1) Determinare il polinomio $p_{2}(x)$ che interpola $f(x)=\sin (x)$ nei nodi $x_{0}=-a, x_{1}=0, x_{2}=a, a \in(0,1]$. 1.1) Nel caso $a=1$ fornire una maggiorazione dell'errore di interpolazione

$$
\max _{x \in[-1,1]}\left|f(x)-p_{2}(x)\right|
$$

x_{i}	$-a$	0	a
y_{i}	$-\sin a$	0	$\sin a$

$$
\begin{array}{ccc}
-a-\sin a \\
0 & 0 & >\frac{\sin a}{a} \\
a & \sin a & >\frac{\sin a}{a}
\end{array}>0 \quad \begin{array}{ll}
p_{2}(x)=-\sin a+\frac{\sin a}{a}(x+a) \\
N=2 ; n+1=3 ; a=1 & =\frac{\sin a}{a} \times
\end{array}
$$

$$
\max _{x \in[-1,1]}\left|f(x)-p_{2}(x)\right| \leqslant \frac{1}{3!-1 \leqslant t \leqslant 1}|(t-1) t(t+1)| \max \left|f^{\prime \prime \prime}(z)\right|
$$

$$
\begin{aligned}
& \omega(t)=t^{3}-t \quad \omega^{\prime}(t)=3 t^{2}-1=0 \quad t= \pm \frac{1}{\sqrt{3}} \\
& \max _{-1 \leqslant t \leqslant 1}|\omega(t)|=\left|\omega\left(\pm \frac{1}{\sqrt{3}}\right)\right|=\left|\frac{1}{3 \sqrt{3}}-\frac{1}{\sqrt{3}}\right|=\frac{2}{3} \frac{\sqrt{3}}{3}=\frac{2 \sqrt{3}}{9}
\end{aligned}
$$

$\max \left|f^{\prime \prime \prime}(z)\right|=1$

$$
-1 \leq z \leq 1
$$

$\max _{-1 \leq x \leq 1}\left|f(x)-p_{2}(x)\right| \leq \frac{1}{6} \cdot \frac{2 \sqrt{3}}{9}=-\frac{\sqrt{3}}{27} \approx 0.06415$

$$
\begin{aligned}
& w(x)=(x-a) x(x+a)=x^{3}-a^{2} x \quad a \in \\
& w^{\prime}(x)=3 x^{2}-a^{2} \geqslant 0 \quad x \leqslant-\frac{a}{\sqrt{3}} \cup x \geqslant \frac{a}{\sqrt{3}} \\
& w\left(-\frac{a}{\sqrt{3}}\right)=-\frac{a^{3}}{3 \sqrt{3}}+\frac{a^{3}}{\sqrt{3}}=\frac{2}{3} \cdot \frac{a^{3} \sqrt{3}}{3}=\frac{2}{9} a^{3} \sqrt{3} \\
& \omega\left(+\frac{a}{\sqrt{3}}\right)=-\frac{2}{9} a^{3} \sqrt{3}
\end{aligned}
$$

$$
a \in(0,1]
$$

$\max _{x \in[-1,1]}|\omega(x)|=\max \left\{\frac{2}{9} a^{3} \sqrt{3} ; 1-a^{2}\right\}$

$$
\left.\min _{a \in(0,1]} \max |\omega(x)|=E(-1,1]-a^{x}\right)
$$

a^{*} tale che $\quad 1-a^{2}=\frac{2}{9} a^{3} \sqrt{3}$

$$
\begin{aligned}
& 2 a^{3} \sqrt{3}+9 a^{2}-9=0 \\
& a=\frac{\sqrt{3}}{2} \quad 2 \cdot \frac{3 \sqrt{3}}{8} \cdot \sqrt{3}+\frac{9 \cdot 3}{4}-9=\frac{9}{4}+\frac{27}{4}-9=0
\end{aligned}
$$

$$
\Rightarrow \quad x_{0}=-\frac{\sqrt{3}}{2} \quad x_{1}=0 \quad x_{2}=\frac{\sqrt{3}}{2}
$$

Nodi Gauss Chebyshev $d P_{3}$
2) Si consideri il seguente metodo iterativo

$$
x_{k+1}=\frac{1}{3}\left(2 x_{n}+\frac{\beta}{x_{n}^{2}}\right)
$$

con β parametro reale positivo. Trovare, al variare di β, i punti fissi dell''iterazione. Studiare la convergenza del metodo al variare di β e di $x_{0}>0$. Nel caso di convergenza determinare l'ordine del metodo.
rielow 215118

$$
\begin{array}{ll}
g(x)=\frac{2}{3} x+\frac{\beta}{3 x^{2}} \quad \beta>0 & x \neq 0 \\
g(x)=x \quad x=\frac{2}{3} x+\frac{\beta}{3 x^{2}} \quad 3 x^{3}=2 x^{3}+\beta \quad x^{3}=\beta \quad x=\sqrt{\beta} .
\end{array}
$$

Asintato veeticale $x=0$
obliqus $\quad y=\frac{2}{3} x$

$$
g^{\prime}(x)=\frac{2}{3}-\frac{2 \beta}{3 x^{3}}>0 \quad 2 \frac{x^{3}-\beta}{3 x^{3}}>0 \quad x<0 \cup x>\sqrt{\beta}
$$

$$
g^{\prime \prime}(x)=\frac{2}{3} \beta \frac{3}{x^{4}}>0 \quad x \neq 0
$$

$g^{\prime}(\sqrt[3]{\beta})=0 \Rightarrow$ conv eigenza 2° ondine

3
$\sqrt[3]{\beta}$
successione monotono decrescente limitata imferionvente: $x_{m} \searrow \sqrt[3]{\beta}$

- $0<x_{0}<\sqrt[3]{\beta} \quad x_{1}>\sqrt[3]{\beta} \quad$ (vedi cass precedente)

3) Si consideri il sistema lineare $A \mathrm{x}=\mathrm{f}$, con

$$
A=\left(\begin{array}{ccc}
4 & -1 & 1 \\
-1 & 3 & 0 \\
1 & 0 & a
\end{array}\right) .
$$

Determinare tutti e soli i valori di a per i quali la matrice A è definita positiva. Rappresentare graficamente la quantità $\|A\|_{1}$ al variare di $a \in \mathbb{R}$. Studiare la convergenza del metodo di Jacobi e del metodo di Gauss Seidel al variare di $a \neq 0$.

Milano 21512018

1) Definta positive

$$
\begin{aligned}
& \left|A_{1}\right|=4 ;\left|A_{2}\right|=12-1=11 \\
& \left|A_{3}\right|=|A|=4(3 a)+1(-a)+1(-3)= \\
& 12 a-a-3=11 a-3>0 \quad a>\frac{3}{11}
\end{aligned}
$$

2) $\|A\|_{1}=\max \{4+1+1 ; 1+3 ; \quad 1+|a|\}=\max \{0 ; 1+|a|\}$

Se $|a| \geqslant 5 \Rightarrow\|A\|_{1}=1+|a| ;$ se $|a|<4 \Rightarrow\|A\|_{1}=6$
3) Conuregenza del meto do di Jacobi $(a \neq 0)$

$$
\begin{aligned}
& \operatorname{det}\left|\begin{array}{ccc}
4 \lambda & -1 & 1 \\
-1 & 3 \lambda & 0 \\
1 & 0 & a \lambda
\end{array}\right|=0 \\
& -3 \lambda+a \lambda\left(12 \lambda^{2}-1\right)=0 \\
& \lambda\left[-3+12 a \lambda^{2}-a\right]=0
\end{aligned} \begin{array}{ll}
\lambda=0 \\
& \lambda^{2}=\frac{a+3}{12 a}
\end{array}
$$

4) Convergenza del metodo di Gauss-Seidel

$$
\begin{aligned}
& \operatorname{det}\left|\begin{array}{ccc}
4 \lambda & -1 & 1 \\
-\lambda & 3 \lambda & 0 \\
\lambda & 0 & a \lambda
\end{array}\right|=0 \\
& \lambda(-3 \lambda)+a \lambda\left(12 \lambda^{2}-\lambda\right)=0 \\
& -3 \lambda^{2}+12 a \lambda^{3}-a \lambda^{2}=0 \\
& \lambda^{2}(12 a \lambda-3-a)=0 \quad \begin{array}{l}
\lambda=0 \\
\\
\lambda=\frac{a+3}{12 a}
\end{array}
\end{aligned}
$$

$$
\rho\left(B_{G S}\right)=\left|\frac{a+3}{12 a}\right|
$$

Ie meto do ic Gauss-feidel converge se e solose conucrge il metodo di Jacotri.

Juolte $R\left(B_{G S}\right)=2 R\left(B_{J}\right)$ esendo

$$
\rho\left(B_{G S}\right)=\rho^{2}\left(B_{J}\right)
$$

$\left.\begin{array}{l}\text { Se }-3<a<0 \quad \lambda= \pm \sqrt{\left|\frac{a+3}{12 a}\right|} i \\ \text { Se } \quad a<-3 \vee a>0 \quad \lambda= \pm \left\lvert\, \frac{a+3}{12 a}\right.\end{array}\right\} \rho\left(B_{J}\right)=\sqrt{\left|\frac{a+3}{12 a}\right|}$
$\infty=-3 \quad \lambda=0 \Rightarrow \rho\left(B_{J}\right)=0$ (Caso thimale, convergenza in 1 Theioano)

$$
\begin{gathered}
a+3=12 a \quad a=\frac{3}{11} \\
a+3=-12 a \quad a=-\frac{3}{13} \\
\Rightarrow|a+3|<|12 a| \Leftrightarrow \rho\left(B_{3}\right)<1 \Leftrightarrow> \\
a<-\frac{3}{13} \quad a>\frac{3}{11}
\end{gathered}
$$

4) Si considerino i punti $(-2,-1),(-1,1),(0,2),(1,-1),(2,1)$, determinare la funzione costante $p(x)=C$ e la funzione $q(x)=a+b x^{2}$ che approssimino tali punti nel senso dei minimi quadrati. Quale polinomio tra p e q
realizza la migliore approssimazione?

Milawo (Matemetice) 2|s/18

x_{i}	-2	-1	0	1	2	0
y_{i}	-1	1	2	-1	1	2
x_{i}^{2}	4	1	0	1	4	10
x_{i}^{4}	16	1	0	1	16	34
$x_{i}^{2} y_{i}$	-4	1	0	-1	4	0

$$
\begin{aligned}
& \text { 1) } \begin{aligned}
& p(x)=c \Rightarrow c=\frac{1}{5} \sum_{i=1}^{5} y_{i}=\frac{1}{5} \cdot 2 \\
& y_{i}-c\left.\Rightarrow-\frac{7}{5}, \frac{3}{5}, \frac{8}{5},-\frac{1}{5}, \frac{3}{5}\right\} \\
& \sum_{i=1}^{5}\left(y_{i}-c\right)^{2}=\frac{1}{25}\{49.2+9 \cdot 2+54\}=\frac{1}{25}(98+18+64)= \\
& \frac{180}{25}=7.2
\end{aligned} .
\end{aligned}
$$

$$
\begin{aligned}
& \text { 2) } E(a, b)=\sum_{i=1}^{5}\left[y_{i}-a-b x_{i}^{2}\right]^{2} \\
& \frac{\partial E(a, b)}{\partial a}=2 \sum_{i=1}^{5}\left[y_{i}-a-b x_{i}^{2}\right](-1)=0 \quad 5 a+\left(\sum_{i=1}^{5} x_{i}^{2}\right) b=\sum_{i=1}^{5} y_{i} \\
& \frac{\partial E(a, b)}{\partial b}=2 \sum_{i=1}^{5}\left[y_{i}-a-b x_{i}^{2}\right]\left(-x_{i}^{2}\right)=0 \quad\left(\sum_{i=1}^{5} x_{i}^{2}\right) a+\left(\sum_{i=1}^{5} x_{i}^{4}\right) b=\sum_{i=1}^{5} x_{i}^{2} y_{i}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{ll}
5 & 10 \\
10 & 34
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{l}
2 \\
0
\end{array}\right]} \\
& \left\{\begin{array} { l }
{ 5 a + 1 0 b = 2 } \\
{ 1 0 a + 3 4 b = 0 }
\end{array} \left\{\begin{array}{l}
10 a+20 b=4 \\
10 a+34 b=0
\end{array} \quad 14 b=-4 \quad b=-\frac{2}{7}\right.\right. \\
& \left\{\begin{array} { l }
{ 1 0 a + 3 4 (- \frac { 2 } { 7 }) = 0 } \\
{ b = - \frac { 2 } { 7 } }
\end{array} \left\{\begin{array} { l }
{ a = \frac { 6 8 } { 7 0 } } \\
{ b = - \frac { 2 } { 7 } }
\end{array} \left\{\begin{array}{l}
a=\frac{34}{35} \\
b=-\frac{2}{7}
\end{array} \quad q(x)=\frac{34}{35}-\frac{2}{7} x^{2}\right.\right.\right. \\
& q(\pm 2)=\frac{34}{35}-\frac{8}{7}=\frac{-6}{35} \\
& q(0)=\frac{3 u}{35} \\
& q(\pm 1)=\frac{3 u}{35}-\frac{2}{7}=\frac{24}{35} \\
& \sum_{i=1}^{5}\left[y_{i}-q\left(x_{i}\right)\right]^{2}=\left(-1+\frac{6}{35}\right)^{2}+\left(1-\frac{24}{35}\right)^{2}+\left(2-\frac{34}{35}\right)^{2}+\left(-1-\frac{24}{35}\right)^{2}+\left(1+\frac{6}{35}\right)^{2} \\
& \left(-\frac{29}{35}\right)^{2}+\left(\frac{11}{35}\right)^{2}+\left(\frac{36}{35}\right)^{2}+\left(-\frac{59}{35}\right)^{2}+\left(\frac{41}{35}\right)^{2}= \\
& (841+121+1296+3481+1681) \frac{1}{1225}=\frac{7420}{1225}=\frac{1484}{245}=\frac{212}{35} \\
& \approx 6.0571
\end{aligned}
$$

