipt.dat:

macro file name:	Macro/macro.amc
polynomial degree:	1
adapt->strategy:	1
adapt->max_iteration:	5

Accordingly, starting from the mesh in Macro/macro.amc, the program performs a global refinement and computes the corresponding approximations with linear finite elements for five times.

THEORETICAL PART

5.2. Bilinear forms and linear operators. Let V and W be linear spaces with norms $\|\cdot\|_V$ and $\|\cdot\|_W$, respectively, and write V' := $\operatorname{Lin}(V, \mathbb{R})$ and $W' := \operatorname{Lin}(W, \mathbb{R})$ for their (topological) dual spaces. A bilinear form $b : V \times W \to \mathbb{R}$ is bounded whenever there exists a constant $C \geq 0$ such that

 $\forall v \in V, w \in W$ $|b(v, w)| \leq C ||v||_V ||w||_W.$

Show that, by

$$\forall v \in V, w \in W \quad \langle Lv, w \rangle = b(v, w),$$

every bounded bilinear form $b: V \times W \to \mathbb{R}$ defines a linear operator $L \in \text{Lin}(V, W')$ and vice versa.

5.3. Completeness and examples. A linear space V with norm $\|\cdot\|_V$ is complete if every Cauchy sequence has a limit in V, i.e. if $(v_k)_k$ satisfies $\|v_m - v_n\| \to 0$ as $n, m \to \infty$, then there exists $v \in V$ such that $\|v_k - v\| \to 0$ as $k \to \infty$. In this case, one says also that $(V, \|\cdot\|_V)$ is a Banach space.

Let $\Omega \subset \mathbb{R}^d$ be non-empty, open and bounded. Show:

- (a) $(C^0(\overline{\Omega}), \|\cdot\|_{0,p;\overline{\Omega}})$ with $p \in [1, \infty)$ is not a Banach space.
- (b) $(C^0(\overline{\Omega}), \|\cdot\|_{0,\infty;\overline{\Omega}})$ is a Banach space.
- (c) $(C^1(\Omega), \|\cdot\|_{0,\infty;\overline{\Omega}})$ is not a Banach space.

5.4. Extension of linear operators. Let V and W be linear spaces with norms $\|\cdot\|_{V}$ and $\|\cdot\|_{W}$, respectively, and let \tilde{V} be a linear subspace of V. Prove: If \tilde{V} is dense in V and W is complete, then every linear operator $\tilde{L} \in \operatorname{Lin}(\tilde{V}, W)$ has a unique extension $L \in \operatorname{Lin}(V, W)$ such that $L_{|\tilde{V}|} = \tilde{L}$.

5.5. Lebesgue norms. Let $\Omega \subset \mathbb{R}^d$ be a non-empty, open and bounded set and $p \in [1, \infty]$. Set (whenever defined)

$$\begin{aligned} \|v\|_{0,p;\Omega} &:= \left(\int_{\Omega} |v|^p\right)^{1/p} \quad \text{for} \quad p < \infty, \\ \|v\|_{0,\infty;\Omega} &= \inf_{|N|=0} \sup_{x \in \Omega \setminus N} |v(x)|, \end{aligned}$$

where \int denotes the Riemann or the Lebesgue integral and $|\cdot|$ is the Jordan or Lebesgue measure. In the case of Lebesgue integral and Lebesgue measure,

 $L^p(\Omega) := \{ v : \Omega \to \mathbb{R} \mid \|v\|_{0,p;\Omega} \text{ is defined and finite} \}$

is a Lebesgue space associated with $p \in [1, \infty]$. Prove:

(a) If $v \in C^0(\overline{\Omega})$, then $\sup_{x \in \Omega} |v(x)| = \inf_{|N|=0} \sup_{x \in \Omega \setminus N} |v(x)|$. (b) If $\Omega = B_d := \{x \in \mathbb{R}^d \mid |x| \le 1\}$ and $\rho \in \mathbb{R}$, then

$$|\cdot|^{\rho} \in L^{p}(\Omega) \iff \rho > -\frac{d}{p}.$$

(c) If $\varphi \in C_0^{\infty}(B_d)$, $\delta > 0$ and $\varphi_{\delta} := \varphi(\cdot/\delta)$, then

$$\left\|\varphi_{\delta}\right\|_{0,p;\delta B_{d}} = \delta^{\frac{a}{p}} \left\|\varphi\right\|_{0,p;B_{d}}.$$

- (d) $\|\cdot\|_{0,p;\Omega}$ is a norm provided one considers suitable equivalence classes in $L^p(\Omega)$.
- (e) If $0 < q \leq p \leq \infty$, then $L^p(\Omega) \subset L^q(\Omega)$ and the linear operator $L^q(\Omega) \ni v \mapsto v \in L^p(\Omega)$ has norm $|\Omega|^{\frac{1}{q}-\frac{1}{p}}$.

Hint: Use polar coordinates for (b) and the Hölder inequality for (d).