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04.12.2018 – problem set n. 9

Practical part

9.1. Lagrange interpolation. Let u be a continuous function on a
planar domain Ω ⊂ R2. Implement with the help of ALBERTA a pro-
gram that plots the graph of the Lagrange interpolation u�,M of u given
by

∀K ∈ M u�,M|K ∈ P� and ∀z ∈ L�(K) u�,M(z) = u(z),

where M is an edge-to-edge triangulation of Ω and L�(K) denotes the
principal Lagrange lattice of the simplex K.
For this purpose:

• Compute the vector of type DOF REAL VEC that contains the coef-
ficients identifying u�,M in the following manner: execute a non-
recursive mesh traversal and, on any leaf, use the function

fe space->bas fcts->interpol(),

where FE SPACE *fe space denotes the global variable represent-
ing the finite element space S�,0(M).

• Plot with the function graphics().

Consider the partition M of Ω = ]0, 1[2 that is obtained by two refine-
ments of any triangle in the macro triangulation which in turn is given
by the two diagonals of Ω. Plot the Lagrange interpolation u1,M of the
function

u(x1, x2) = 1− (x1 − 0.4)2 − (x2 − 0.7)2, x = (x1, x2) ∈ ]0, 1[2.

Moreover, using the macro FOR ALL DOFS compute the largest coeffi-
cient of u1,M. Is this the maximum u1,M in Ω? Justify your answer.

Theoretical part

9.2. Boundary and nodal values. Let M be a simplicial mesh of a
domain Ω ⊂ Rd, P = {P�(K)}K∈M with � ∈ N and write N for the
Lagrange nodes of M. Verify the identity
�
V ∈ FE(M,P , C0

�
Ω)

�
| V|∂Ω = 0

�

=
�
V ∈ FE(M,P , C0

�
Ω)

�
| ∀z ∈ N ∩ ∂Ω V (z) = 0

�
.

Why is it useful?



9.3. Basis for continuous piecewise bilinear functions. Let M
be a mesh of a domain Ω ⊂ R2 into rectangles, i.e. into sets of the type
R = [a1, b1]×[a2, b2] with a1 < b1 and a2 < b2. Moreover, denote the set
of vertices of M by V . Under suitable assumptions on M, construct a
basis of the type

{Φz}z∈V such that ∀y ∈ V Φz(y) = δyz

of the space
{v ∈ C0(Ω) | ∀R ∈ M v|R ∈ Q1(R)}

where

Q1(R) = {q : R → R | ∀x = (x1, x2) ∈ R

q(x) = c00 + c10x1 + c01x2 + c11x1x2}.
9.4. Point values and weak derivatives. Let d ≥ 2. Show that the
function

v(x) := ln |ln |x|| , x ∈ Ω := {x ∈ Rd | |x| < 1
2
}

verifies v ∈ W 1,p(Ω) \ L∞(Ω) whenever p ∈ [1, d].

Hint: Write �

Ω

v∂iϕ = lim
�→0

�

Ω\B�(0)

v∂iϕ

before integrating by parts.

9.5. First order Friedrichs inequality. Let 1 ≤ p < ∞ and Ω ⊂ Rd

be non-empty, open and bounded. Prove that, for all v ∈ W s,p
0 (Ω), we

have
�v�0,p;Ω ≤ diam(Ω) |v|1,p;Ω .

Hint: Prove the statement first for v ∈ C∞
0 (Ω) and d = 1. Then exploit

Ω ⊂ [a, b]d for suitable a, b ∈ R.

9.6. Weak Laplace operator. Let Ω ⊂ Rd be a domain and endow
H1

0 (Ω) with the norm

| · |1,2;Ω = � |∇·| �0,2;Ω,
which arises from the scalar product

H1
0 (Ω) � (v, w) �→

�

Ω

∇v ·∇w.

Given v ∈ H1
0 (Ω), define the (weak) Laplace of v by

�−Δv,ϕ� :=
�

Ω

∇v ·∇ϕ, ϕ ∈ H1
0 (Ω).

Prove:

(a) −Δ is a linear bounded operator from H1
0 (Ω) to H−1(Ω).

(b) The inverse of −Δ is the Riesz representation isometry of H1
0 (Ω).


