Corso di laurea in Fisica - a.a. 2017/18 ANALISI MATEMATICA 1 Prova scritta del 14/09/2018 - (proff. K. Payne, C. Zanco)

	\square orale 26/09	\Box orale tra 22 ϵ	e 2 6/10
nzione derivab elle funzioni g	ile tale che $g' = f$ e $g(-3)$ =	= 1. Tracciare un diagran	o in figura. Sia $g: \mathbb{R} \to \mathbb{R}$ la nma qualitativo per ciascuna risultare chiaro, con sintetica
	19	-2 -3 -4	h
		>	

2. (6 punti) Determinare estremi inferiore e superiore, precisando se siano anche rispettivamente minimo e massimo, dell'insieme $S = \{m/n : m, n \in \mathbb{N}, \ 1/2 + \log m \le n \le m - 1/2\}$. Determinare inoltre la chiusura di S in \mathbb{R} (euclideo). (Giustificare tutte le risposte fornite.)

3. (4 punti) Sia $f:(-2,+\infty)\to\mathbb{R}$ definita da $f(x)=\frac{x+1}{x+2}$. Stabilire se la successione così definita per ricorrenza $\left\{\begin{array}{l} x_{n+1}=f(x_n)\\ x_0=0 \end{array}\right.$

 $ammette \ limite \ e, \ in \ caso \ affermativo, \ determinarlo. \ ({\it Riportare \ uno \ svolgimento \ completo.})$

- 4. (8 punti) a) Mostrare che la serie $\sum_{n=6}^{\infty} \frac{\log n \log(n-4)}{(\log n)\log(n-4)}$ è convergente e determinarne la somma. b) Al variare del parametro reale α , discutere la convergenza semplice e assoluta della serie $\sum_{n=1}^{\infty} \frac{\cos(n\pi)}{n^{\alpha} \exp(\log_2 n)}.$ Facoltativo: al variare del parametro reale α , discutere la convergenza

semplice e assoluta della serie $\sum_{n=1}^{\infty} \frac{\cos(n\pi/6)}{n^{\alpha} - \exp(\log_2 n)}.$ (Per ogni punto a cui viene data risposta, riportare uno svolgimento completo.)

- 5. (6 punti) a) Il fatto di sapere che sen $x \sim x x^3/6$ per $x \to 0$ è sufficiente per dimostrare che $\lim_{x\to 0} \frac{\sin x x}{x^3} = -1/6$? (Giustificare la risposta fornita.)
- b) Sia $\mathcal C$ una copertura del piano, dotato della metrica euclidea, costituita da dischi di raggio positivo. Mostrare che, se ogni punto del piano appartiene solo ad un numero finito di dischi, allora $\mathcal C$ è numerabile.

6. (6 punti) Sia f la funzione reale di variabile reale definita da $f(x) = (x \log x - x)^2$. Tracciare un grafico qualitativo di f dal quale risultino evidenti il dominio massimale di esistenza, il segno, i limiti agli estremi del dominio, gli eventuali asintoti al diagramma, gli eventuali estremi locali e gli eventuali punti di flesso. (Riportare i calcoli solo in modo sintetico.)