PDE Exercises

C.L. in Matematica e Matematica per le Applicazioni

Prof. Kevin R. Payne

Chapter 1: Introduction to PDE

Exercise 1.1 - [Linearity and order of PDE]: see Exercise 1.5.1 of [E].
Exercise 1.2 - [Ellipticity of second order PDE] Given a second order PDE for $u: \Omega \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$; that is

$$
\begin{equation*}
F\left(x, u, D u, D^{2} u\right)=0 \tag{1}
\end{equation*}
$$

where $F=F(x, z, p, q): \Gamma \subset \Omega \times \mathbb{R} \times \mathbb{R}^{n} \times \operatorname{Sym}^{2}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{R}$ and $\operatorname{Sym}^{2}\left(\mathbb{R}^{n}\right)$ is the space of symmetric matrices with real entries. One says that equation (1) is elliptic (for u) at the point $x_{0} \in \Omega$ if the matrix $\mathcal{M}\left(x_{0}\right):=D_{q} F\left(x_{0}, u\left(x_{0}\right), D u\left(x_{0}\right), D^{2} u\left(x_{0}\right)\right)$ is positive or negative definite. Obviously, F must admit first order derivatives with respect to the variables $p \in \operatorname{Sym}^{2}\left(\mathbb{R}^{n}\right)$. The definition depends, in general, on the function u when the equation is quasilinear or fully nonlinear. For the following equations, determine conditions on $x, u(x), D u(x), D^{2} u(x)$ and the other function parameters for which the equation is elliptic. That is, determine suitable subsets Γ of \mathcal{V} for which the equation is elliptic at each point of Ω.

- (Linear equations) Consider the general second order linear PDE with variable coefficients

$$
\sum_{i, j=1}^{n} a_{i j}(x) D_{i j} u+\sum_{i=1}^{n} b_{i}(x) D_{i} u+c u-f(x)=0
$$

where $a_{i j}=a_{j i}, b_{i}$ and c are bounded functions on Ω. In particular, for which matrices $A=\left[a_{i j}\left(x_{0}\right)\right]$ is the equation elliptic at x_{0} ? Does this depend on the other coefficients b_{i}, c or the forcing term f ?

- (Minimal surface equation) Consider the following equation for a cartesian surface (the graph of a function u)

$$
\operatorname{div}\left(\left(1+|D u|^{2}\right)^{-1 / 2} D u\right)=0
$$

(Hint: begin with the case $n=2$.

- (Potential flow) Consider the following equation

$$
\left(1-\frac{u_{x}^{2}}{c^{2}}\right) u_{x x}-2 \frac{u_{x} u_{y}}{c^{2}} u_{x y}+\left(1-\frac{u_{y}^{2}}{c^{2}}\right) u_{y y}=0
$$

where u is the velocity potential which satisfies $D u=\left(u_{x}, u_{y}\right)$ the velocity vector for the flow and $c=c(|D u|)$ is the local sound speed which is a function of the flow speed $|D u|$.

- (Monge-Ampère) Consider the equation

$$
\operatorname{det}\left(D^{2} u\right)=0
$$

(Hint: begin with the case $n=2$)
Repeat the exercise for the more general equation of Monge-Ampère type

$$
\operatorname{det}\left(D^{2} u\right)+f(x, u, D u)=0
$$

where $f=f(x, z, p): \mathcal{W} \subset \Omega \times \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$.
Exercise 1.3-[Degenerate ellipticity of second order PDE] One says that equation (1) from Exercise 1.2 is degenerate elliptic (on $\Gamma \subset \Omega \times \mathbb{R} \times \mathbb{R}^{n} \times \operatorname{Sym}^{2}\left(\mathbb{R}^{n}\right)$) if the function F is monotone in q; that is

$$
F(x, z, p, A) \leq F(x, z, p, B) \quad \text { if } A \leq B \quad \forall(x, z, p)
$$

or

$$
F(x, z, p, A) \geq F(x, z, p, B) \quad \text { if } A \leq B \quad \forall(x, z, p),
$$

where two matrices $A, B \in \operatorname{Sym}^{2}\left(\mathbb{R}^{n}\right)$ satisfy $A \leq B$ if the quadratic form associated to A is dominated by that of B; that is

$$
\langle A \xi, \xi\rangle \leq\langle B \xi, \xi\rangle \quad \forall \xi \in \mathbb{R}^{n} .
$$

Study the question of degenerate ellipticity for the examples in Exercise 1.2.
Exercise 1.4-[Multi-indices and the formulas of Leibniz and Taylor]: see Exercises 1.5.2, 1.5.3, 1.5.4 and 1.5.5 of [E].

Exercise 1.5 - [Basic notions]: Look at the appendices A, B, C, D, E of [E] for background notions that will be useful throughout the course. For now, we do NOT need D.5, D. 6 e E.5.

References

[E] - Evans, L.C. - Partial Differential Equations, Second Edition, Graduate Studies in Mathematics, Vol. 19, Amer. Math. Soc., Providence, RI, 2010.

