CALCOLO NUMERICO 1 (18 Gennaio 2018) - Seconda prova in itinere

COMMENTARE TUTTI I PASSAGGI E GIUSTIFICARE LE RISPOSTE

- 1) Data la funzione $f(x) \equiv e^{-x} + x^2 3$ dimostrare che l'equazione non lineare f(x) = 0, ha un'unica soluzione positiva α . Dimostrare che il metodo di Newton converge alla radice α per ogni scelta del valore iniziale $x_0 \in [1,3]$.
- 2) Data la funzione $g(x) = \frac{1}{4}(x+3)$ studiare al variare di $x_0 \in \mathbb{R}$ la convergenza e l'ordine dei metodi iterativi $x_{n+1} = [g(x_n)]^k$ per la ricerca dei punti fissi delle funzioni $[g(x)]^k$, con k = 1 e k = 2. Nel caso di k = 3 dimostrare che esiste un opportuno intorno I_{α} del punto fisso $\alpha = 1$, tale che il metodo iterativo
- 3) Data $f \in C^{\infty}([-1,1])$, determinare i coefficienti α , β , γ , ed il valore reale c, in modo tale che la formula di quadratura:

$$\int_{-1}^{1} f(x)dx \approx \alpha f(-1) + \beta f(c) + \gamma f(1)$$

abbia grado di precisione massimo. La formula ottenuta è una formula di tipo Gaussiano?

4) Dato il sistema lineare $A\mathbf{x} = \mathbf{b}$,

converge ad α per ogni scelta di $x_0 \in I_{\alpha}$.

$$A = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1/2 \\ 0 & -1/2 & 2 \end{pmatrix}, \ \mathbf{b} \in \mathbb{R}^{3,1},$$

- 4.1) studiare la convergenza del metodo di Jacobi;
- 4.2) studiare la convergenza del metodo iterativo:

$$\mathbf{x}^{(n+1)} = \frac{1}{2}M^{-1}\mathbf{b} + M^{-1}N\mathbf{x}^{(n)}, \quad n \ge 0, \quad \mathbf{x}^{(0)}\text{dato},$$

dove

$$M = \begin{pmatrix} 1 & -1/2 & 0 \\ 0 & 1 & -1/4 \\ 0 & 0 & 1 \end{pmatrix}, \ N = \begin{pmatrix} 0 & 0 & 0 \\ 1/2 & 0 & 0 \\ 0 & 1/4 & 0 \end{pmatrix};$$

- 4.3) stabilire la relazione fra le velocità asintotiche di convergenza dei due metodi.
- 5) Si consideri la seguente matrice $n \times n$, con $n \geq 2$,

$$A_n = \begin{pmatrix} n^2 & 1 & 2 & \dots & (n-2) & (n-1) \\ 1 & n^2 & 2 & 3 & \dots & (n-1) \\ 1 & 2 & n^2 & 3 & \dots & (n-1) \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & 2 & 3 & \dots & (n-1) & n^2 \end{pmatrix}.$$

Dimostrare che tale matrice è invertibile e che il metodo di Gauss-Seidel, applicato al sistema lineare $A_n \mathbf{x} = \mathbf{b_n} \in \mathbb{R}^{n,1}$, è convergente.