
Error approximation

Consider the model problem

−u” = f in [a, b] and u(a) = 0 u′(b) = 0

Let M = {x0 = a, x1, . . . xn = b}, be a mesh

S1,0(M) = {v ∈ C0[a, b] | ∀i = 1, . . . n, v|[xi−1,xi] ∈ P1[xi−1, xi]}

the discrete space with hat function basis
{φi}

n
i=0

φiφi−1

xi−1 xi

and S = {v ∈ S1,0(M)|v(0) = 0}.

Denote by u be the exact solution and by

uh =
∑n

i=1Uiφi ∈ S the discrete solution

of the model problem.

We want to compute the error

e2 =
∫ b
a |u′ − u′h|

2 =
∑n

i=1

∫ xi
xi−1

|u′ − u′h|
2

1



Assume Ii = [xi−1, xi] and hi = xi − xi−1

[xi−1, xi]
Ai−→ [0,1]

x 7→
x−xi−1

hi

[0,1]
Ai

−1
−→ [xi−1, xi]

t 7→ hi t+ xi−1

φ̂0(t) = 1− t and φ̂1(t) = t for t ∈ [0,1]

note that on [xi−1, xi]

φi−1 = φ̂0◦Ai φ′i−1 = h−1
i φ̂′0◦Ai = −h−1

i

φi = φ̂1 ◦Ai φ′i = h−1
i φ̂′1 ◦Ai = h−1

i

Therefore
∫

Ii
|u′ − u′

h|
2 =

∫

Ii
|u(x)′ −

∑n
j=1Ujφ′

j(x)|
2 dx

=
∫

Ii
|u′(x)− Ui−1φ′

i−1(x)− Uiφ′
i(x)|

2 dx

=
∫ 1

0
|u′(A−1

i (t)) + h−1
i (Ui−1 − Ui)

︸ ︷︷ ︸
c

|2hi dt

=
∫ 1

0
|u′(A−1

i (t)) + c
︸ ︷︷ ︸

G(t)

|2hi dt = hi

∫ 1

0
G(t)2dt

≃
CS

hi

6
[G2(0) + 4G2(1/2) +G2(1)]

= hi

6

[
(u′(xi−1) + c)2 +4(u′(xi−1+xi

2
) + c)2

+(u′(xi) + c)2
]
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Computation of ||u′ − u′h||0,2;[01]

double norm_err(double dim,double nodes[],

double uh[])

{ int i,k;

double x[3],g2[3];

double h, c, err=0;

for(k=0;k<dim;k++)

{ h=nodes[k+1]-nodes[k];

x[0]=nodes[k];

x[1]=(nodes[k]+nodes[k+1])/2;

x[2]= nodes[k+1];

c=(uh[k]-uh[k+1])/h;

for(i=0;i<=2;i++)

{ g2[i]=du(x[i])+c;

g2[i]*=g2[i];

}

err+=(g2[0]+4*g2[1]+g2[2])*h/6;

}

return(sqrt(err));

}
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Meshes uniform refinements

double* refine_mesh(double *nodes,int n)

{ /* n=length(nodes)*/

int i,count;

double * temp;

temp=(double *)malloc(n*sizeof(double) );

for(i=0;i<n;i++)

temp[i]=nodes[i];

nodes=(double *)realloc(nodes,

(2*n-1)*sizeof(double) );

count=1;

nodes[0]=temp[0];

for(i=0;i<n-1;i++)

{

nodes[2*i+1]=(temp[i]+temp[i+1])/2;

nodes[2*i+2]=temp[i+1];

count+=2;

}

if(!(count==2*n-1))

printf(" error in nodes vector length\n");

free(temp);

return(nodes);

}

4



EOC : Experimental order of convergence

Suppose the error e = O(hp).

Perform iteratively uniform refinements half-

ing the meshsize h at every step.

Let ek be the error at the k−th iteration,

hk = h and hk+1 = h/2

thus we have

ek ≃ C hp ek+1 ≃ C

(
h

2

)p

ek
ek+1

≃ 2p → ln(ek/ek+1) ≃ p ln(2)

and therefore

p ≃ ln(ek/ek+1)/ ln(2)
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Remark:

For linear finite elements and regular solu-

tions we have e = O(h) and thus e2 = O(h2).

Therefore in the computation of e2 we need

to use a quadrature formula of order higher

than 2 in order to keep quadrature errors

“small” in comparison with the discretization

error.
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main (int argc, char * argv[])

{

int dim, maxiter,iter;

double xmin,xmax;

double *uh=0, *mesh=0;

double err=0, err_o=-1;

double h,eoc=-1;

....

mesh=MakeUnifMesh(xmin,xmax, dim+1,mesh);

for(iter=0;iter<maxiter;iter++)

{

uh=SolveLins(dim ,mesh, uh);

err=norm_err(dim,mesh,uh);

h=mesh[1]-mesh[0];

if (err_o>=0)

eoc=log(err_o/err)/log(2);

err_o=err;

.... //print uh err eoc

if( iter < maxiter-1)

{

mesh=refine_mesh(mesh,dim+1);

dim=2*dim;

}

}

}
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Example 1: a model of pressure sensor

Practical application: aneroid barometer

This is an instrument for measuring pres-

sure without involving any liquid, invented in

France by Lucien Vidi in 1844.

It uses a small cilindrical metal box with a

flexible basis (aneroid capsule). Inside the

capsule there is vacuum so that small changes

in the external pressure causes the capsule to

expand or contract. With the help of gears

and levers these little movements are ampli-

fied and dispalyed over a graduate scale on

the front of the barometer.
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A model problem

fixed Pressure

Elastic membrane

Elastic

Membrane







−div(A∇u) = f in Ω

u = g on ∂Ω
(1)

where we chose Ω = (−1,1)2 ⊂ R
2

A = c

[

1 0
0 1

]

, c ∈ R material dependent

f = Pi − Pe difference of pressure

u = displacement of the membrane from the

reference situation

g = 0
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We approximate the solution of the model

problem with the help of Alberta and look

for an answer to the following questions?

(a) What shape does the graph of u assume

if the external pressure is bigger than the

internal one (i.e f is negative) ?

(b) What happens if the difference of pres-

sure doubles?

In the simulations we set c = 1, g = 0 and

use linear finite elements.

(a) The graph of u is reasonably concave.

(b) with the following values of f we get:

f = −1, u(0,0) ≃ −0.3 f = −2, u(0,0) ≃ −0.6

This indicates that u depends linearly on

data f .
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It is easy to check that the solution u of the

model problem (1) depends linearly on the

data f and g, infact

−div(c∇(2u)) = −c∆(2u) = −2c∆u = 2f in Ω

and 2u = 2g on ∂Ω.

If g = 0 then 2g = g = 0 and u depends

linearly on f i.e.

if u satisfies −c∆u = f in Ω and u = 0 on ∂Ω

then 2u solves −c∆u = 2f in Ω and u = 0

on ∂Ω .
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