Numerical methods for PDEs 1

04.12.2018 - problem set n. 9

Practical part

9.1. Lagrange interpolation. Let u be a continuous function on a planar domain $\Omega \subset \mathbb{R}^{2}$. Implement with the help of ALBERTA a program that plots the graph of the Lagrange interpolation $u_{\ell, \mathcal{M}}$ of u given by

$$
\forall K \in \mathcal{M} \quad u_{\ell, \mathcal{M} \mid K} \in \mathbb{P}_{\ell} \quad \text { and } \quad \forall z \in L_{\ell}(K) \quad u_{\ell, \mathcal{M}}(z)=u(z),
$$

where \mathcal{M} is an edge-to-edge triangulation of Ω and $L_{\ell}(K)$ denotes the principal Lagrange lattice of the simplex K.

For this purpose:

- Compute the vector of type DOF_REAL_VEC that contains the coefficients identifying $u_{\ell, \mathcal{M}}$ in the following manner: execute a nonrecursive mesh traversal and, on any leaf, use the function

```
fe_space->bas_fcts->interpol(),
```

where FE_SPACE $*$ fe_space denotes the global variable representing the finite element space $S^{\ell, 0}(\mathcal{M})$.

- Plot with the function graphics().

Consider the partition \mathcal{M} of $\Omega=] 0,1\left[^{2}\right.$ that is obtained by two refinements of any triangle in the macro triangulation which in turn is given by the two diagonals of Ω. Plot the Lagrange interpolation $u_{1, \mathcal{M}}$ of the function

$$
\left.u\left(x_{1}, x_{2}\right)=1-\left(x_{1}-0.4\right)^{2}-\left(x_{2}-0.7\right)^{2}, \quad x=\left(x_{1}, x_{2}\right) \in\right] 0,1\left[^{2} .\right.
$$

Moreover, using the macro FOR_ALL_DOFS compute the largest coefficient of $u_{1, \mathcal{M}}$. Is this the maximum $u_{1, \mathcal{M}}$ in Ω ? Justify your answer.

Theoretical part

9.2. Boundary and nodal values. Let \mathcal{M} be a simplicial mesh of a domain $\Omega \subset \mathbb{R}^{d}, \mathcal{P}=\left\{\mathbb{P}_{\ell}(K)\right\}_{K \in \mathcal{M}}$ with $\ell \in \mathbb{N}$ and write \mathcal{N} for the Lagrange nodes of \mathcal{M}. Verify the identity

$$
\begin{aligned}
& \left\{V \in \operatorname{FE}\left(\mathcal{M}, \mathcal{P}, C^{0}(\bar{\Omega})\right) \mid V_{\mid \partial \Omega}=0\right\} \\
& \quad=\left\{V \in \operatorname{FE}\left(\mathcal{M}, \mathcal{P}, C^{0}(\bar{\Omega})\right) \mid \forall z \in \mathcal{N} \cap \partial \Omega \quad V(z)=0\right\}
\end{aligned}
$$

Why is it useful?
9.3. Basis for continuous piecewise bilinear functions. Let \mathcal{M} be a mesh of a domain $\Omega \subset \mathbb{R}^{2}$ into rectangles, i.e. into sets of the type $R=\left[a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right]$ with $a_{1}<b_{1}$ and $a_{2}<b_{2}$. Moreover, denote the set of vertices of \mathcal{M} by \mathcal{V}. Under suitable assumptions on \mathcal{M}, construct a basis of the type

$$
\left\{\Phi_{z}\right\}_{z \in \mathcal{V}} \quad \text { such that } \quad \forall y \in \mathcal{V} \quad \Phi_{z}(y)=\delta_{y z}
$$

of the space

$$
\left\{v \in C^{0}(\bar{\Omega}) \mid \forall R \in \mathcal{M} v_{\mid R} \in Q_{1}(R)\right\}
$$

where

$$
\begin{aligned}
Q_{1}(R)=\{q: R \rightarrow \mathbb{R} \mid \forall x= & \left(x_{1}, x_{2}\right) \in R \\
& \left.q(x)=c_{00}+c_{10} x_{1}+c_{01} x_{2}+c_{11} x_{1} x_{2}\right\} .
\end{aligned}
$$

9.4. Point values and weak derivatives. Let $d \geq 2$. Show that the function

$$
v(x):=\ln |\ln | x| |, \quad x \in \Omega:=\left\{x \in \mathbb{R}^{d}| | x \left\lvert\,<\frac{1}{2}\right.\right\}
$$

verifies $v \in W^{1, p}(\Omega) \backslash L^{\infty}(\Omega)$ whenever $p \in[1, d]$.
Hint: Write

$$
\int_{\Omega} v \partial_{i} \varphi=\lim _{\epsilon \rightarrow 0} \int_{\Omega \backslash B_{\epsilon}(0)} v \partial_{i} \varphi
$$

before integrating by parts.
9.5. First order Friedrichs inequality. Let $1 \leq p<\infty$ and $\Omega \subset \mathbb{R}^{d}$ be non-empty, open and bounded. Prove that, for all $v \in W_{0}^{s, p}(\Omega)$, we have

$$
\|v\|_{0, p ; \Omega} \leq \operatorname{diam}(\Omega)|v|_{1, p ; \Omega} .
$$

Hint: Prove the statement first for $v \in C_{0}^{\infty}(\Omega)$ and $d=1$. Then exploit $\Omega \subset[a, b]^{d}$ for suitable $a, b \in \mathbb{R}$.
9.6. Weak Laplace operator. Let $\Omega \subset \mathbb{R}^{d}$ be a domain and endow $H_{0}^{1}(\Omega)$ with the norm

$$
|\cdot|_{1,2 ; \Omega}=\||\nabla \cdot|\|_{0,2 ; \Omega},
$$

which arises from the scalar product

$$
H_{0}^{1}(\Omega) \ni(v, w) \mapsto \int_{\Omega} \nabla v \cdot \nabla w
$$

Given $v \in H_{0}^{1}(\Omega)$, define the (weak) Laplace of v by

$$
\langle-\Delta v, \varphi\rangle:=\int_{\Omega} \nabla v \cdot \nabla \varphi, \quad \varphi \in H_{0}^{1}(\Omega)
$$

Prove:
(a) $-\Delta$ is a linear bounded operator from $H_{0}^{1}(\Omega)$ to $H^{-1}(\Omega)$.
(b) The inverse of $-\Delta$ is the Riesz representation isometry of $H_{0}^{1}(\Omega)$.

