CALCOLO NUMERICO - ANALISI NUMERICA (12 aprile 2007)

1) Si consideri il metodo di punto fisso $x_{k+1} = g(x_k), \ k \ge 0, \ x_0$ assegnato, applicato alla funzione definita a tratti

$$g(x) = \begin{cases} x^2 & x \ge 0 \\ x^3 & x < 0 \end{cases}$$

Indicare quali sono i punti fissi e studiare la convergenza del metodo al variare del punto iniziale $x_0 \in \mathbb{R}$, determinando anche l'ordine.

2) Determinare i valori di c_0, c_1, c_2 in modo che la formula di quadratura

$$\int_{-1}^{1} f(x) \, dx \approx c_0 f(0) + c_1 f(1) + c_2 f(2)$$

abbia grado di precisione massimo.

- 3) Assegnati i nodi $x_k = k^2 + 1$, k = 0, ..., n, e la funzione $f(x) = \sqrt{x 1} + 1$, 3.1) nel caso n = 2 determinare il polinomio p(x) che interpola la funzione f(x) nei nodi assegnati;
 - 3.2) nel caso n=4 determinare la retta che meglio approssima i punti $(x_k,f(x_k))$ nel senso dei minimi quadrati.
- 4) Data la matrice

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & a^2 \\ 0 & 1 & 2a^2 \end{pmatrix}, \quad a \in \mathbb{R},$$

- 4.1) calcolare $||A||_1$ e tracciarne il grafico al variare di a;
- 4.2) calcolare $||A||_{\infty}$ e tracciarne il grafico al variare di a;
- 4.3) studiare la convergenza del metodo di Jacobi applicato al sistema $A\mathbf{x} = \mathbf{b}$, con $\mathbf{b} \in \mathbb{R}^3$.