
Curved boundaries

To construct meshes of domains with curved

boundaries we need to define a function, called

ibdry, whose aim is to assign properly a BOUNDA-

RY structure to each boundary edge/face of

a macro element while reading data from file

for the macro mesh.

Recall

typedef struct boundary BOUNDARY;

struct boundary

{

void (*param_bound)(REAL_D *coord)

S_CHAR bound;

};

The function ibdry is called for each edge/face

during the initialization of the mesh stored in

the structure mesh. The sintax is:

BOUNDARY *ibdry(MESH *mesh, int bound)

bound is an integer value read from the macro

mesh data file (one integer for each edge/face).

It is used inside ibdry to distinguish different

initializations of param bound with appropriate

functions for projecting the midpoint of the

refinement edge onto the curved boundary.

The return value of ibdry is a pointer to a

filled boundary structure (BOUNDARY).

Since ibdry is used during the initialization

of the mesh, it is the third argument to the

function read macro() which reads data for

the macro triangulation:

read_macro(mesh, filename, ibdry);

For polygonal domains:

read_macro(mesh, filename, nil);

and the corresponding BOUNDARY pointers are

adjusted to the defaults structures

dirichlet bondary or neumann boundary for pos-

itive respectively negative values of bound.

Example: first quarter of the unit disc

Consider the domain given by the first quar-

ter of the unit disc and suppose Dirichlet

boundary conditions.

The following data file defines one single tri-

angle as initial triangulation.

quart circ.amc

DIM: 2

DIM_OF_WORLD: 2

number of elements: 1

number of vertices: 3

element vertices:

1 2 0

element boundaries:

1 1 2

vertex coordinates:

0.0 0.0

1.0 0.0

0.0 1.0

element neighbours:

-1 -1 -1

We define:

const BOUNDARY *ibdry(MESH *mesh, int bound)

{

FUNCNAME("ibdry");

static const BOUNDARY circ_dirichlet=

{ball_project, DIRICHLET};

static const BOUNDARY straight_dirichlet=

{nil, DIRICHLET};

switch (bound)

{

case 1: return(&straight_dirichlet);

case 2: return(&circ_dirichlet);

default: ERROR_EXIT("no boundary %d\n",

bound);

}

}

and the function which projects a newly gen-

erated vertex on the curved boundary:

static void ball_project(REAL_D p)

{

FUNCNAME("ball_project");

REAL norm=NORM_DOW(p);

norm=1.0/MAX(1.0E-10, norm);

SCAL_DOW(norm,p);

return;

}

we read the initial triangulation with

read_macro(mesh, filename, ibdry);

Some further refinements of the macro mesh

stored in file quart circ.amc will better ap-

proximate the curved domain.

Hierarchical mesh traversal routines

Alberta provides recursive and non recursive

traversal routines that can be used to per-

form some desired operation on some se-

lected elements of the hierarchical mesh.

To save computer memory, all possible in-

formation that can be available for mesh el-

ements is stored explicitly only for elements

of the macro mesh.

Some information is transferred to the other

elements while traversing the forest of binary

trees.

Therefore Alberta’s routines use the follow-

ing structure to store for the current element

all information which is not stored on the el-

ement explicitly but may be generated from

the parent during a traversal of the hiererchi-

cal mesh.

Most entries in the structure are only filled if

requested.

typedef struct el info EL INFO;

struct el_info
{

MESH *mesh;
REAL_D coord[N_VERTICES];
const MACRO_EL *macro_el;
EL *el, *parent;
FLAGS fill_flag;
S_CHAR bound[N_VERTICES];

#if DIM == 2
const BOUNDARY *boundary[N_EDGES];

#endif

#if DIM == 3
const BOUNDARY *boundary[N_FACES+N_EDGES];

#endif

U_CHAR level;

#if ! NEIGH_IN_EL
EL *neigh[N_NEIGH];
U_CHAR opp_vertex[N_NEIGH];

#if DIM == 3
U_CHAR el_type;

#endif
#endif

REAL_D opp_coord[N_NEIGH];

#if DIM == 3
S_CHAR orientation;

#endif
};

During a traversal of the hiererchical mesh we

can operate on selected elements, therefore

the traversal routines need to know:

• which data should be available for each

element on which we want to operate

• on which elements (internal or leafs) the

traversal should stop to perform a desired

operation.

Both information are passed to the traversal

routines with the help of flags.

Flags to indicate on which elements the operation
should take place:

CALL_EVERY_EL_PREORDER on all hierarchical elements
CALL_EVERY_EL_INORDER "
CALL_EVERY_EL_POSTORDER "
CALL_EL_LEVEL on all tree elements at

a specified tree depth
CALL_LEAF_EL on all leaf elements
CALL_LEAF_EL_LEVEL on all leaf elements at

a specified tree depth

The first three differs in the sequence of operation on
elements:

CALL_EVERY_EL_PREORDER parent - child[0] - child[1]
CALL_EVERY_EL_INORDER child[0] - parent - child[1]
CALL_EVERY_EL_POSTORDER child[0] - child[1] - parent

Additional flags are defined that specify which local
information in EL INFO has to be generated during the
hierarchical mesh traversal:

FILL_NOTHING No information needed at all
FILL_COORDS vertex coordinates EL_INFO.coord

are filled
FILL_BOUND boundary information is filled

in the entries E_INFO.bound and
E_INFO.boundary

FILL_NEIGH neighbour element information
E_INFO.neigh and E_INFO.opp_vertex
are generated

FILL_OPP_COORDS coordinates of the opposite vertex
of neighbours through common edges
are stored in E_INFO.opp_coords

Recursive mesh traversal roules

The sequence of elements which are visited during the
traversal follows the following roules:

• All elements in the binary tree of one MACRO EL
mel are visisted before any elements in the tree of
mel->next.

• For every EL el, all elements in the subtree el->child[0]
are visited before any element in the subtree el->child[1].

• The traversal order of an element and its two
child trees is determined by the flags:

CALL_EVERY_EL_PREORDER parent-child[0]-child[1]
CALL_EVERY_EL_INORDER child[0]-parent-child[1]
CALL_EVERY_EL_POSTORDER child[0]-child[1]-parent

Recursive mesh traversal routines:

void mesh_traverse(MESH *mesh, int level,
FLAGS fill_flags,
void (*el_fct)(const ELINFO *));

el fct is a pointer to a user defined function which
performs a desired operation on a single selected ele-
ment.

Example: Computation of the domain’s measure.

On each leaf element the volume of the simplex can
be computed by the library function el volume() and
added to a global variable area omega previously initial-
ized to 0. After a mesh traversal, area omega finally
holds the measure of the domain.

REAL area_omega;

void area_fct(const EL_INFO * elinfo)
{
area_omega+=el_volume(elinfo);
return;
}

and in main:

area_omega = 0.0;
mesh_traverse(mesh,-1,CALL_LEAF_EL|FILL_COORDS,area_fct);
MSG(‘‘|Omega| = %e\n’’, area_omega);

Alberta’s MACRO for printing messages

#define FUNCNAME(nn) const char * funcName=nn

MSG("indice el:%d, area:%lf\n" el->index,area);

ERROR("cannot open file %s\n", filename);
ERROR_EXIT("allocated size too small\n");

TEST(level>=0)("invalid level:%d\n",level);
TEXT_EXIT(el)("no element for refinement\n");

Non-recursive traversal routines:

The implementation of the non-recursive traversal rou-
tines uses a stack to save the tree path from a macro
element to the current one. The data structure

typedef struct traverse_stack TRAVERSE_STACK

holds such information.

The administration of the space of memory for the
stack is done by the following library functions:

TRAVERSE_STACK * get_traverse_stack(void);

void free_traverse_stack (TRAVERSE_STACK * stack);

A mesh traversal is launched by a call to the function:

const EL_INFO * traverse_first(TRAVERSE_STACK * stack,
MESH mesh, int level,
FLAGS fill_flags);

Advancing to the next element is done by the function:

const EL_INFO * traverse_next(TRAVERSE_STACK *stack,
const EL_INFO * el_info);

Example:

TRAVERSE_STACK *stack;
EL_INFO *el_info;
FLAGS fill_flag=CALL_LEAF_EL|FILL_COORDS;
int level;

stack=get_traverse_stack();
for(el_info=traverse_first(stack,mesh,level,fill_flag);

el_info;
el_info=traverse_next(stack,el_info);)

/* operation on element */
}

free_traverse_stack(stack);

or using a conditioned cycle:

el_info=traverse_first(stack,mesh,level,fill_flag);
while(el_info)

{
/* operations on element */

el_info=traverse_next(stack,el_info));
}

Example 3: Heat diffusion in a refrigerator at

steady state

We want to study the distribution of the temperature
inside a refrigerator at steady state (i.e. no change in
time). To construct a model for the refrigerator we
consider the following pattern

The light blue region, Ω0, is the interior of the re-
frigerator. The green one, Ω1, corresponds to the
sides and the door of the fridge. Γ0, in blue, is the
refrigerated wall, Γ1,in red, is the boundary at room
temperature and Γ2, in green, is part of the boundary
where we suppose the temperature varies linearly.

The model problem



















−div(A(x)∇u) = 0 in Ω = Ω0 ∪Ω1

u = 5 on Γ0

u = 20 on Γ1

u(x1, x2) = 15x2 +5 on Γ2

A(x) =

{

1 if x ∈ Ω0

0.1 if x ∈ Ω1

A(x) describes the thermal conductivity, i.e. the prop-
erty of the material to conduct heat
(the bigger is A the less the meterial is insulating).

u is the temperature.

For symmetric reason we can restrict our model to
the upper half of the previous scheme.

here the yellow line correspond to an artificially cre-
ated boundary, Γ3, where we assume homogeneous
Neumann condition in order to ensure thermal insula-
tion (i.e. no heat flux). The problem reads now



























−div(A(x)∇u) = 0 in Ω = Ω0 ∪Ω1

u = 5 on Γ0

u = 20 on Γ1

u(x1, x2) = 15x2 +5 on Γ2
∂u
∂n

= 0 on Γ3

where Ω = (−1,1)2 = Ω0 ∪Ω1

and Ω0 = (−1,0)2

We investigate the temperature with the help of nu-
merical simulations in order to find an answer to the
following questions:

• How is the shape of the graph of u? is the tem-
perature function smooth?
(There is an edge across ∂Ω1 ∩ ∂Ω2)

• What happens if A doubles?
(No linear dependency of the solution from data
A)

• Where is the highest temperature inside the fridge?
What is its value?

To preserve better food don’t put it at the corners
of the door!

